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ON THE COMMUTING VARIETY OF A REDUCTIVE LIE ALGEBRA

JEAN-YVES CHARBONNEL

Abstract. The commuting variety of a reductive Lie algebra g is the underlying variety of a well defined subscheme of

g × g. In this note, it is proved that this scheme is normal. In particular, its ideal of definition is a prime ideal.
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1. Introduction

In this note, the base field k is algebraically closed of characteristic 0, g is a reductive Lie algebra of

finite dimension, ℓ is its rank, and G is its adjoint group.

1.1. Notations. • For V a module over a k-algebra, its symmetric and exterior algebras are denoted

by S(V) and
∧

(V) respectively. If E is a subset of V , the submodule of V generated by E is denoted by

span(E). When V is a vector space over k, the grassmanian of all d-dimensional subspaces of V is denoted

by Grd(V).

• All topological terms refer to the Zariski topology. If Y is a subset of a topological space X, let denote

by Y the closure of Y in X. For Y an open subset of the algebraic variety X, Y is called a big open subset

if the codimension of X \ Y in X is bigger than 2. For Y a closed subset of an algebraic variety X, its

dimension is the biggest dimension of its irreducible components and its codimension in X is the smallest

codimension in X of its irreducible components. For X an algebraic variety, k[X] is the algebra of regular

functions on X.

• All the complexes considered in this note are graded complexes over Z of vector spaces and their

differentials are homogeneous of degree −1 and they are denoted by d. As usual, the gradation of the

complex is denoted by C•.
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2 J-Y CHARBONNEL

• The dimension of the Borel subalgebras of g is denoted by bg . Let set n := bg − ℓ so that dimg =

2bg − ℓg = 2n + ℓ.

• The dual g∗ of g identifies with g by a given non degenerate, invariant, symmetric bilinear form 〈., .〉

on g × g extending the Killing form of [g, g].

• For x ∈ g, let denote by gx the centralizer of x in g. The set of regular elements of g is

greg := {x ∈ g | dimgx
= ℓ}

The subset greg of g is a G-invariant open subset of g. According to [V72], g \ greg is equidimensional of

codimension 3.

• Let denote by S(g)g the algebra of g-invariant elements of S(g). Let p1, . . . , pℓ be homogeneous gener-

ators of S(g)g of degree d1, . . . ,dℓ respectively. Let choose the polynomials p1, . . . ,pℓ so that d1≤ · · · ≤dℓ.

For i = 1, . . . , dℓ and (x, y) ∈ g× g, let consider a shift of pi in direction y: pi(x+ ty) with t ∈ k. Expanding

pi(x + ty) as a polynomial in t, one obtains

pi(x + ty) =

di
∑

m=0

p
(m)
i

(x, y)tm; ∀(t, x, y) ∈ k × g × g(1)

where y 7→ (m!)p
(m)

i
(x, y) is the derivate at x of pi at the order m in the direction y. The elements p

(m)

i

defined by (1) are invariant elements of S(g) ⊗k S(g) under the diagonal action of G in g × g. Let remark

that p
(0)

i
(x, y) = pi(x) while p

(di)

i
(x, y) = pi(y) for all (x, y) ∈ g × g.

Remark 1.1. The family Px := {p
(m)
i

(x, .); 1 ≤ i ≤ ℓ, 1 ≤ m ≤ di} for x ∈ g, is a Poisson-commutative

family of S(g) by Mishchenko-Fomenko [MF78]. One says that the family Px is constructed by the

argument shift method.

• Let i ∈ {1, . . . , ℓ} be. For x in g, let denote by εi(x) the element of g given by

〈εi(x), y〉 =
d

dt
pi(x + ty) |t=0

for all y in g. Thereby, εi is an invariant element of S(g) ⊗k g under the canonical action of G. According

to [Ko63, Theorem 9], for x in g, x is in greg if and only if ε1(x), . . . ,εℓ(x) are linearly independent. In this

case, ε1(x), . . . ,εℓ(x) is a basis of gx.

Let denote by ε
(m)
i

, for 0 ≤ m ≤ di − 1, the elements of S(g × g) ⊗k g defined by the equality:

εi(x + ty) =

di−1
∑

m=0

ε
(m)

i
(x, y)tm, ∀(t, x, y) ∈ k × g × g(2)

and let set:

Vx,y := span({ε
(0)
i

(x, y), . . . ,ε
(di−1)
i

(x, y), i = 1, . . . , ℓ})

for (x, y) in g × g.
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1.2. Main result and main idea. Since g identifies with its dual, S(g) is the algebra of polynomial

functions on g. The commuting variety C(g) of g is the subvariety of elements (x, y) of g × g such that

[x, y] = 0. Let Ig be the ideal of S(g × g) generated by the functions (x, y) 7→ 〈v, [x, y]〉 with v in g. Then

C(g) is the underlying subvariety of the subscheme of g × g defined by Ig. It is a well known and long

standing open question whether or not this scheme is reduced. The main result of this note is the following

theorem:

Theorem 1.2. The subscheme of g×g defined by Ig is normal. Furthermore, Ig is a prime ideal of S(g×g).

According to a result of R. W. Richardson [Ri79], C(g) is irreducible. So the last assertion of the

theorem is a consequence of the first one. In [Di79], J. Dixmier gave a partial answer to this question.

In fact, he proved that Ig and its radical have the same part in degree 1. The main tool of our proof uses

the main argument of the Dixmier’s proof: for a finitely generated module M over S(g × g), M = 0 if the

codimension of its support is at least l + 2 with l the projective dimension of M (see Appendix A).

Let introduce the characteristic submodule of g, denoted by Bg . By definition, Bg is a submodule of

S(g × g)⊗k g and an element ϕ of S(g × g)⊗k g is in Bg if and only if for all (x, y) in g × g, ϕ(x, y) is in the

sum of subspaces gax+by with (a, b) in k2 \ {0}. This is a free module of rank bg . Moreover, for all ϕ in Bg

and for all (x, y) in g × g, 〈ϕ(x, y), [x, y]〉 = 0. The first step of the proof of Theorem 1.2 is the following

proposition:

Proposition 1.3. For i positive integer, the module
∧i(g) ∧

∧bg (Bg) has projective dimension at most i.

