

On the Commuting variety of a reductive Lie algebra. Jean-Yves Charbonnel

▶ To cite this version:

Jean-Yves Charbonnel. On the Commuting variety of a reductive Lie algebra. 2012. hal-00711467v1

HAL Id: hal-00711467 https://hal.science/hal-00711467v1

Preprint submitted on 25 Jun 2012 (v1), last revised 29 Dec 2014 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ON THE COMMUTING VARIETY OF A REDUCTIVE LIE ALGEBRA.

JEAN-YVES CHARBONNEL

ABSTRACT. The commuting variety of a reductive Lie algebra g is the underlying variety of a well defined subscheme of $g \times g$. In this note, it is proved that this scheme has rational singularities. In particular, its ideal of definition is a prime ideal.

CONTENTS

1.	Introduction.		1
2.	Characteristic mo	3	
3.	Torsion and proje	5	
4.	Main results		11
App	pendix A. Project	tive dimension and cohomology.	14
References			16

1. INTRODUCTION.

In this note, the base field \Bbbk is algebraically closed of characteristic 0, g is a reductive Lie algebra of finite dimension, ℓ is its rank, and G is its adjoint group.

1.1. Notations. • For V a module over a k-algebra, its symmetric and exterior algebras are denoted by S(V) and $\wedge(V)$ respectively. If E is a subset of V, the submodule of V generated by E is denoted by span(E). When V is a vector space over k, the grassmanian of all d-dimensional subspaces of V is denoted by $\operatorname{Gr}_d(V)$.

• All topological terms refer to the Zariski topology. If *Y* is a subset of a topological space *X*, let denote by \overline{Y} the closure of *Y* in *X*. For *Y* an open subset of the algebraic variety *X*, *Y* is called *a big open subset* if the codimension of $X \setminus Y$ in *X* is bigger than 2. For *Y* a closed subset of an algebraic variety *X*, its dimension is the biggest dimension of its irreducible components and its codimension in *X* is the smallest codimension in *X* of its irreducible components. For *X* an algebraic variety, $\Bbbk[X]$ is the algebra of regular functions on *X*.

• All the complexes considered in this note are graded complexes over \mathbb{Z} of vector spaces and their differentials are homogeneous of degree -1 and they are denoted by d. As usual, the gradation of the complex is denoted by C_{\bullet} .

Date: June 25, 2012.

¹⁹⁹¹ Mathematics Subject Classification. 14A10, 14L17, 22E20, 22E46.

Key words and phrases. polynomial algebra, complex, commuting variety, Cohen-Macaulay, homology, projective dimension, depth.

• The dimension of the Borel subalgebras of g is denoted by b_g . Let set $n := b_g - \ell$ so that dim $g = 2b_g - \ell_g = 2n + \ell$.

• The dual g^* of g identifies with g by a given non degenerate, invariant, symmetric bilinear form $\langle ., . \rangle$ on $g \times g$ extending the Killing form of [g, g].

• For $x \in g$, let denote by g^x the centralizer of x in g. The set of regular elements of g is

$$\mathfrak{g}_{\operatorname{reg}} := \{ x \in \mathfrak{g} \mid \dim \mathfrak{g}^x = \ell \}$$

The subset g_{reg} of g is a *G*-invariant open subset of g. According to [V72], $g \setminus g_{reg}$ is equidimensional of codimension 3.

• Let denote by $S(g)^g$ the algebra of g-invariant elements of S(g). Let p_1, \ldots, p_ℓ be homogeneous generators of $S(g)^g$ of degree d_1, \ldots, d_ℓ respectively. Let choose the polynomials p_1, \ldots, p_ℓ so that $d_1 \le \cdots \le d_\ell$. For $i = 1, \ldots, d_\ell$ and $(x, y) \in g \times g$, let consider a shift of p_i in direction y: $p_i(x + ty)$ with $t \in k$. Expanding $p_i(x + ty)$ as a polynomial in t, one obtains

(1)
$$p_i(x+ty) = \sum_{m=0}^{d_i} p_i^{(m)}(x,y)t^m; \quad \forall (t,x,y) \in \mathbb{k} \times \mathfrak{g} \times \mathfrak{g}$$

where $y \mapsto (m!)p_i^{(m)}(x, y)$ is the derivate at x of p_i at the order m in the direction y. The elements $p_i^{(m)}$ defined by (1) are invariant elements of $S(g) \otimes_{\mathbb{K}} S(g)$ under the diagonal action of G in $g \times g$. Let remark that $p_i^{(0)}(x, y) = p_i(x)$ while $p_i^{(d_i)}(x, y) = p_i(y)$ for all $(x, y) \in g \times g$.

Remark 1.1. The family $\mathcal{P}_x := \{p_i^{(m)}(x,.); 1 \le i \le \ell, 1 \le m \le d_i\}$ for $x \in g$, is a Poisson-commutative family of S(g) by Mishchenko-Fomenko [MF78]. One says that the family \mathcal{P}_x is constructed by the *argument shift method*.

• Let $i \in \{1, ..., \ell\}$ be. For x in g, let denote by $\varepsilon_i(x)$ the element of g given by

$$\langle \varepsilon_i(x), y \rangle = \frac{\mathrm{d}}{\mathrm{d}t} p_i(x+ty)|_{t=0}$$

for all *y* in g. Thereby, ε_i is an invariant element of $S(\mathfrak{g}) \otimes_{\Bbbk} \mathfrak{g}$ under the canonical action of *G*. According to [Ko63, Theorem 9], for *x* in \mathfrak{g} , *x* is in \mathfrak{g}_{reg} if and only if $\varepsilon_1(x), \ldots, \varepsilon_\ell(x)$ are linearly independent. In this case, $\varepsilon_1(x), \ldots, \varepsilon_\ell(x)$ is a basis of \mathfrak{g}^x .

Let denote by $\varepsilon_i^{(m)}$, for $0 \le m \le d_i - 1$, the elements of $S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\mathbb{k}} \mathfrak{g}$ defined by the equality:

(2)
$$\varepsilon_i(x+ty) = \sum_{m=0}^{d_i-1} \varepsilon_i^{(m)}(x,y) t^m, \quad \forall (t,x,y) \in \mathbb{k} \times \mathfrak{g} \times \mathfrak{g}$$

and let set:

$$V_{x,y} := \operatorname{span}(\{\varepsilon_i^{(0)}(x, y), \dots, \varepsilon_i^{(d_i-1)}(x, y), i = 1, \dots, \ell\})$$

for (x, y) in $g \times g$. According to [Bol91, Corollary 2], $V_{x,y}$ has dimension b_g if and only if $P_{x,y} \setminus \{0\}$ is contained in g_{reg} .

1.2. Main result and main idea. Since g identifies with its dual, S(g) is the algebra of polynomial functions on g. The commuting variety C(g) of g is the subvariety of elements (x, y) of $g \times g$ such that [x, y] = 0. Let I_g be the ideal of $S(g \times g)$ generated by the functions $(x, y) \mapsto \langle v, [x, y] \rangle$ with v in g. Then C(g) is the underlying subvariety of the subscheme of $g \times g$ defined by I_g . It is a well known and long standing open question whether or not this scheme is reduced. The main result of this note is the following theorem:

Theorem 1.2. The subscheme of $\mathfrak{g} \times \mathfrak{g}$ defined by $I_{\mathfrak{g}}$ has rational singularities. Furthermore, $I_{\mathfrak{g}}$ is a prime ideal of $S(\mathfrak{g} \times \mathfrak{g})$.

According to a result of R. W. Richardson [Ri79], $\mathcal{C}(g)$ is irreducible. So the last assertion of the theorem is a consequence of the first one. In [Di79], J. Dixmier gave a partial answer to this question. In fact, he proved that I_g and its radical have the same part in degree 1. The main tool of our proof uses the main argument of the Dixmier's proof: for a finitely generated module M over $S(g \times g)$, M = 0 if the codimension of its support is at least l + 2 with l the projective dimension of M (see Appendix A).

Let introduce the characteristic submodule of g, denoted by B_g . By definition, B_g is a submodule of $S(g \times g) \otimes_{\Bbbk} g$ and an element φ of $S(g \times g) \otimes_{\Bbbk} g$ is in B_g if and only if for all (x, y) in $g \times g$, $\varphi(x, y)$ is in the sum of subspaces g^{ax+by} with (a, b) in $\Bbbk^2 \setminus \{0\}$. This is a free module of rank b_g . Moreover, for all φ in B_g and for all (x, y) in $g \times g$, $\langle \varphi(x, y), [x, y] \rangle = 0$. The first step of the proof of Theorem 1.2 is the following proposition:

Proposition 1.3. For *i* positive integer, the module $\bigwedge^{i}(\mathfrak{g}) \land \bigwedge^{\mathfrak{b}_{\mathfrak{g}}}(\mathfrak{B}_{\mathfrak{g}})$ has projective dimension at most *i*.

The second step of the proof of Theorem 1.2 is the following theorem:

Theorem 1.4. The ideal $I_{\mathfrak{q}}$ is radical and its projective dimension is 2n - 1.

Then Theorem 1.2 follows easily from this theorem and [CZa12, Theorem 1.10].

2. Characteristic module.

For (x, y) in $g \times g$, let set:

$$V'_{x,y} = \sum_{(a,b) \in \mathbb{k}^2 \setminus \{0\}} \mathfrak{g}^{ax+by}$$

By definition, the characteristic module B_g of g is the submodule of elements φ of $S(g \times g) \otimes_k g$ such that $\varphi(x, y)$ is in $V'_{x,y}$ for all (x, y) in $g \times g$. In this section, some properties of B_g are given.

2.1. Let recall that Ω_g is the subset of elements (x, y) of $g \times g$ such that $P_{x,y} \setminus \{0\}$ is contained in g_{reg} . According to [CM008, Corollary 10], Ω_g is a big open subset of $g \times g$.

Proposition 2.1. Let (x, y) be in $g \times g$.

(i) Let suppose that $P_{x,y} \cap g_{reg}$ is not empty. Then for all open subset O of \mathbb{k}^2 such that ax + by is in g_{reg} for all (a, b) in O, $V_{x,y}$ is the sum of the g^{ax+by} 's, (a, b) is in O.

(ii) The spaces $[x, V_{x,y}]$ and $[y, V_{x,y}]$ are equal.

(iii) For all (x, y) in $g \times g$ such that $P_{x,y} \cap g_{reg}$ is not empty, $[x, V_{x,y}]$ is orthogonal to $V_{x,y}$. Furthermore, (x, y) is in Ω_g if and only if $[x, V_{x,y}]$ is the orthogonal complement of $V_{x,y}$ in g.

(iv) The space $V_{x,y}$ is contained in $V'_{x,y}$. Moreover, $V_{x,y} = V'_{x,y}$ if (x, y) is in Ω_g .

(v) The element (x, y) of $\mathfrak{g} \times \mathfrak{g}$ is in $\Omega_{\mathfrak{g}}$ if and only if $V_{x,y}$ has dimension $\mathfrak{b}_{\mathfrak{g}}$.

(vi) For g in G, for $i = 1, ..., \ell$ and for $m = 0, ..., d_i - 1$, $\varepsilon_i^{(m)}$ is a G-equivariant map.

Proof. (i), (ii), (iii) are a result of A. V. Bolsinov [Bol91].

(iv) According to [Ko63, Theorem 9], for all z in g and for $i = 1, ..., \ell$, $\varepsilon_i(z)$ is in g^z . Hence for all t in \Bbbk , $\varepsilon_i(x + ty)$ is in $V'_{x,y}$. So $\varepsilon_i^{(m)}(x, y)$ is in $V'_{x,y}$ for all m, whence $V_{x,y} \subset V'_{x,y}$.

Let suppose that (x, y) is in Ω_g . According to [Ko63, Theorem 9], for all (a, b) in $\mathbb{k}^2 \setminus \{0\}$, $\varepsilon_1(ax + by), \ldots, \varepsilon_\ell(ax + by)$ is a basis of g^{ax+by} . Hence g^{ax+by} is contained in $V_{x,y}$, whence the assertion.

(v) is a consequence of (iv) and a result of A. V. Bolsinov [Bol91].

(vi) Let *i* be in $\{1, \ldots, \ell\}$. Since p_i is *G*-invariant, ε_i is a *G*-equivariant map. As a result, its 2-polarizations $\varepsilon_i^{(0)}, \ldots, \varepsilon_i^{(d_i-1)}$ are *G*-equivariant for the diagonal action of *G* in $\mathfrak{g} \times \mathfrak{g}$.

Theorem 2.2. (i) The module B_g is a free module of rank b_g whose a basis is the sequence $\varepsilon_i^{(0)}, \ldots, \varepsilon_i^{(d_i-1)}, i = 1, \ldots, \ell$.

(ii) For φ in $S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\mathbb{k}} \mathfrak{g}$, φ is in $B_{\mathfrak{g}}$ if and only if $p\varphi \in B_{\mathfrak{g}}$ for some p in $S(\mathfrak{g} \times \mathfrak{g}) \setminus \{0\}$.

(iii) For all φ in $B_{\mathfrak{g}}$ and for all (x, y) in $\mathfrak{g} \times \mathfrak{g}$, $\varphi(x, y)$ is orthogonal to [x, y].

Proof. (i) and (ii) According to Proposition 2.1,(iv), $\varepsilon_i^{(m)}$ is in B_g for all (i, m). Moreover, according to Proposition 2.1,(v), these elements are linearly independent over $S(g \times g)$ since the sum of the degrees d_1, \ldots, d_ℓ equal b_g by [Bou02, Ch. V, §5, Proposition 3]. Let φ be an element of $S(g \times g) \otimes_k g$ such that $p\varphi$ is in B_g for some p in $S(g \times g) \setminus \{0\}$. Since Ω_g is a big open subset of $g \times g$, for all (x, y) in a dense open subset of $\Omega_g, \varphi(x, y)$ is in $V_{x,y}$ by Proposition 2.1,(iv). According to Proposition 2.1,(v), the map

$$\Omega_{\mathfrak{g}} \longrightarrow \operatorname{Gr}_{\mathfrak{b}_{\mathfrak{g}}}(\mathfrak{g}) \qquad (x, y) \longmapsto V_{x, y}$$

is regular. So, $\varphi(x, y)$ is in $V_{x,y}$ for all (x, y) in Ω_g and for some regular functions $a_{i,m}$, $i = 1, ..., \ell$, $m = 0, ..., d_i - 1$ on Ω_g ,

$$\varphi(x, y) = \sum_{i=1}^{\ell} \sum_{m=0}^{d_i-1} a_{i,m}(x, y) \varepsilon_i^{(m)}(x, y)$$

for all (x, y) in Ω_g . Since Ω_g is a big open subset of $g \times g$ and since $g \times g$ is normal, the $a_{i,m}$'s have a regular extension to $g \times g$. Hence φ is a linear combination of the $\varepsilon_i^{(m)}$'s with coefficients in $S(g \times g)$. As a result, the sequence $\varepsilon_i^{(m)}$, $i = 1, ..., \ell$, $m = 0, ..., d_i - 1$ is a basis of the module B_g and B_g is the subset of elements φ of $S(g \times g) \otimes_k g$ such that $p\varphi \in B_g$ for some p in $S(g \times g) \setminus \{0\}$.

(iii) Let φ be in B_g. According to (i) and Proposition 2.1,(iii) and (iv), for all (x, y) in Ω_g , $[x, \varphi(x, y)]$ is orthogonal to $V_{x,y}$. Then, since y is in $V_{x,y}$, $[x, \varphi(x, y)]$ is orthogonal to y and $\langle \varphi(x, y), [x, y] \rangle = 0$, whence the assertion.

2.2. Let also denote by $\langle ., . \rangle$ the natural extension of $\langle ., . \rangle$ to the module $S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\mathbb{k}} \mathfrak{g}$.

Proposition 2.3. Let $C_{\mathfrak{g}}$ be the orthogonal complement of $B_{\mathfrak{g}}$ in $S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\Bbbk} \mathfrak{g}$.

(i) For φ in $S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\mathbb{k}} \mathfrak{g}$, φ is in $C_{\mathfrak{g}}$ if and only if $\varphi(x, y)$ is in $[x, V_{x,y}]$ for all (x, y) in a nonempty open subset of $\mathfrak{g} \times \mathfrak{g}$.

(ii) The module C_g is free of rank $b_g - \ell$. Furthermore, the sequence of maps

$$(x, y) \mapsto [x, \varepsilon_i^{(1)}(x, y)], \dots, (x, y) \mapsto [x, \varepsilon_i^{(d_i-1)}(x, y)], \ i = 1, \dots, \ell$$

is a basis of $C_{\mathfrak{q}}$.

(iii) The orthogonal complement of $C_{\mathfrak{g}}$ in $S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\Bbbk} \mathfrak{g}$ equals $B_{\mathfrak{g}}$.