The second step of the proof of Theorem 1.2 is the following theorem:

Theorem 1.4. The ideal Ig is radical and its projective dimension is 2n − 1.

Then Theorem 1.2 follows easily from this theorem and [Po08, Theorem 1].

2. Characteristic module

For (x, y) in g × g, let set:

V ′x,y =
∑

(a,b)∈k2\{0}

g
ax+by

By definition, the characteristic module Bg of g is the submodule of elements ϕ of S(g × g) ⊗k g such that

ϕ(x, y) is in V ′x,y for all (x, y) in g × g. In this section, some properties of Bg are given.

2.1. Let denote by Ωg the subset of elements (x, y) of g × g such that Px,y has dimension 2 and such that

Px,y \ {0} is contained in greg. According to [CMo08, Corollary 10], Ωg is a big open subset of g × g.

Proposition 2.1. Let (x, y) be in g × g such that Px,y ∩ greg is not empty.

(i) Let O be an open subset of k2 such that ax + by is in greg for all (a, b) in O. Then Vx,y is the sum of

the gax+by’s, (a, b) ∈ O.

(ii) The spaces [x,Vx,y] and [y,Vx,y] are equal.

(iii) The space [x,Vx,y] is orthogonal to Vx,y. Furthermore, (x, y) is in Ωg if and only if [x,Vx,y] is the

orthogonal complement of Vx,y in g.

(iv) The space Vx,y is contained in V ′x,y. Moreover, Vx,y = V ′x,y if (x, y) is in Ωg.
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(v) The element (x, y) of g × g is in Ωg if and only if Vx,y has dimension bg .

(vi) For g in G, for i = 1, . . . , ℓ and for m = 0, . . . , di − 1, ε
(m)

i
is a G-equivariant map.

Proof. (i) For pairwise different elements t1, . . . ,tdℓ−1 of k \ {0}, the ε
(m)
i

(x, y)’s, m = 0, . . . , di − 1 are

linear combinations of the εi(x + t jy)’s, j = 1, . . . , di − 1 for i = 1, . . . , ℓ. Furthermore, for all z in greg,

ε1(z), . . . ,εℓ(z) is a basis of gz by [Ko63, Theorem 9], whence the assertion since the maps ε1, . . . ,εℓ are

homogeneous.

(ii) Let O be an open subset of (k \ {0})2 such that ax + by is in greg for all (a, b) in O. For all (a, b) in

O, [x, gax+by] = [y, gax+by] since [ax + by, gax+by] = 0 and since ab , 0, whence the assertion by (i).

(iii) results from [Bol91, Theorem 2.1].

(iv) According to [Ko63, Theorem 9], for all z in g and for i = 1, . . . , ℓ, εi(z) is in gz. Hence for all t in

k, εi(x + ty) is in V ′x,y. So ε
(m)
i

(x, y) is in V ′x,y for all m, whence Vx,y ⊂ V ′x,y.

Let suppose that (x, y) is in Ωg. According to [Ko63, Theorem 9], for all (a, b) in k2 \ {0}, ε1(ax +

by), . . . ,εℓ(ax + by) is a basis of gax+by. Hence gax+by is contained in Vx,y, whence the assertion.

(v) Since Vx,y only depends on Px,y, one can suppose x regular. Then gx is contained in Vx,y by [Ko63,

Theorem 9] and [x,Vx,y] has dimension dim Vx,y − ℓ. As a result, by (iii),

2dim Vx,y − ℓ ≤ dimg

and the equality holds if and only if [x,Vx,y] is the orthogonal complement of Vx,y in g, whence the

assertion by (iii) again.

(vi) Let i be in {1, . . . , ℓ}. Since pi is G-invariant, εi is a G-equivariant map. As a result, its 2-

polarizations ε
(0)
i
, . . . ,ε

(di−1)
i

are G-equivariant for the diagonal action of G in g × g. �

Theorem 2.2. (i) The module Bg is a free module of rank bg whose a basis is the sequence ε
(0)

i
, . . . , ε

(di−1)

i
,

i = 1, . . . , ℓ.

(ii) For ϕ in S(g × g) ⊗k g, ϕ is in Bg if and only if pϕ ∈ Bg for some p in S(g × g) \ {0}.

(iii) For all ϕ in Bg and for all (x, y) in g × g, ϕ(x, y) is orthogonal to [x, y].

Proof. (i) and (ii) According to Proposition 2.1,(iv), ε
(m)
i

is in Bg for all (i,m). Moreover, according to

Proposition 2.1,(v), these elements are linearly independent over S(g × g) since the sum of the degrees

d1, . . . ,dℓ equal bg by [Bou02, Ch. V, §5, Proposition 3]. Let ϕ be an element of S(g × g) ⊗k g such that

pϕ is in Bg for some p in S(g × g) \ {0}. Since Ωg is a big open subset of g × g, for all (x, y) in a dense

open subset of Ωg, ϕ(x, y) is in Vx,y by Proposition 2.1,(iv). According to Proposition 2.1,(v), the map

Ωg −→ Grbg (g) (x, y) 7−→ Vx,y

is regular. So, ϕ(x, y) is in Vx,y for all (x, y) in Ωg and for some regular functions ai,m, i = 1, . . . , ℓ,

m = 0, . . . , di − 1 on Ωg,

ϕ(x, y) =

ℓ
∑

i=1

di−1
∑

m=0

ai,m(x, y)ε
(m)

i
(x, y)

for all (x, y) in Ωg. Since Ωg is a big open subset of g × g and since g × g is normal, the ai,m’s have a

regular extension to g × g. Hence ϕ is a linear combination of the ε
(m)
i

’s with coefficients in S(g × g). As
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a result, the sequence ε
(m)
i

, i = 1, . . . , ℓ, m = 0, . . . , di − 1 is a basis of the module Bg and Bg is the subset

of elements ϕ of S(g × g) ⊗k g such that pϕ ∈ Bg for some p in S(g × g) \ {0}.

(iii) Let ϕ be in Bg . According to (i) and Proposition 2.1,(iii) and (iv), for all (x, y) in Ωg, [x, ϕ(x, y)] is

orthogonal to Vx,y. Then, since y is in Vx,y, [x, ϕ(x, y)] is orthogonal to y and 〈ϕ(x, y), [x, y]〉 = 0, whence

the assertion. �

2.2. Let also denote by 〈., .〉 the natural extension of 〈., .〉 to the module S(g × g) ⊗k g.

Proposition 2.3. Let Cg be the orthogonal complement of Bg in S(g × g) ⊗k g.

(i) For ϕ in S(g × g) ⊗k g, ϕ is in Cg if and only if ϕ(x, y) is in [x,Vx,y] for all (x, y) in a nonempty open

subset of g × g.

(ii) The module Cg is free of rank bg − ℓ. Furthermore, the sequence of maps

(x, y) 7→ [x, ε
(1)
i

(x, y)], . . . , (x, y) 7→ [x, ε
(di−1)
i

(x, y)], i = 1, . . . , ℓ

is a basis of Cg .

(iii) The orthogonal complement of Cg in S(g × g) ⊗k g equals Bg .

Proof. (i) Let ϕ be in S(g × g) ⊗k g. If ϕ is in Cg , then ϕ(x, y) is orthogonal to Vx,y for all (x, y) in Ωg.

Then, according to Proposition 2.1,(iii), ϕ(x, y) is in [x,Vx,y] for all (x, y) in Ωg. Conversely, let suppose

that ϕ(x, y) is in [x,Vx,y] for all (x, y) in a nonempty open subset V of g × g. By Proposition 2.1,(iii) again,

for all (x, y) in V ∩ Ωg, ϕ(x, y) is orthogonal to the ε
(m)

i
(x, y)’s, i = 1, . . . , ℓ, m = 0, . . . , di − 1, whence the

assertion by Theorem 2.1.

(ii) Let C be the submodule of S(g × g) ⊗k g generated by the maps

(x, y) 7→ [x, εi(1)(x, y)], . . . , (x, y) 7→ [x, ε
(di−1)
i

(x, y)], i = 1, . . . , ℓ

According to (i), C is a submodule of Cg . This module is free of rank bg − ℓ since [x,Vx,y] has dimension

bg − ℓ for all (x, y) in Ωg by Proposition 2.1, (v). According to (i), for ϕ in Cg , for all (x, y) in Ωg,

ϕ(x, y) =

ℓ
∑

i=1

di−1
∑

m=1

ai,m(x, y)[x, ε
(m)

i
(x, y)]

with the ai,m’s regular on Ωg and uniquely defined by this equality. Since Ωg is a big open subset of g × g

and since g × g is normal, the ai,m’s have a regular extension to g × g. As a result, ϕ is in C, whence the

assertion.

(iii) Let ϕ be in the orthogonal complement of Cg in S(g × g) ⊗k g. According to (ii), for all (x, y) in

Ωg, ϕ(x, y) is orthogonal to [x,Vx,y]. Hence by Proposition 2.1,(iii), ϕ(x, y) is in Vx,y for all (x, y) in Ωg.

So, by Theorem 2.1, ϕ is in Bg , whence the assertion. �

Let denote by B and C the localizations of Bg and Cg on g × g respectively. For (x, y) in g × g, let Cx,y

be the image of Cg by the evaluation map at (x, y).

Lemma 2.4. There exists an affine open cover O of Ωg verifying the following condition: for all O in O,

there exist some subspaces E and F of g, depending on O, such that

g = E ⊕ Vx,y = F ⊕Cx,y

for all (x, y) in O. Moreover, for all (x, y) in O, the orthogonal complement of Vx,y in g equals Cx,y.
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Proof. According to Proposition 2.1,(iii) and (v), for all (x, y) in Ωg, Vx,y and Cx,y have dimension bg and

bg − ℓ respectively so that the maps

Ωg −→ Grbg (g) (x, y) 7−→ Vx,y Ωg −→ Grbg−ℓ(g) (x, y) 7−→ Cx,y

are regular, whence the assertion. �

3. Torsion and projective dimension

Let E and E# be the quotients of S(g × g) ⊗k g by Bg and Cg respectively. For i positive integer, let

denote by Ei the quotient of
∧i(E) by its torsion module.

3.1. Let B∗g and C∗g be the duals of Bg and Cg .

Lemma 3.1. (i) The S(g × g)-modules E and E# have projective dimension at most 1.

(ii) The S(g × g)-modules E and E# are torsion free.

(iii) The modules Cg and Bg are the duals of E and E# respectively.

(iv) The canonical morphisms from E to C∗g is an embedding.

Proof. (i) By definition, the short seqences of S(g × g)-modules,

0 −→ Bg −→ S(g × g) ⊗k g −→ E −→ 0

0 −→ Cg −→ S(g × g) ⊗k g −→ E# −→ 0

are exact. Hence E and E# have projective dimension at most 1 since Bg and Cg are free modules by

Theorem 2.2 and Proposition 2.3,(ii).

(ii) The module E is torsion free by Theorem 2.2,(ii). By definition, for ϕ in S(g × g) ⊗k g, ϕ is in Cg if

pϕ is in Cg for some p in S(g × g) \ {0}, whence E# is torsion free.

(iii) According to the exact sequences of (i), the dual of E is the orthogonal complement of Bg in

S(g × g)⊗k g and the dual of E# is the orthogonal complement of Cg in S(g × g)⊗k g, whence the assertion

since Cg is the orthogonal complement of Bg in S(g × g) ⊗k g by definition and since Bg is the orthogonal

complement of Cg in S(g × g) ⊗k g by Proposition 2.3,(iii).