Proof. (i) Let φ be in $S(g \times g) \otimes_{\mathbb{k}} g$. If φ is in C_g , then $\varphi(x, y)$ is orthogonal to $V_{x,y}$ for all (x, y) in Ω_g . Then, according to Proposition 2.1,(iii), $\varphi(x, y)$ is in $[x, V_{x,y}]$ for all (x, y) in Ω_g . Conversely, let suppose that $\varphi(x, y)$ is in $[x, V_{x,y}]$ for all (x, y) in a nonempty open subset V of $g \times g$. By Proposition 2.1,(iii) again, for all (x, y) in $V \cap \Omega_g$, $\varphi(x, y)$ is orthogonal to the $\varepsilon_i^{(m)}(x, y)$'s, $i = 1, \ldots, \ell, m = 0, \ldots, d_i - 1$, whence the assertion by Theorem 2.1.

(ii) Let C be the submodule of $S(g \times g) \otimes_{k} g$ generated by the maps

$$(x, y) \mapsto [x, \varepsilon_i(1)(x, y)], \dots, (x, y) \mapsto [x, \varepsilon_i^{(d_i-1)}(x, y)], \ i = 1, \dots, \ell$$

According to (i), C is a submodule of C_g. This module is free of rank $b_g - \ell$ since $[x, V_{x,y}]$ has dimension $b_g - \ell$ for all (x, y) in Ω_g by Proposition 2.1, (iii). According to (i), for φ in C_g, for all (x, y) in Ω_g ,

$$\varphi(x, y) = \sum_{i=1}^{\ell} \sum_{m=1}^{d_i - 1} a_{i,m}(x, y) [x, \varepsilon_i^{(m)}(x, y)]$$

with the $a_{i,m}$'s regular on Ω_g and uniquely defined by this equality. Since Ω_g is a big open subset of $g \times g$ and since $g \times g$ is normal, the $a_{i,m}$'s have a regular extension to $g \times g$. As a result, φ is in C, whence the assertion.

(iii) Let φ be in the orthogonal complement of C_g in $S(g \times g) \otimes_{\Bbbk} g$. According to (ii), for all (x, y) in Ω_g , $\varphi(x, y)$ is orthogonal to $[x, V_{x,y}]$. Hence by Proposition 2.1,(iii), $\varphi(x, y)$ is in $V_{x,y}$ for all (x, y) in Ω_g . So, by Theorem 2.1, φ is in B_g , whence the assertion.

Let denote by \mathcal{B} and \mathcal{C} the localizations of B_g and C_g on $g \times g$ respectively. For (x, y) in $g \times g$, let $C_{x,y}$ be the image of C_g by the evaluation map at (x, y).

Lemma 2.4. There exists an affine open cover \mathfrak{O} of $\Omega_{\mathfrak{g}}$ verifying the following condition: for all O in \mathfrak{O} , there exist some subspaces E and F of \mathfrak{g} , depending on O, such that

$$\mathfrak{g} = E \oplus V_{x,y} = F \oplus C_{x,y}$$

for all (x, y) in O. Moreover, for all (x, y) in O, the orthogonal complement of $V_{x,y}$ in g equals $C_{x,y}$.

Proof. According to Proposition 2.1,(iii) and (v), for all (x, y) in Ω_g , $V_{x,y}$ and $C_{x,y}$ have dimension b_g and $b_g - \ell$ respectively so that the maps

$$\Omega_{\mathfrak{g}} \longrightarrow \operatorname{Gr}_{\mathfrak{b}_{\mathfrak{g}}}(\mathfrak{g}) \qquad (x, y) \longmapsto V_{x, y} \quad \Omega_{\mathfrak{g}} \longrightarrow \operatorname{Gr}_{\mathfrak{b}_{\mathfrak{g}}-\ell}(\mathfrak{g}) \qquad (x, y) \longmapsto C_{x, y}$$

are regular, whence the assertion.

3. TORSION AND PROJECTIVE DIMENSION.

Let *E* and $E^{\#}$ be the quotients of $S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\mathbb{k}} \mathfrak{g}$ by $B_{\mathfrak{g}}$ and $C_{\mathfrak{g}}$ respectively. For *i* positive integer, let denote by E_i the quotient of $\bigwedge^i(E)$ by its torsion module.

3.1. Let $B_{\mathfrak{q}}^*$ and $C_{\mathfrak{q}}^*$ be the duals of $B_{\mathfrak{g}}$ and $C_{\mathfrak{g}}$.

Lemma 3.1. (i) The $S(g \times g)$ -modules E and $E^{\#}$ have projective dimension at most 1.

- (ii) The $S(g \times g)$ -modules E and $E^{\#}$ are torsion free.
- (iii) The modules C_g and B_g are the duals of E and E[#] respectively.
- (iv) The canonical morphisms from E to $C_{\mathfrak{g}}^*$ is an embedding.

Proof. (i) By definition, the short sequences of $S(g \times g)$ -modules,

 $0 \longrightarrow \mathcal{B}_{\mathfrak{g}} \longrightarrow \mathcal{S}(\mathfrak{g} \times \mathfrak{g}) \otimes_{\Bbbk} \mathfrak{g} \longrightarrow E \longrightarrow 0$ $0 \longrightarrow \mathcal{C}_{\mathfrak{g}} \longrightarrow \mathcal{S}(\mathfrak{g} \times \mathfrak{g}) \otimes_{\Bbbk} \mathfrak{g} \longrightarrow E^{\#} \longrightarrow 0$

are exact. Hence *E* and $E^{\#}$ have projective dimension at most 1 since B_g and C_g are free modules by Theorem 2.2 and Proposition 2.3,(ii).

(ii) The module *E* is torsion free by Theorem 2.2,(ii). By definition, for φ in $S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\mathbb{k}} \mathfrak{g}$, φ is in $C_{\mathfrak{g}}$ if $p\varphi$ is in $C_{\mathfrak{g}}$ for some *p* in $S(\mathfrak{g} \times \mathfrak{g}) \setminus \{0\}$, whence $E^{\#}$ is torsion free.

(iii) According to the exact sequences of (i), the dual of *E* is the orthogonal complement of B_g in $S(g \times g) \otimes_{\Bbbk} g$ and the dual of $E^{\#}$ is the orthogonal complement of C_g in $S(g \times g) \otimes_{\Bbbk} g$, whence the assertion since C_g is the orthogonal complement of B_g in $S(g \times g) \otimes_{\Bbbk} g$ by definition and since B_g is the orthogonal complement of C_g in $S(g \times g) \otimes_{\Bbbk} g$ by Proposition 2.3,(iii).

(iv) Let $\overline{\omega}$ be in the kernel of the canonical morphism from *E* to C_g^* . Let ω be a representative of $\overline{\omega}$ in $S(g \times g) \otimes_{\Bbbk} g$. According to Proposition 2.3,(iii), B_g is the orthogonal complement of C_g in $S(g \times g) \otimes_{\Bbbk} g$ so that ω is in B_g , whence the assertion.

Let ι be the morphism

$$S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\Bbbk} \mathfrak{g} \longrightarrow C^*_{\mathfrak{g}} \qquad v \longmapsto (\mu \mapsto \langle v, \mu \rangle)$$

Lemma 3.2. The submodule $\iota(S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\Bbbk} \mathfrak{g})$ of $C^*_{\mathfrak{g}}$ has projective dimension at most 1.

Proof. According to Proposition 2.3,(iii), B_g is the kernel of ι , whence the assertion since B_g is a free module by Theorem 2.2.

Let set

$$\varepsilon = \wedge_{i=1}^{\ell} \varepsilon_i^{(0)} \wedge \cdots \wedge \varepsilon_i^{(d_i - 1)}$$

and for *i* positive integer, let denote by θ_i the morphism

$$S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\Bbbk} \bigwedge^{i}(\mathfrak{g}) \longrightarrow \bigwedge^{i}(\mathfrak{g}) \wedge \bigwedge^{\mathfrak{b}_{\mathfrak{g}}}(\mathbf{B}_{\mathfrak{g}}) \qquad \varphi \longmapsto \varphi \wedge \varepsilon$$

Proposition 3.3. Let i be a positive integer.

(i) The morphism θ_i defines through the quotient an isomorphism from E_i onto $\bigwedge^i(\mathfrak{g}) \land \bigwedge^{\mathfrak{b}_{\mathfrak{g}}}(\mathbf{B}_{\mathfrak{g}})$.

(ii) The short sequence of $S(g \times g)$ -modules

$$0 \longrightarrow \mathbf{B}_{\mathfrak{g}} \otimes_{\mathbf{S}(\mathfrak{g} \times \mathfrak{g})} E_i \longrightarrow \mathfrak{g} \otimes_{\Bbbk} E_i \longrightarrow E \otimes_{\mathbf{S}(\mathfrak{g} \times \mathfrak{g})} E_i \longrightarrow 0$$

is exact.

Proof. (i) For *j* positive integer, let denote by π_j the canonical map from $S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\Bbbk} \bigwedge^j(\mathfrak{g})$ to $\bigwedge^j(E)$. Let ω be in the kernel of π_i . Let *O* be an element of the affine open cover of $\Omega_{\mathfrak{g}}$ of Lemma 2.4 and let *W* be a subspace of \mathfrak{g} such that

$$\mathfrak{g} = W \oplus V_{x,y}$$

for all (x, y) in O so that π_1 induces an isomorphism

$$\Bbbk[O] \otimes_{\Bbbk} W \longrightarrow \Bbbk[O] \otimes_{\Bbbk} E$$

Moreover, $B_{\mathfrak{g}}$ is the kernel of π_1 . Then, from the equality

$$\Bbbk[O] \otimes_{\Bbbk} \bigwedge^{i}(\mathfrak{g}) = \bigoplus_{j=0}^{i} \bigwedge^{j}(W) \land \Bbbk[O] \otimes_{\mathrm{S}(\mathfrak{g} \times \mathfrak{g})} \bigwedge^{i-j}(\mathrm{B}_{\mathfrak{g}})$$

it results that the restriction of ω to O is in $\mathbb{k}[O] \otimes_{S(\mathfrak{g} \times \mathfrak{g})} \wedge^{i-1}(\mathfrak{g}) \wedge B_{\mathfrak{g}}$. Hence the restriction of $\omega \wedge \varepsilon$ to O equals 0 and ω is in the kernel of θ_i since $\wedge^i(\mathfrak{g}) \wedge \wedge^{\mathfrak{b}_{\mathfrak{g}}}(B_{\mathfrak{g}})$ has no torsion as a submodule of a free module. As a result, θ_i defines through the quotient a morphism from $\wedge^i(E)$ to $\wedge^i(\mathfrak{g}) \wedge \wedge^{\mathfrak{b}_{\mathfrak{g}}}(B_{\mathfrak{g}})$. Let denote it by ϑ'_i . Since $\wedge^i(\mathfrak{g}) \wedge \wedge^{\mathfrak{b}_{\mathfrak{g}}}(B_{\mathfrak{g}})$ is torsion free, the torsion submodule of $\wedge^i(E)$ is contained in the kernel of ϑ'_i . Hence ϑ'_i defines through the quotient a morphism from E_i to $\wedge^i(\mathfrak{g}) \wedge \wedge^{\mathfrak{b}_{\mathfrak{g}}}(B_{\mathfrak{g}})$. Denoting it by $\vartheta_i, \vartheta'_i$ and ϑ_i are surjective since θ_i is too.

Let $\overline{\omega}$ be in the kernel of ϑ'_i and let ω be a representative of $\overline{\omega}$ in $S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\mathbb{K}} \bigwedge^i(\mathfrak{g})$. Then $\omega \wedge \varepsilon = 0$ so that the restriction of ω to the above open subset O is in $\mathbb{k}[O] \otimes_{S(\mathfrak{g} \times \mathfrak{g})} \bigwedge^{i-1}(\mathfrak{g}) \wedge B_{\mathfrak{g}}$. As a result, the restriction of $\overline{\omega}$ to O equals 0. So, $\overline{\omega}$ is in the torsion submodule of $\bigwedge^i(E)$, whence the assertion.

(ii) By definition, the sequence

$$0 \longrightarrow \mathbf{B}_{\mathfrak{g}} \longrightarrow \mathbf{S}(\mathfrak{g} \times \mathfrak{g}) \otimes_{\Bbbk} \mathfrak{g} \longrightarrow E \longrightarrow 0$$

is exact. Then the sequence

 $\operatorname{Tor}_{1}^{\operatorname{S}(\mathfrak{g} \times \mathfrak{g})}(E, E_{i}) \longrightarrow \operatorname{B}_{\mathfrak{g}} \otimes_{\operatorname{S}(\mathfrak{g} \times \mathfrak{g})} E_{i} \longrightarrow \mathfrak{g} \otimes_{\Bbbk} E_{i} \longrightarrow E \otimes_{\operatorname{S}(\mathfrak{g} \times \mathfrak{g})} E_{i} \longrightarrow 0$

is exact. By definition, E_i is torsion free. As a result, $B_g \otimes_{S(g \times g)} E_i$ is torsion free since B_g is a free module. Then, since $\text{Tor}_1^{S(g \times g)}(E, E_i)$ is a torsion module, its image in $B_g \otimes_{S(g \times g)} E_i$ equals 0, whence the assertion.

3.2. For *i* positive integer, $\langle ., . \rangle$ has a canonical extension to $S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\mathbb{k}} \bigwedge^{i}(\mathfrak{g})$ denoted again by $\langle ., . \rangle$.

Lemma 3.4. Let *i* be a positive integer. Let T_i be the torsion module of $E \otimes_{S(g \times g)} E_i$ and let T'_i be its inverse image by the canonical morphism $g \otimes_{\Bbbk} E_i \to E \otimes_{S(g \times g)} E_i$.

(i) The canonical morphism from $\wedge^i(E)$ to $\wedge^i(C_g^*)$ defines through the quotient an embedding of E_i into $\wedge^i(C_g^*)$.

(ii) The module of T'_i is the intersection of $\mathfrak{g} \otimes_{\mathbb{k}} E_i$ and $\mathbf{B}_{\mathfrak{g}} \otimes_{\mathbf{S}(\mathfrak{g} \times \mathfrak{g})} \bigwedge^i (\mathbf{C}^*_{\mathfrak{g}})$.

(iii) The module T'_i is isomorphic to $\operatorname{Hom}_{S(\mathfrak{g} \times \mathfrak{g})}(E^{\#}, E_i)$.

Proof. (i) According to Lemma 3.1,(iii), there is a canonical morphism from $\wedge^i(E)$ to $\wedge^i(C_g^*)$. Let $\overline{\omega}$ be in its kernel and let ω be a representative of $\overline{\omega}$ in $S(g \times g) \otimes_{\Bbbk} \wedge^i(g)$. Then ω is orthogonal to $\wedge^i(C_g)$ with respect to $\langle ., . \rangle$. So for O as in Lemma 2.4, the restriction of ω to O is in $\Bbbk[O] \otimes_{S(g \times g)} \wedge^{i-1}(g) \wedge B_g$.

Hence the restriction of $\overline{\omega}$ to *O* equals 0. In other words, $\overline{\omega}$ is in the torsion module of $\bigwedge^i(E)$, whence the assertion since $\bigwedge^i(\mathbf{C}^*_{\mathfrak{q}})$ is a free module.

(ii) Since $\bigwedge^{i}(C_{\mathfrak{q}}^{*})$ is a free module, by Proposition 3.3,(ii), there is a morphism of short exact sequences

Moreover, the tow first vertical arrows are embeddings. Hence T'_i is the intersection of $\mathfrak{g} \otimes_{\mathbb{K}} E_i$ and $B_{\mathfrak{g}} \otimes_{S(\mathfrak{g} \times \mathfrak{g})} \bigwedge^i (C^*_{\mathfrak{g}})$.

(iii) According to the identification of g with its dual, $g \otimes_{\Bbbk} E_i = \text{Hom}_{\Bbbk}(g, E_i)$. Moreover, according to the short exact sequence of $S(g \times g)$ -modules

$$0 \longrightarrow \mathbf{C}_{\mathfrak{g}} \longrightarrow \mathbf{S}(\mathfrak{g} \times \mathfrak{g}) \otimes_{\Bbbk} \mathfrak{g} \longrightarrow E^{\#} \longrightarrow 0$$

the sequence of $S(g \times g)$ -modules

$$0 \longrightarrow \operatorname{Hom}_{S(\mathfrak{g} \times \mathfrak{g})}(E^{\#}, E_{i}) \longrightarrow \operatorname{Hom}_{\Bbbk}(\mathfrak{g}, E_{i}) \longrightarrow \operatorname{Hom}_{S(\mathfrak{g} \times \mathfrak{g})}(C_{\mathfrak{g}}, E_{i}) \longrightarrow \operatorname{Ext}^{1}_{S(\mathfrak{g} \times \mathfrak{g})}(E^{\#}, E_{i})$$

is exact. For φ in Hom_k(\mathfrak{g}, E_i), φ is in the kernel of the third arrow if and only if C_g is contained in the kernel of φ or equivalently φ is in B_g $\otimes_{S(\mathfrak{g} \times \mathfrak{g})} \bigwedge^i (C_\mathfrak{g}^*)$, whence the assertion by (ii).