(iv) Let ω be in the kernel of the canonical morphism from E to C∗g . Let ω be a representative of ω in

S(g × g) ⊗k g. According to Proposition 2.3,(iii), Bg is the orthogonal complement of Cg in S(g × g) ⊗k g

so that ω is in Bg , whence the assertion. �

Let ι be the morphism

S(g × g) ⊗k g −→ C∗g v 7−→ (µ 7→ 〈v, µ〉)

Lemma 3.2. The submodule ι(S(g × g) ⊗k g) of C∗g has projective dimension at most 1.

Proof. According to Proposition 2.3,(iii), Bg is the kernel of ι, whence the assertion since Bg is a free

module by Theorem 2.2. �

Let set

ε = ∧ℓi=1ε
(0)
i
∧ · · · ∧ε

(di−1)
i
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and for i positive integer, let denote by θi the morphism

S(g × g) ⊗k
∧i(g) −→

∧i(g) ∧
∧bg (Bg) ϕ 7−→ ϕ ∧ ε

Proposition 3.3. Let i be a positive integer.

(i) The morphism θi defines through the quotient an isomorphism from Ei onto
∧i(g) ∧

∧bg (Bg).

(ii) The short sequence of S(g × g)-modules

0 −→ Bg ⊗S(g×g) Ei −→ g ⊗k Ei −→ E ⊗S(g×g) Ei −→ 0

is exact.

Proof. (i) For j positive integer, let denote by π j the canonical map from S(g × g) ⊗k
∧ j(g) to

∧ j(E). Let

ω be in the kernel of πi. Let O be an element of the affine open cover of Ωg of Lemma 2.4 and let W be a

subspace of g such that

g = W ⊕ Vx,y

for all (x, y) in O so that π1 induces an isomorphism

k[O] ⊗k W −→ k[O] ⊗S(g×g) E

Moreover, Bg is the kernel of π1. Then, from the equality

k[O] ⊗k
∧i(g) =

i
⊕

j=0

∧ j(W) ∧ k[O] ⊗S(g×g)

∧i− j(Bg)

it results that the restriction of ω to O is in k[O] ⊗S(g×g)

∧i−1(g) ∧ Bg . Hence the restriction of ω ∧ ε to O

equals 0 and ω is in the kernel of θi since
∧i(g)∧

∧bg (Bg) has no torsion as a submodule of a free module.

As a result, θi defines through the quotient a morphism from
∧i(E) to

∧i(g) ∧
∧bg (Bg). Let denote it by

ϑ′
i
. Since

∧i(g)∧
∧bg (Bg) is torsion free, the torsion submodule of

∧i(E) is contained in the kernel of ϑ′
i
.

Hence ϑ′
i

defines through the quotient a morphism from Ei to
∧i(g) ∧

∧bg (Bg). Denoting it by ϑi, ϑ
′
i

and

ϑi are surjective since θi is too.

Let ω be in the kernel of ϑ′
i

and let ω be a representative of ω in S(g × g) ⊗k
∧i(g). Then ω ∧ ε = 0

so that the restriction of ω to the above open subset O is in k[O] ⊗S(g×g)

∧i−1(g) ∧ Bg . As a result, the

restriction of ω to O equals 0. So, ω is in the torsion submodule of
∧i(E), whence the assertion.

(ii) By definition, the sequence

0 −→ Bg −→ S(g × g) ⊗k g −→ E −→ 0

is exact. Then the sequence

Tor
S(g×g)

1
(E, Ei) −→ Bg ⊗S(g×g) Ei −→ g ⊗k Ei −→ E ⊗S(g×g) Ei −→ 0

is exact. By definition, Ei is torsion free. As a result, Bg ⊗S(g×g) Ei is torsion free since Bg is a free

module. Then, since Tor
S(g×g)

1
(E, Ei) is a torsion module, its image in Bg ⊗S(g×g) Ei equals 0, whence the

assertion. �
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3.2. For i positive integer, 〈., .〉 has a canonical extension to S(g × g) ⊗k
∧i(g) denoted again by 〈., .〉.

Lemma 3.4. Let i be a positive integer. Let Ti be the torsion module of E ⊗S(g×g) Ei and let T ′
i

be its

inverse image by the canonical morphism g ⊗k Ei → E ⊗S(g×g) Ei.

(i) The canonical morphism from
∧i(E) to

∧i(C∗g) defines through the quotient an embedding of Ei into
∧i(C∗g).

(ii) The module of T ′
i

is the intersection of g ⊗k Ei and Bg ⊗S(g×g)

∧i(C∗g).

(iii) The module T ′
i

is isomorphic to HomS(g×g)(E
#, Ei).

Proof. (i) According to Lemma 3.1,(iii), there is a canonical morphism from
∧i(E) to

∧i(C∗g). Let ω

be in its kernel and let ω be a representative of ω in S(g × g) ⊗k
∧i(g). Then ω is orthogonal to

∧i(Cg)

with respect to 〈., .〉. So for O as in Lemma 2.4, the restriction of ω to O is in k[O] ⊗S(g×g)

∧i−1(g) ∧ Bg .

Hence the restriction of ω to O equals 0. In other words, ω is in the torsion module of
∧i(E), whence the

assertion since
∧i(C∗g) is a free module.

(ii) Since
∧i(C∗g) is a free module, by Proposition 3.3,(ii), there is a morphism of short exact sequences

0 // Bg ⊗S(g×g) Ei
//

��

g ⊗k Ei
//

��

E ⊗S(g×g) Ei
//

��

0

0 // Bg ⊗S(g×g)

∧i(C∗g)
// g ⊗k

∧i(C∗g)
// E ⊗S(g×g)

∧i(C∗g)
// 0

Moreover, the tow first vertical arrows are embeddings. Hence T ′
i

is the intersection of g ⊗k Ei and

Bg ⊗S(g×g)

∧i(C∗g).

(iii) According to the identification of g with its dual, g ⊗k Ei = Homk(g, Ei). Moreover, according to

the short exact sequence of S(g × g)-modules

0 −→ Cg −→ S(g × g) ⊗k g −→ E# −→ 0

the sequence of S(g × g)-modules

0 −→ HomS(g×g)(E
#, Ei) −→ Homk(g, Ei) −→ HomS(g×g)(Cg , Ei) −→ Ext1S(g×g)(E

#, Ei)

is exact. For ϕ in Homk(g, Ei), ϕ is in the kernel of the third arrow if and only if Cg is contained in the

kernel of ϕ or equivalently ϕ is in Bg ⊗S(g×g)

∧i(C∗g), whence the assertion by (ii). �

The following corollary results from Lemma 3.4.

Corollary 3.5. Let i be a positive integer and let Ei be the quotient of E ⊗S(g×g) Ei by its torsion module.

Then the short sequence of S(g × g)-modules

0 −→ HomS(g×g)(E
#, Ei) −→ g ⊗k Ei −→ Ei −→ 0

is exact.
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3.3. For i positive integer, let di and d′
i

be the projective dimensions of Ei and HomS(g×g)(E
#, Ei).

Lemma 3.6. Let i be a positive integer and let d′′
i

be the projective dimension of Ext1S(g×g)(E
#, Ei).

(i) The integer d′
i

is at most sup{d′′
i
− 2, di}.

(ii) For P a projective module over S(g × g), Ext1S(g×g)(E
#, P) is canonically isomorphic to Ag ⊗S(g×g) P

with Ag the quotient of C∗g by ι(S(g × g) ⊗k g).

(iii) The integer d′′
i

is at most di + 2.

Proof. (i) From the short exact sequence

0 −→ Cg −→ S(g × g) ⊗k g −→ E# −→ 0

one deduces the exact sequence

0 −→ HomS(g×g)(E
#, Ei) −→ Homk(g, Ei) −→ HomS(g×g)(Cg , Ei

) −→ Ext1S(g×g)(E
#, Ei) −→ 0

whence the two short exact sequences

0 −→ HomS(g×g)(E
#, Ei) −→ Homk(g, Ei) −→ Z −→ 0

0 −→ Z −→ HomS(g×g)(Cg , Ei
) −→ Ext1S(g×g)(E

#, Ei) −→ 0

with Z the image of the arrow

Homk(g, Ei) −→ HomS(g×g)(Cg , Ei
)

Denoting by d the projective dimension of Z, one deduces the inequalities

d′
i
≤ sup{d − 1, di} d ≤ sup{d′′

i
− 1, di}

since Cg is a free module, whence the assertion.

(ii) From the short exact sequence

0 −→ Cg −→ S(g × g) ⊗k g −→ E# −→ 0

one deduces the exact sequence

0 −→ HomS(g×g)(E
#, P) −→ Homk(g, P) −→ HomS(g×g)(Cg , P) −→ Ext1S(g×g)(E

#, P) −→ 0

Since Cg is a free module, HomS(g×g)(Cg , P) is canonically isomorphic to C∗g ⊗S(g×g) P and there is a

commutative diagram

Homk(g, P) //

��

HomS(g×g)(Cg , P)

��

g ⊗k P
ι⊗idP

// C∗g ⊗S(g×g) P

whenever the vertical arrows are isomorphisms, whence the assertion since P is projective.

(iii) Let

0 −→ Pdi
−→ · · · −→ P0 −→ Ei −→ 0
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be a projective resolution of Ei. For j nonnegative integer, let Z j be the space of cycles of this complex.

Since E# has projective dimension at most 1, for all module M over S(g × g), Ext
j

S(g×g)
(E#, M) = 0 for all

integer at least 2, whence the exact sequences

Ext1S(g×g)(E
#, Z0) −→ Ext1S(g×g)(E

#, P0) −→ Ext1S(g×g)(E
#, Ei) −→ 0

Ext1S(g×g)(E
#, Z j) −→ Ext1S(g×g)(E

#, P j) −→ Ext1S(g×g)(E
#, Z j−1) −→ 0

for all positive integer j and whence the long exact sequence

0 −→ Ext1S(g×g)(E
#, Pdi

) −→ · · · −→ Ext1S(g×g)(E
#, P0) −→ Ext1S(g×g)(E

#, Ei) −→ 0

Then by (ii), there is an exact sequence

0 −→ Ag ⊗S(g×g) Pdi
−→ · · · −→ Ag ⊗S(g×g) P0 −→ Ext1S(g×g)(E

#, Ei) −→ 0

According to Lemma 3.2, Ag has projective dimension at most 2. Hence d′′
i

is at most di + 2. �

The following corollary results from Lemma 3.6,(i) and (iii) and Corollary 3.5.

Corollary 3.7. Let i be a positive integer. Then Ei has projective dimension at most di + 1.

3.4. For i a positive integer and for M a S(g × g)-module, let consider on M⊗i the canonical action of the

symmetric group Si. For σ inSi, let denote by ǫ(σ) its signature. Let M⊗i
sign

be the submodule of elements

a of M⊗i such that σ.a = ǫ(σ)a for all σ in Si and let δi be the endomorphism of M⊗i,

a 7−→ δi(a) =
1

i!

∑

σ∈Si

ǫ(σ)σ.a

Then δi is a projection of M⊗i onto M⊗i
sign

.

For L submodule of C∗g , let denote by Li the image of L⊗i by the canonical map from L⊗i to (C∗g)
⊗i and

let set Li,sign := Li ∩ (C∗g)
⊗i
sign

. Let
∧i(L) be the quotient of

∧i(L) by its torsion module. For i ≥ 2, let

identify Si−1 with the stabilizer of i in Si and let denote by Li−1,sign,1 the submodule of elements a of Li

such that σ.a = ǫ(σ)a for all σ in Si−1.

Lemma 3.8. Let i be a positive integer and let L be a submodule of C∗g .

(i) The module Li is the quotient of L⊗i by its torsion module.

(ii) The module Li,sign is isomorphic to
∧i(L).

(iii) For i ≥ 2, the module Li,sign is a direct factor of Li−1,sign,1.