The following corollary results from Lemma 3.4.

Corollary 3.5. Let *i* be a positive integer and let $\overline{E_i}$ be the quotient of $E \otimes_{S(g \times g)} E_i$ by its torsion module. Then the short sequence of $S(g \times g)$ -modules

$$0 \longrightarrow \operatorname{Hom}_{\mathcal{S}(\mathfrak{g} \times \mathfrak{g})}(E^{\#}, E_{i}) \longrightarrow \mathfrak{g} \otimes_{\Bbbk} E_{i} \longrightarrow \overline{E_{i}} \longrightarrow 0$$

is exact.

3.3. For *i* positive integer, let d_i and d'_i be the projective dimensions of E_i and $\text{Hom}_{S(g \times g)}(E^{\#}, E_i)$.

Lemma 3.6. Let *i* be a positive integer and let d''_i be the projective dimension of $\operatorname{Ext}^1_{S(\mathfrak{g} \times \mathfrak{g})}(E^{\#}, E_i)$. (i) The integer d'_i is at most $\sup\{d''_i - 2, d_i\}$.

(ii) For *P* a projective module over $S(\mathfrak{g} \times \mathfrak{g})$, $Ext^{1}_{S(\mathfrak{g} \times \mathfrak{g})}(E^{\#}, P)$ is canonically isomorphic to $A_{\mathfrak{g}} \otimes_{S(\mathfrak{g} \times \mathfrak{g})} P$ with $A_{\mathfrak{g}}$ the quotient of $C^{*}_{\mathfrak{g}}$ by $\iota(S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\mathbb{k}} \mathfrak{g})$.

(iii) The integer d''_i is at most $d_i + 2$.

Proof. (i) From the short exact

$$0 \longrightarrow \mathbf{C}_{\mathfrak{q}} \longrightarrow \mathbf{S}(\mathfrak{g} \times \mathfrak{g}) \otimes_{\Bbbk} \mathfrak{g} \longrightarrow E^{\#} \longrightarrow 0$$

one deduces the exact sequence

$$0 \longrightarrow \operatorname{Hom}_{S(\mathfrak{g} \times \mathfrak{g})}(E^{\#}, E_{i}) \longrightarrow \operatorname{Hom}_{\Bbbk}(\mathfrak{g}, E_{i}) \longrightarrow \operatorname{Hom}_{S(\mathfrak{g} \times \mathfrak{g})}(C_{\mathfrak{g}}, E_{i}) \longrightarrow \operatorname{Ext}^{1}_{S(\mathfrak{g} \times \mathfrak{g})}(E^{\#}, E_{i}) \longrightarrow 0$$

whence the two short exact sequences

$$0 \longrightarrow \operatorname{Hom}_{S(\mathfrak{q} \times \mathfrak{q})}(E^{\#}, E_i) \longrightarrow \operatorname{Hom}_{\Bbbk}(\mathfrak{g}, E_i) \longrightarrow Z \longrightarrow 0$$

COMMUTING VARIETY

$$0 \longrightarrow Z \longrightarrow \operatorname{Hom}_{\mathcal{S}(\mathfrak{g} \times \mathfrak{g})}(\mathcal{C}_{\mathfrak{g}}, E_{i}) \longrightarrow \operatorname{Ext}^{1}_{\mathcal{S}(\mathfrak{g} \times \mathfrak{g})}(E^{\#}, E_{i}) \longrightarrow 0$$

with Z the image of the arrow

$$\operatorname{Hom}_{\Bbbk}(\mathfrak{g}, E_i) \longrightarrow \operatorname{Hom}_{S(\mathfrak{g} \times \mathfrak{g})}(C_{\mathfrak{g}}, E_i)$$

Denoting by d the projective dimension of Z, one deduces the inequalities

$$d'_i \le \sup\{d-1, d_i\} \qquad d \le \sup\{d''_i - 1, d_i\}$$

since $C_{\mathfrak{g}}$ is a free module, whence the assertion.

(ii) From the short exact sequence

$$0 \longrightarrow \mathcal{C}_{\mathfrak{g}} \longrightarrow \mathcal{S}(\mathfrak{g} \times \mathfrak{g}) \otimes_{\Bbbk} \mathfrak{g} \longrightarrow E^{\#} \longrightarrow 0$$

one deduces the exact sequence

$$0 \longrightarrow \operatorname{Hom}_{\mathcal{S}(\mathfrak{g} \times \mathfrak{g})}(E^{\#}, P) \longrightarrow \operatorname{Hom}_{\Bbbk}(\mathfrak{g}, P) \longrightarrow \operatorname{Hom}_{\mathcal{S}(\mathfrak{g} \times \mathfrak{g})}(\mathcal{C}_{\mathfrak{g}}, P) \longrightarrow \operatorname{Ext}^{1}_{\mathcal{S}(\mathfrak{g} \times \mathfrak{g})}(E^{\#}, P) \longrightarrow 0$$

Since C_g is a free module, $Hom_{S(g \times g)}(C_g, P)$ is canonically isomorphic to $C_g^* \otimes_{S(g \times g)} P$ and there is a commutative diagram

whenever the vertical arrows are isomorphisms, whence the assertion since P is projective.

(iii) Let

$$0 \longrightarrow P_{d_i} \longrightarrow \cdots \longrightarrow P_0 \longrightarrow E_i \longrightarrow 0$$

be a projective resolution of E_i . For *j* nonnegative integer, let Z_j be the space of cycles of this complex. Since $E^{\#}$ has projective dimension at most 1, for all module *M* over $S(g \times g)$, $Ext^j_{S(g \times g)}(E^{\#}, M) = 0$ for all integer at least 2, whence the exact sequences

$$\operatorname{Ext}^{1}_{S(\mathfrak{g}\times\mathfrak{g})}(E^{\#}, Z_{0}) \longrightarrow \operatorname{Ext}^{1}_{S(\mathfrak{g}\times\mathfrak{g})}(E^{\#}, P_{0}) \longrightarrow \operatorname{Ext}^{1}_{S(\mathfrak{g}\times\mathfrak{g})}(E^{\#}, E_{i}) \longrightarrow 0$$
$$\operatorname{Ext}^{1}_{S(\mathfrak{g}\times\mathfrak{g})}(E^{\#}, Z_{j}) \longrightarrow \operatorname{Ext}^{1}_{S(\mathfrak{g}\times\mathfrak{g})}(E^{\#}, P_{j}) \longrightarrow \operatorname{Ext}^{1}_{S(\mathfrak{g}\times\mathfrak{g})}(E^{\#}, Z_{j-1}) \longrightarrow 0$$

for all positive integer *j* and whence the long exact sequence

$$0 \longrightarrow \operatorname{Ext}^{1}_{S(\mathfrak{g} \times \mathfrak{g})}(E^{\#}, P_{d_{i}}) \longrightarrow \cdots \longrightarrow \operatorname{Ext}^{1}_{S(\mathfrak{g} \times \mathfrak{g})}(E^{\#}, P_{0}) \longrightarrow \operatorname{Ext}^{1}_{S(\mathfrak{g} \times \mathfrak{g})}(E^{\#}, E_{i}) \longrightarrow 0$$

Then by (ii), there is an exact sequence

$$0 \longrightarrow \mathcal{A}_{\mathfrak{g}} \otimes_{\mathcal{S}(\mathfrak{g} \times \mathfrak{g})} P_{d_i} \longrightarrow \cdots \longrightarrow \mathcal{A}_{\mathfrak{g}} \otimes_{\mathcal{S}(\mathfrak{g} \times \mathfrak{g})} P_0 \longrightarrow \operatorname{Ext}^1_{\mathcal{S}(\mathfrak{g} \times \mathfrak{g})}(E^{\#}, E_i) \longrightarrow 0$$

According to Lemma 3.2, A_g has projective dimension at most 2. Hence d''_i is at most $d_i + 2$.

The following corollary results from Lemma 3.6,(i) and (iii) and Corollary 3.5.

Corollary 3.7. Let *i* be a positive integer. Then $\overline{E_i}$ has projective dimension at most $d_i + 1$.

3.4. For *i* a positive integer and for *M* a S($\mathfrak{g} \times \mathfrak{g}$)-module, let consider on $M^{\otimes i}$ the canonical action of the symmetric group \mathfrak{S}_i . For σ in \mathfrak{S}_i , let denote by $\epsilon(\sigma)$ its signature. Let $M_{\text{sign}}^{\otimes i}$ be the submodule of elements *a* of $M^{\otimes i}$ such that $\sigma a = \epsilon(\sigma)a$ for all σ in \mathfrak{S}_i and let δ_i be the endomorphism of $M^{\otimes i}$,

$$a \longmapsto \delta_i(a) = \frac{1}{i!} \sum_{\sigma \in \mathfrak{S}_i} \epsilon(\sigma) \sigma.a$$

Then δ_i is a projection of $M^{\otimes i}$ onto $M_{\text{sign}}^{\otimes i}$.

For *L* submodule of C_g^* , let denote by L_i the image of $L^{\otimes i}$ by the canonical map from $L^{\otimes i}$ to $(C_g^*)^{\otimes i}$ and let set $L_{i,\text{sign}} := L_i \cap (C_g^*)_{\text{sign}}^{\otimes i}$. Let $\overline{\bigwedge^i(L)}$ be the quotient of $\bigwedge^i(L)$ by its torsion module. For $i \ge 2$, let identify \mathfrak{S}_{i-1} with the stabilizer of *i* in \mathfrak{S}_i and let denote by $L_{i-1,\text{sign},1}$ the submodule of elements *a* of L_i such that $\sigma.a = \epsilon(\sigma)a$ for all σ in \mathfrak{S}_{i-1} .

Lemma 3.8. Let *i* be a positive integer and let *L* be a submodule of $C_{\mathfrak{g}}^*$.

(i) The module L_i is the quotient of $L^{\otimes i}$ by its torsion module.

- (ii) The module $L_{i,sign}$ is isomorphic to $\overline{\bigwedge^{i}(L)}$.
- (iii) For $i \ge 2$, the module $L_{i,sign}$ is a direct factor of $L_{i-1,sign,1}$.

(iv) For $i \ge 2$, the module $L_{i-1,\text{sign},1}$ is isomorphic to the quotient of $\overline{\bigwedge^{i-1}(L)} \otimes_{S(\mathfrak{g}\times\mathfrak{g})} L$ by its torsion module.

Proof. (i) Let L_1 and L_2 be submodules of a free module F over $S(g \times g)$. From the short exact sequence

$$0 \longrightarrow L_2 \longrightarrow F \longrightarrow F/L_2 \longrightarrow 0$$

one deduces the exact sequence

$$\operatorname{Tor}^{1}_{\mathsf{S}(\mathfrak{g}\times\mathfrak{g})}(L_{1},L_{2})\longrightarrow L_{1}\otimes_{\mathsf{S}(\mathfrak{g}\times\mathfrak{g})}L_{2}\longrightarrow L_{1}\otimes_{\mathsf{S}(\mathfrak{g}\times\mathfrak{g})}F\longrightarrow L_{1}\otimes_{\mathsf{S}(\mathfrak{g}\times\mathfrak{g})}(F/L_{2})\longrightarrow 0$$

Since *F* is free, $L_1 \otimes_{S(g \times g)} F$ is torsion free. Hence the kernel of the second arrow is the torsion module of $L_1 \otimes_{S(g \times g)} L_2$ since $\operatorname{Tor}^1_{S(a \times a)}(L_1, L_2)$ is a torsion module, whence the assertion by induction on *i*.

(ii) There is a commutative diagram

so that $L_{i,\text{sign}}$ is the image of $L_{\text{sign}}^{\otimes i}$ by the canonical morphism $L^{\otimes i} \longrightarrow (C_g^*)^{\otimes i}$, whence a commutative diagram

According to (i), the kernel of the left down arrow is the torsion module of $L_{\text{sign}}^{\otimes i}$ so that the kernel of the right down arrow is the torsion module of $\bigwedge^{i}(L)$ since the horizontal arrows are isomorphisms. Moreover, the image of $L_{i,\text{sign}}$ in $\bigwedge^{i}(\mathbf{C}_{\mathfrak{q}}^{*})$ is the image of $\bigwedge^{i}(L)$. Hence $\overline{\bigwedge^{i}(L)}$ is isomorphic to $L_{i,\text{sign}}$.

(iii) Let denote by Q_i the kernel of the endomorphism δ_i of $(C_g^*)^{\otimes i}$. Since δ_i is a projection onto $(C_g^*)_{sign}^{\otimes i}$ such that $\delta_i(L_i)$ is contained in $L_{i,sign}$,

$$(C_{\mathfrak{q}}^*)^{\otimes i} = (C_{\mathfrak{q}}^*)^{\otimes i} \oplus Q_i$$
 $L_i = Li, \operatorname{sign} \oplus Q_i \cap L_i$

whence

$$L_{i-1,\text{sign},1} = L_{i,\text{sgn}} \oplus Q_i \cap L_{i-1,\text{sign},1}$$

since $L_{i,sign}$ is a submodule of $L_{i-1,sign,1}$.

(iv) Let L'_i be the image of $L_{i-1,\text{sign},1}$ by the canonical morphism $(C_g^*)^{\otimes i} \to \bigwedge^{i-1}(C_g^*) \otimes_{S(g \times g)} C_g^*$. Then L'_i is contained in $\bigwedge^{i-1}(C_g^*) \otimes_{S(g \times g)} L$ since $\bigwedge^{i-1}(C_g^*) \otimes_{S(g \times g)} L$ is a submodule of $\bigwedge^{i-1}(C_g^*) \otimes_{S(g \times g)} C_g^*$. Moreover, the morphism $L_{i-1,\text{sign},1} \to L'_i$ is an isomorphism since the morphism

$$(\mathbf{C}_{\mathfrak{g}}^*)_{\text{sign}}^{\otimes (i-1)} \otimes_{\mathbf{S}(\mathfrak{g} \times \mathfrak{g})} \mathbf{C}_{\mathfrak{g}}^* \longrightarrow \bigwedge^{i-1}(\mathbf{C}_{\mathfrak{g}}^*) \otimes_{\mathbf{S}(\mathfrak{g} \times \mathfrak{g})} \mathbf{C}_{\mathfrak{g}}^*$$

is too. From (ii), it results the commutative diagram

with the right down arrow surjective. According to (i), the kernel of the left down arrow is the torsion module of $L_{\text{sign}}^{\otimes (i-1)} \otimes_{S(\mathfrak{g} \times \mathfrak{g})} L$. Hence the kernel of the right down arrow is the torsion module of $\overline{\bigwedge^{i-1}(L)} \otimes_{S(\mathfrak{g} \times \mathfrak{g})} L$, whence the assertion.

Proposition 3.9. Let *i* be a positive integer. Then E_i and $\bigwedge^i(\mathfrak{g}) \land \bigwedge^{\mathfrak{b}_\mathfrak{g}}(\mathbf{B}_\mathfrak{g})$ have projective dimension at most *i*.

Proof. According to Proposition 3.3,(i), the modules E_i and $\bigwedge^i(\mathfrak{g}) \land \bigwedge^{\mathfrak{b}_\mathfrak{g}}(\mathfrak{B}_\mathfrak{g})$ are isomorphic. Let prove by induction on *i* that E_i has projective dimension at most *i*. By Lemma 3.1,(i), it is true for i = 1. Let suppose that it is true for i - 1. According to Corollary 3.7, $\overline{E_i}$ has projective dimension at most *i*. Then by Lemma 3.8, for L = E, E_i has projective dimension at most *i* since *E* is a submodule of $C_\mathfrak{g}^*$ by Lemma 3.1,(iv) and since $E_i = \overline{\bigwedge^i(E)}$ by Lemma 3.4,(i).

4. MAIN RESULTS

Let I_g be the ideal of $S(g \times g)$ generated by the functions $(x, y) \mapsto \langle v, [x, y] \rangle$ with v in g. The nullvariety of I_g in $g \times g$ is $\mathcal{C}(g)$.

Lemma 4.1. Let $J_{\mathfrak{g}}$ be the radical of $I_{\mathfrak{g}}$. Then the support of $J_{\mathfrak{g}}/I_{\mathfrak{g}}$ in $\mathfrak{g} \times \mathfrak{g}$ is strictly contained in $\mathfrak{C}(\mathfrak{g})$.