(iv) For i ≥ 2, the module Li−1,sign,1 is isomorphic to the quotient of
∧i−1(L) ⊗S(g×g) L by its torsion

module.

Proof. (i) Let L1 and L2 be submodules of a free module F over S(g × g). From the short exact sequence

0 −→ L2 −→ F −→ F/L2 −→ 0

one deduces the exact sequence

Tor1
S(g×g)(L1, L2) −→ L1 ⊗S(g×g) L2 −→ L1 ⊗S(g×g) F −→ L1 ⊗S(g×g) (F/L2) −→ 0
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Since F is free, L1 ⊗S(g×g) F is torsion free. Hence the kernel of the second arrow is the torsion module of

L1 ⊗S(g×g) L2 since Tor1
S(g×g)(L1, L2) is a torsion module, whence the assertion by induction on i.

(ii) There is a commutative diagram

L⊗i //

δi

��

(C∗g)
⊗i

δi

��

L⊗i
sign

// (C∗g)
⊗i
sign

so that Li,sign is the image of L⊗i
sign

by the canonical morphism L⊗i −→ (C∗g)
⊗i, whence a commutative

diagram

L⊗i
sign

//

��

∧i(L)

��

(C∗g)
⊗i
sign

//
∧i(C∗g)

According to (i), the kernel of the left down arrow is the torsion module of L⊗i
sign

so that the kernel of the

right down arrow is the torsion module of
∧i(L) since the horizontal arrows are isomorphisms. Moreover,

the image of Li,sign in
∧i(C∗g) is the image of

∧i(L). Hence
∧i(L) is isomorphic to Li,sign.

(iii) Let denote by Qi the kernel of the endomorphism δi of (C∗g)
⊗i. Since δi is a projection onto (C∗g)

⊗i
sign

such that δi(Li) is contained in Li,sign,

(C∗g)
⊗i
= (C∗g)

⊗i ⊕ Qi Li = Li,sign ⊕ Qi ∩ Li

whence

Li−1,sign,1 = Li,sgn ⊕ Qi ∩ Li−1,sign,1

since Li,sign is a submodule of Li−1,sign,1.

(iv) Let L′
i

be the image of Li−1,sign,1 by the canonical morphism (C∗g)
⊗i →

∧i−1(C∗g) ⊗S(g×g) C∗g . Then

L′
i

is contained in
∧i−1(C∗g) ⊗S(g×g) L since

∧i−1(C∗g) ⊗S(g×g) L is a submodule of
∧i−1(C∗g) ⊗S(g×g) C∗g .

Moreover, the morphism Li−1,sign,1 → L′
i

is an isomorphism since the morphism

(C∗g)
⊗(i−1)

sign
⊗S(g×g) C∗g −→

∧i−1(C∗g) ⊗S(g×g) C∗g

is too. From (ii), it results the commutative diagram

L
⊗(i−1)

sign
⊗S(g×g) L //

��

∧i−1(L) ⊗S(g×g) L

��

Li−1,sign,1
// L′

i

with the right down arrow surjective. According to (i), the kernel of the left down arrow is the torsion mod-

ule of L
⊗(i−1)

sign
⊗S(g×g) L. Hence the kernel of the right down arrow is the torsion module of

∧i−1(L)⊗S(g×g) L,

whence the assertion. �
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Proposition 3.9. Let i be a positive integer. Then Ei and
∧i(g) ∧

∧bg (Bg) have projective dimension at

most i.

Proof. According to Proposition 3.3,(i), the modules Ei and
∧i(g) ∧

∧bg (Bg) are isomorphic. Let prove

by induction on i that Ei has projective dimension at most i. By Lemma 3.1,(i), it is true for i = 1.

Let suppose that it is true for i − 1. According to Corollary 3.7, Ei has projective dimension at most i.

Then by Lemma 3.8, for L = E, Ei has projective dimension at most i since E is a submodule of C∗g by

Lemma 3.1,(iv) and since Ei =
∧i(E) by Lemma 3.4,(i). �

4. Main results

Let Ig be the ideal of S(g × g) generated by the functions (x, y) 7→ 〈v, [x, y]〉 with v in g. The nullvariety

of Ig in g × g is C(g).

Lemma 4.1. Let Jg be the radical of Ig. Then the support of Jg/Ig in g × g is strictly contained in C(g).

Proof. Since C(g) is the nullvariety of Ig in g × g. The support of Jg/Ig is contained in C(g). Let x0 be a

regular element of g and let V be a complement of gx0 in g. Since the map

greg −→ Grℓ(g) x 7−→ gx

is regular, for some open subset O′ of greg, containing x0,

g = V ⊕ gx

for all x in O′. Let F be a complement of [x0,V] in g. Then the map

O′ −→ Gr2n(g) x 7→ [x,V]

is regular and for some affine open subset O of O′, containing x0,

g = F ⊕ [x,V]

for all x in O. Let set:

IO := k[O × g] ⊗S(g×g) Ig JO := k[O × g] ⊗S(g×g) Jg

and let prove IO = JO. It will result that {x0} × g
x0 is not contained in the support of Jg/Ig.

According to the identification of g with its dual,

k[O × g] = k[O] ⊗k S(g)

Let denote by v1, . . . ,v2n and f1, . . . , fℓ some basis of V and F respectively. For (i, j) in N2n × Nℓ, let νi, j

be the element of k[O] ⊗k S(g),

x 7−→ νi, j(x) := [x, v1]i1 · · · [x, v2n]i2n f
j1

1
· · · f

jℓ
ℓ

so that νi, j, (i, j) ∈ N2n × Nℓ is a basis of the k[O]-module k[O] ⊗k S(g). In particular, νi, j is in IO if

|i| := i1+ · · ·+i2n > 0

Let ϕ be in JO. For all x in O, ϕ(x) is in the ideal of definition of gx in g. Since [x, g] is the orthogonal

complement of gx in g, ϕ(x) is in the ideal of S(g) generated by [x,V] for all x in O. Hence ϕ is a linear
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combination with coefficients in k[O] of the νi, j’s with |i| > 0. As a result, JO is contained in IO, whence

the lemma. �

Let d be the S(g × g)-derivation of the algebra S(g × g) ⊗k
∧

(g) such that dv is the function (x, y) 7→

〈v, [x, y]〉 on g × g for all v in g. According to Theorem 2.2,(iii),
∧

(g) ∧
∧bg (Bg) is a subcomplex of the

complex so defined. The gradation on
∧

(g) induces a gradation on S(g × g)⊗k
∧

(g) so that
∧

(g)∧
∧bg (Bg)

is a graded complex denoted by C•(g).