Proof. Since $\mathcal{C}(g)$ is the nullvariety of I_g in $g \times g$. The support of J_g/I_g is contained in $\mathcal{C}(g)$. Let x_0 be a regular element of g and let V be a complement of g^{x_0} in g. Since the map

$$\mathfrak{g}_{\mathrm{reg}} \longrightarrow \mathrm{Gr}_{\ell}(\mathfrak{g}) \qquad x \longmapsto \mathfrak{g}^x$$

is regular, for some open subset O' of g_{reg} , containing x_0 ,

$$\mathfrak{g} = V \oplus \mathfrak{g}^{x}$$

for all x in O'. Let F be a complement of $[x_0, V]$ in g. Then the map

$$O' \longrightarrow \operatorname{Gr}_{2n}(\mathfrak{g}) \qquad x \mapsto [x, V]$$

is regular and for some affine open subset O of O', containing x_0 ,

$$\mathfrak{g} = F \oplus [x, V]$$

for all *x* in *O*. Let set:

$$I_O := \Bbbk[O \times \mathfrak{g}] \otimes_{\mathrm{S}(\mathfrak{q} \times \mathfrak{q})} I_{\mathfrak{q}} \qquad J_O := \Bbbk[O \times \mathfrak{g}] \otimes_{\mathrm{S}(\mathfrak{q} \times \mathfrak{q})} J_{\mathfrak{q}}$$

and let prove $I_O = J_O$. It will result that $\{x_0\} \times g^{x_0}$ is not contained in the support of J_g/I_g .

According to the identification of g with its dual,

$$\Bbbk[O \times \mathfrak{g}] = \Bbbk[O] \otimes_{\Bbbk} \mathcal{S}(\mathfrak{g})$$

Let denote by v_1, \ldots, v_{2n} and f_1, \ldots, f_ℓ some basis of V and F respectively. For (i, j) in $\mathbb{N}^{2n} \times \mathbb{N}^\ell$, let $v_{i,j}$ be the element of $\Bbbk[O] \otimes_{\Bbbk} S(\mathfrak{g})$,

$$x \mapsto v_{i,i}(x) := [x, v_1]^{i_1} \cdots [x, v_{2n}]^{i_{2n}} f_1^{j_1} \cdots f_{\ell}^{j_{\ell}}$$

so that $v_{i,j}$, $(i, j) \in \mathbb{N}^{2n} \times \mathbb{N}^{\ell}$ is a basis of the $\Bbbk[O]$ -module $\Bbbk[O] \otimes_{\Bbbk} S(\mathfrak{g})$. In particular, $v_{i,j}$ is in I_O if

$$|i| := i_1 + \cdots + i_{2n} > 0$$

Let φ be in J_O . For all x in O, $\varphi(x)$ is in the ideal of definition of g^x in g. Since [x, g] is the orthogonal complement of g^x in g, $\varphi(x)$ is in the ideal of S(g) generated by [x, V] for all x in O. Hence φ is a linear combination with coefficients in $\Bbbk[O]$ of the $v_{i,j}$'s with |i| > 0. As a result, J_O is contained in I_O , whence the lemma.

Let d be the $S(\mathfrak{g} \times \mathfrak{g})$ -derivation of the algebra $S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\mathbb{k}} \wedge (\mathfrak{g})$ such that dv is the function $(x, y) \mapsto \langle v, [x, y] \rangle$ on $\mathfrak{g} \times \mathfrak{g}$ for all v in \mathfrak{g} . According to Theorem 2.2,(iii), $\wedge (\mathfrak{g}) \wedge \wedge^{\mathfrak{b}_{\mathfrak{g}}}(\mathfrak{B}_{\mathfrak{g}})$ is a subcomplex of the complex so defined. The gradation on $\wedge (\mathfrak{g})$ induces a gradation on $S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\mathbb{k}} \wedge (\mathfrak{g})$ so that $\wedge (\mathfrak{g}) \wedge \wedge^{\mathfrak{b}_{\mathfrak{g}}}(\mathfrak{B}_{\mathfrak{g}})$ is a graded complex denoted by $C_{\bullet}(\mathfrak{g})$.

Lemma 4.2. The support of the homology of $C_{\bullet}(\mathfrak{g})$ is contained in $\mathfrak{C}(\mathfrak{g})$.

Proof. Let (x_0, y_0) be in $g \times g \setminus C(g)$ and let v be in g such that $\langle v, [x_0, y_0] \rangle \neq 0$. For some affine open subset O of $g \times g$, containing $(x_0, y_0), \langle v, [x, y] \rangle \neq 0$ for all (x, y) in O. Then dv is an invertible element of $\Bbbk[O]$. For c a cycle of $\Bbbk[O] \otimes_{S(g \times g)} C_{\bullet}(g)$,

$$\mathbf{d}(v \wedge c) = (\mathbf{d}v)c$$

so that *c* is a boundary of $C_{\bullet}(\mathfrak{g})$.

Theorem 4.3. (i) The complex $C_{\bullet}(\mathfrak{g})$ has no homology in degree bigger than $\mathfrak{b}_{\mathfrak{q}}$.

- (ii) The ideal I_g has projective dimension 2n 1.
- (iii) The algebra $S(g \times g)/I_g$ is Cohen-Macaulay.
- (iv) The ideal I_g is prime.
- (v) The projective dimension of the module $\wedge^{n}(\mathfrak{g}) \wedge \wedge^{\mathfrak{b}_{\mathfrak{g}}}(\mathbf{B}_{\mathfrak{g}})$ equals n.

Proof. (i) Let *Z* be the space of cycles of degree $b_g + 1$ of $C_{\bullet}(g)$. Let set:

$$C_i := \begin{cases} C_{\mathbf{b}_g+1+i}(g) & \text{if } i = 1, \dots, n-1 \\ Z & \text{if } i = 0 \end{cases}$$
$$C_{\bullet} := C_0 \oplus \dots \oplus C_{n-1}$$

Then C_{\bullet} is a subcomplex of $C_{\bullet}(g)$ whose gradation is deduced from the gradation of $C_{\bullet}(g)$ by translation by $b_g + 1$. According to Lemma 4.2, the support of its homology is contained in C_g . In particular, its codimension in $g \times g$ is

$$4n + 2\ell - (2n + 2\ell) = 2n = n + n - 1 + 1$$

According to Proposition 3.9, for i = 1, ..., n - 1, C_i has projective dimension at most i. Hence, by Corollary A.3, C_{\bullet} is acyclic and Z has projective dimension at most 2n - 2, whence the assertion.

(ii) and (iii) By definition, the short sequence

$$0 \longrightarrow Z \longrightarrow \mathfrak{g} \land \bigwedge^{\mathfrak{b}_{\mathfrak{g}}}(\mathbf{B}_{\mathfrak{g}}) \longrightarrow I_{\mathfrak{g}} \longrightarrow 0$$

is exact. Moreover, by Proposition 3.9, $g \wedge \bigwedge^{b_g}(B_g)$ has projective dimension at most 1. Then, by (i), I_g has projective dimension at most 2n - 1. As a result the $S(g \times g)$ -module $S(g \times g)/I_g$ has projective dimension at most 2n. Then by Auslander-Buchsbaum's theorem [Bou98, §3, n°3, Théorème 1], the depth of the graded $S(g \times g)$ -module $S(g \times g)/I_g$ is bigger than

$$4\mathbf{b}_{\mathfrak{q}} - 2\ell - 2n = 2\mathbf{b}_{\mathfrak{q}}$$

so that, according to [Bou98, §1, n°3, Proposition 4], the depth of the graded algebra $S(g \times g)/I_g$ is at least $2b_g$. In otherwords, $S(g \times g)/I_g$ is Cohen-Macaulay since it has dimension $2b_g$. Moreover, since the graded algebra $S(g \times g)/I_g$ has depth $2b_g$, the graded $S(g \times g)$ -module $S(g \times g)/I_g$ has depth $2b_g$ and projective dimension 2n. Hence I_g has projective dimension 2n - 1.

(iii) According to Lemma 4.1, the support in $g \times g$ of the module J_g/I_g is strictly contained in $\mathcal{C}(g)$. So its codimension in $g \times g$ is at least 2n + 1 since $\mathcal{C}(g)$ is irreducible. Then by (ii) and Proposition A.2,(ii), $I_g = J_g$, whence the assertion since $\mathcal{C}(g)$ is irreducible by [Ri79].

(iv) By (i), I_g has projective dimension 2n - 1. Hence, according to Proposition 3.9,(iii) and according to (ii) and Corollary A.3, $\bigwedge^n(g) \land \bigwedge^{b_g}(B_g)$ has projective dimension n.

Corollary 4.4. The subscheme of $g \times g$ defined by I_g has rational singularities.