Lemma 4.2. The support of the homology of C•(g) is contained in C(g).

Proof. Let (x0, y0) be in g × g \ C(g) and let v be in g such that 〈v, [x0, y0]〉 , 0. For some affine open

subset O of g × g, containing (x0, y0), 〈v, [x, y]〉 , 0 for all (x, y) in O. Then dv is an invertible element of

k[O]. For c a cycle of k[O] ⊗S(g×g) C•(g),

d(v ∧ c) = (dv)c

so that c is a boundary of k[O] ⊗S(g×g) C•(g). �

Theorem 4.3. (i) The complex C•(g) has no homology in degree bigger than bg .

(ii) The ideal Ig has projective dimension 2n − 1.

(iii) The algebra S(g × g)/Ig is Cohen-Macaulay.

(iv) The ideal Ig is prime.

(v) The projective dimension of the module
∧n(g) ∧

∧bg (Bg) equals n.

Proof. (i) Let Z be the space of cycles of degree bg + 1 of C•(g). Let set:

Ci :=

{

Cbg+1+i(g) if i = 1, . . . , n − 1

Z if i = 0

C• := C0 ⊕ · · · ⊕Cn−1

Then C• is a subcomplex of C•(g) whose gradation is deduced from the gradation of C•(g) by translation

by bg + 1. According to Lemma 4.2, the support of its homology is contained in Cg. In particular, its

codimension in g × g is

4n + 2ℓ − (2n + 2ℓ) = 2n = n + n − 1 + 1

According to Proposition 3.9, for i = 1, . . . , n − 1, Ci has projective dimension at most i. Hence, by

Corollary A.3, C• is acyclic and Z has projective dimension at most 2n − 2, whence the assertion.

(ii) and (iii) Since Bg is a free module of rank bg ,
∧bg (Bg) is a free module of rank 1. By definition,

the short sequence

0 −→ Z −→ g ∧
∧bg (Bg) −→ Ig

∧bg (Bg) −→ 0

is exact, whence the short exact sequence

0 −→ Z −→ g ∧
∧bg (Bg) −→ Ig −→ 0

Moreover, by Proposition 3.9, g ∧
∧bg (Bg) has projective dimension at most 1. Then, by (i), Ig has

projective dimension at most 2n− 1. As a result the S(g × g)-module S(g × g)/Ig has projective dimension
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at most 2n. Then by Auslander-Buchsbaum’s theorem [Bou98, §3, n◦3, Théorème 1], the depth of the

graded S(g × g)-module S(g × g)/Ig is at least

4bg − 2ℓ − 2n = 2bg

so that, according to [Bou98, §1, n◦3, Proposition 4], the depth of the graded algebra S(g × g)/Ig is at

least 2bg . In other words, S(g × g)/Ig is Cohen-Macaulay since it has dimension 2bg . Moreover, since

the graded algebra S(g × g)/Ig has depth 2bg , the graded S(g × g)-module S(g × g)/Ig has depth 2bg and

projective dimension 2n. Hence Ig has projective dimension 2n − 1.

(iii) According to Lemma 4.1, the support in g × g of the module Jg/Ig is strictly contained in C(g). So

its codimension in g × g is at least 2n + 1 since C(g) is irreducible. Then by (ii) and Proposition A.2,(ii),

Ig = Jg, whence the assertion since C(g) is irreducible by [Ri79].

(iv) By (i), Ig has projective dimension 2n − 1. Hence, according to Proposition 3.9 and according to

(ii) and Corollary A.3,
∧n(g) ∧

∧bg (Bg) has projective dimension n. �

Corollary 4.4. The subscheme of g × g defined by Ig is normal.

Proof. According to Theorem 4.3,(iii), the subscheme of g × g defined by Ig is Cohen-Macaulay. Accord-

ing to [Po08, Theorem 1], it is smooth in codimension 1. So by Serre’s normality criterion [Bou98, §1,

n◦10, Théorème 4], it is normal. �

Appendix A. Projective dimension and cohomology

Let recall in this section classical results. Let X be a Cohen-Macaulay irreducible affine algebraic

variety and let S be a closed subset of codimension p of X. Let P• be a complex of finitely generated

projective k[X]-modules whose lenght l is finite and let ε be an augmentation morphism of P• whose

image is R, whence an augmented complex of k[X]-modules,

0 −→ Pl −→ Pl−1 −→ · · · −→ P0
ε
−→ R −→ 0

Let denote by P•, R, K0 the localizations on X of P•, R, the kernel of ε respectively and let denote by Ki

the kernel of the morphism Pi −→ Pi−1 for i positive integer.

Lemma A.1. Let suppose that S contains the support of the homology of the augmented complex P•.

(i) For all positive integer i < p − 1 and for all projective OX-module P, Hi(X \ S ,P) equals zero.

(ii) For all nonnegative integer j ≤ l and for all positive integer i < p − j, the cohomology group

Hi(X \ S ,Kl− j) equals zero.

Proof. (i) Let i < p− 1 be a positive integer. Since the functor Hi(X \ S , •) commutes with the direct sum,

it suffices to prove Hi(X \ S ,OX) = 0. Since S is a closed subset of X, one has the relative cohomology

long exact sequence

· · · −→ Hi
S (X,OX) −→ Hi(X,OX) −→ Hi(X \ S ,OX) −→ Hi+1

S (X,OX) −→ · · ·

Since X is affine, Hi(X,OX) equals zero and Hi(X \S ,OX) is isomorphic to Hi+1
S

(X,OX). Since X is Cohen-

Macaulay, the codimension p of S in X equals the depth of its ideal of definition in k[X] [MA86, Ch. 6,

Theorem 17.4]. Hence, according to [Gro67, Theorem 3.8], Hi+1
S

(X,OX) and Hi(X \ S ,OX) equal zero

since i + 1 < p.
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(ii) Let j be a nonnegative integer. Since S contains the support of the homology of the complex P•,

for all nonnegative integer j, one has the short exact sequence of OX\S -modules

0 −→ K j+1 |X\S −→ P j+1 |X\S −→ K j | X\S −→ 0

whence the long exact sequence of cohomology

· · · −→ Hi(X \ S ,P j+1) −→ Hi(X \ S ,K j) −→ Hi+1(X \ S ,K j+1) −→ Hi+1(X \ S ,P j+1) −→ · · · .

Then, by (i), for i < p − 2 positive integer, the cohomology groups Hi(X \ S ,K j) and Hi+1(X \ S ,K j+1)

are isomorphic since P j+1 is a projective module. Since Pi = 0 for i > l, Kl−1 and Pl have isomorphic

restrictions to X \ S . In particular, by (i), for i < p − 1 positive integer, Hi(X \ S ,Kl−1) equal zero. Then,

by induction on j, for i < p − j positive integer, Hi(X \ S ,Kl− j) equals zero. �

Proposition A.2. Let R′ be a k[X]-module containing R. Let suppose that the following conditions are

verified:

(1) p is at least l + 2,

(2) X is normal,

(3) S contains the support of the homology of the augmented complex P•.

(i) The complex P• is a projective resolution of R of length l.

(ii) Let suppose that R′ is torsion free and let suppose that S contains the support in X of R′/R. Then

R′ = R.

Proof. (i) Let j be a positive integer. One has to prove that H0(X,K j) is the image of P j+1. By Condition

(3), the short sequence of OX\S -modules

0 −→ K j+1

∣

∣

∣

X\S
−→ P j+1 |X\S −→ K j

∣

∣

∣

X\S
−→ 0

is exact, whence the cohomology long exact sequence

0 −→ H0(X \ S ,K j+1) −→ H0(X \ S ,P j+1) −→ H0(X \ S ,K j) −→ H1(X \ S ,K j+1) −→ · · ·

By Lemma A.1,(ii), H1(X \ S ,K j+1) equals 0 since 1 < p − l + j + 1, whence the short exact sequence

0 −→ H0(X \ S ,K j+1) −→ H0(X \ S ,P j+1) −→ H0(X \ S ,K j) −→ 0

Since the codimension of S in X is at least 2 and since X is irreducible and normal, the restriction mor-

phism from P j+1 to H0(X\S ,P j+1) is an isomorphism. Let ϕ be in H0(X,K j). Then there exists an element

ψ of P j+1 whose image ψ′ in H0(X,K j) has the same restriction to X \ S as ϕ. Since P j is a projective

module and since X is irreducible, P j is torsion free. Then ϕ = ψ′ since ϕ − ψ′ is a torsion element of P j,

whence the assertion.

(ii) Let R′ be the localization of R′ on X. Arguing as in (i), since S contains the contains the support of

R′/R and since 1 < p − l, the short sequence

0 −→ H0(X \ S ,K0) −→ H0(X \ S ,P0) −→ H0(X \ S ,R′) −→ 0

is exact. Moreover, the restriction morphism from P0 to H0(X/S ,P0) is an isomorphism since the codi-

mension of S in X is at least 2 and since X is irreductible and normal. Let ϕ be in R′. Then for some ψ in

P0, ϕ − ε(ψ) is a torsion element of R′. So ϕ = ε(ψ) since R′ is torsion free, whence the assertion. �
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Corollary A.3. Let C• be a homology complex of finite type of k[X]-modules whose length l is finite and

positive. For j = 0, . . . , l, let denote by Z j the space of cycles of degree j of C•. Let suppose that the

following conditions are verified:

(1) S contains the support of the homology of the complex C•,

(2) for all i, Ci is a submodule of a free module,

(3) for i = 1, . . . , l, Ci has projective dimension at most d,

(4) X is normal and l + d ≤ p − 1,

(5) Z0 equals C0.

Then C• is acyclic and for j = 0, . . . , l, Z j has projective dimension at most l + d − j − 1.

Proof. Let prove by induction on l − j that the complex

0 −→ Cl −→ · · · −→ C j+1 −→ Z j −→ 0

is acyclic and that Z j has projective dimension at most l + d − j − 1. For j = l, Z j equals zero since Cl

is torsion free by Condition (2) and since Zl a submodule of Cl, supported by S by Condition (1). Let

suppose j ≤ l − 1 and let suppose the statement true for j + 1. By Condition (2), C j+1 has a projective

resolution P• whose length is at most d and whose terms are finitely generated. By induction hypothesis,

Z j+1 has a projective resolution Q• whose length is at most l + d − j − 2 and whose terms are finitely

generated, whence an augmented complex R• of projective modules whose length is l + d − j − 1,

0 −→ Ql+d− j−2 ⊕ Pl+d− j−1 −→ · · · −→ Q0 ⊕ P1 −→ P0 −→ Z j −→ 0.

Denoting by d the differentials of Q• and P•, the restriction to Qi⊕Pi+1 of the differential of R• is the map

(x, y) 7→ (dx, dy + (−1)iδ(x)),

with δ the map which results from the injection of Z j+1 into C j+1. Since P• and Q• are projective resolu-

tions, the complex R• is a complex of projective modules having no homology in positive degree. Hence

the support of the homology of the augmented complex R• is contained in S by Condition (1). Then, by

Proposition A.2 and Conditions (3) and (4), R• is a projective resolution of Z j of length is l + d − j − 1

since Z j is a submodule of a free module by Condition (2), whence the corollary by Condition (5). �
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