Proof. According to Theorem 4.3,(iii), the subscheme of $g \times g$ defined by I_g is Cohen-Macaulay. According to [Po08, Theorem 1], it is smooth in codimension 1. So by Serre's normality criterion [Bou98, §1, n°10, Théorème 4], it is normal. Then, by [CZa12, Theorem 1.10], it has rational singularities.

Appendix A. Projective dimension and cohomology.

Let recall in this section classical results. Let X be a Cohen-Macaulay irreducible affine algebraic variety and let S be a closed subset of codimension p of X. Let P_{\bullet} be a complex of finitely generated projective k[X]-modules whose lenght l is finite and let ε be an augmentation morphism of P_{\bullet} whose image is R, whence an augmented complex of k[X]-modules,

 $0 \longrightarrow P_l \longrightarrow P_{l-1} \longrightarrow \cdots \longrightarrow P_0 \xrightarrow{\varepsilon} R \longrightarrow 0$

Let denote by \mathcal{P}_{\bullet} , \mathcal{R} , \mathcal{K}_0 the localizations on *X* of P_{\bullet} , *R*, the kernel of ε respectively and let denote by \mathcal{K}_i the kernel of the morphism $\mathcal{P}_i \longrightarrow \mathcal{P}_{i-1}$ for *i* positive integer.

Lemma A.1. Let suppose that S contains the support of the homology of the augmented complex P_•.

(i) For all positive integer $i and for all projective <math>\mathcal{O}_X$ -module \mathcal{P} , $\mathrm{H}^i(X \setminus S, \mathcal{P})$ equals zero.

(ii) For all nonnegative integer $j \leq l$ and for all positive integer $i , the cohomology group <math>H^{i}(X \setminus S, \mathcal{K}_{l-j})$ equals zero.

Proof. (i) Let $i be a positive integer. Since the functor <math>H^i(X \setminus S, \bullet)$ commutes with the direct sum, it suffices to prove $H^i(X \setminus S, \mathcal{O}_X) = 0$. Since S is a closed subset of X, one has the relative cohomology long exact sequence

$$\cdots \longrightarrow \mathrm{H}^{i}_{S}(X, \mathcal{O}_{X}) \longrightarrow \mathrm{H}^{i}(X, \mathcal{O}_{X}) \longrightarrow \mathrm{H}^{i}(X \setminus S, \mathcal{O}_{X}) \longrightarrow \mathrm{H}^{i+1}_{S}(X, \mathcal{O}_{X}) \longrightarrow \cdots$$

Since X is affine, $H^i(X, \mathcal{O}_X)$ equals zero and $H^i(X \setminus S, \mathcal{O}_X)$ is isomorphic to $H_S^{i+1}(X, \mathcal{O}_X)$. Since X is Cohen-Macaulay, the codimension p of S in X equals the depth of its ideal of definition in $\Bbbk[X]$ [MA86, Ch. 6, Theorem 17.4]. Hence $H_S^{i+1}(X, \mathcal{O}_X)$ and $H^i(X \setminus S, \mathcal{O}_X)$ equal zero since i + 1 < p.

(ii) Let *j* be a nonnegative integer. Since *S* contains the support of the homology of the complex P_{\bullet} , for all nonnegative integer *j*, one has the short exact sequence of $\mathcal{O}_{X\setminus S}$ -modules

 $0 \longrightarrow \mathcal{K}_{j+1} |_{X \setminus S} \longrightarrow \mathcal{P}_{j+1} |_{X \setminus S} \longrightarrow \mathcal{K}_j |_{X \setminus S} \longrightarrow 0$

whence the long exact sequence of cohomology

$$\cdots \longrightarrow \operatorname{H}^{i}(X \setminus S, \mathcal{P}_{j+1}) \longrightarrow \operatorname{H}^{i}(X \setminus S, \mathcal{K}_{j}) \longrightarrow \operatorname{H}^{i+1}(X \setminus S, \mathcal{K}_{j+1}) \longrightarrow \operatorname{H}^{i+1}(X \setminus S, \mathcal{P}_{j+1}) \longrightarrow \cdots$$

Then, by (i), for $i positive integer, the cohomology groups <math>H^i(X \setminus S, \mathcal{K}_j)$ and $H^{i+1}(X \setminus S, \mathcal{K}_{j+1})$ are isomorphic since P_{j+1} is a projective module. Since $\mathcal{P}_i = 0$ for i > l, \mathcal{K}_{l-1} and \mathcal{P}_l have isomorphic restrictions to $X \setminus S$. In particular, by (i), for $i positive integer, <math>H^i(X \setminus S, \mathcal{K}_{l-1})$ equal zero. Then, by induction on j, for $i positive integer, <math>H^i(X \setminus S, \mathcal{K}_{l-j})$ equals zero.

Proposition A.2. Let R' be a $\Bbbk[X]$ -module containing R. Let suppose that the following conditions are verified:

(1) *p* is at least l + 2,

(2) X is normal,

(3) *S* contains the support of the homology of the augmented complex P_{\bullet} .

(i) The complex P_{\bullet} is a projective resolution of R of length l.

(ii) Let suppose that R' is torsion free and let suppose that S contains the support in X of R'/R. Then R' = R.

Proof. (i) Let *j* be a positive integer. One has to prove that $H^0(X, \mathcal{K}_j)$ is the image of P_{j+1} . By Condition (3), the short sequence of $\mathcal{O}_{X\setminus S}$ -modules

$$0 \longrightarrow \mathcal{K}_{j+1}\Big|_{X \setminus S} \longrightarrow \mathcal{P}_{j+1} \Big|_{X \setminus S} \longrightarrow \mathcal{K}_{j}\Big|_{X \setminus S} \longrightarrow 0$$

is exact, whence the cohomology long exact sequence

$$0 \longrightarrow \mathrm{H}^{0}(X \setminus S, \mathcal{K}_{j+1}) \longrightarrow \mathrm{H}^{0}(X \setminus S, \mathcal{P}_{j+1}) \longrightarrow \mathrm{H}^{0}(X \setminus S, \mathcal{K}_{j}) \longrightarrow \mathrm{H}^{1}(X \setminus S, \mathcal{K}_{j+1}) \longrightarrow \cdots$$

By Lemma A.1,(ii), $H^1(X \setminus S, \mathcal{K}_{j+1})$ equals 0 since 1 , whence the short exact sequence

$$0 \longrightarrow \mathrm{H}^{0}(X \setminus S, \mathcal{K}_{j+1}) \longrightarrow \mathrm{H}^{0}(X \setminus S, \mathcal{P}_{j+1}) \longrightarrow \mathrm{H}^{0}(X \setminus S, \mathcal{K}_{j}) \longrightarrow 0$$

Since the codimension of *S* in *X* is bigger than 2 and since *X* is irreducible, $X \setminus S$ is dense in *X*. Moreover, the restriction from *X* to $X \setminus S$ is an isomorphism from P_{j+1} to $H^0(X \setminus S, \mathcal{P}_{j+1})$ since *X* is normal. Let φ be in $H^0(X, \mathcal{K}_j)$. Then there exists an element ψ of P_{j+1} whose image ψ' in $H^0(X, \mathcal{K}_j)$ has the same restriction to $X \setminus S$ as φ . Since P_j is a projective module and since *X* is irreducible, P_j is torsion free. Then $\varphi = \psi'$ since $\varphi - \psi'$ is a torsion element of P_j , whence the assertion.

(ii) Let \mathcal{R}' be the localization of R' on X. Arguing as in (i), since S contains the contains the support of R'/R and since 1 , the short sequence

$$0 \longrightarrow \mathrm{H}^{0}(X \setminus S, \mathcal{K}_{0}) \longrightarrow \mathrm{H}^{0}(X \setminus S, \mathcal{P}_{0}) \longrightarrow \mathrm{H}^{0}(X \setminus S, \mathcal{R}') \longrightarrow 0$$

is exact. Moreover, the restriction from *X* to *X* \ *S* is an isomorphism from P_0 to $H^0(X/S, \mathcal{P}_0)$ is surjective since *X* is normal. Let φ be in *R'*. Then for some ψ in P_0 , $\varphi - \varepsilon(\psi)$ is a torsion element of *R'*. So $\varphi = \varepsilon(\psi)$ since *R'* is torsion free, whence the assertion.

Corollary A.3. Let C_{\bullet} be a homology complex of finite type of $\mathbb{K}[X]$ -modules whose length l is finite and positive. For j = 0, ..., l, let denote by Z_j the space of cycles of degree j of C_{\bullet} . Let suppose that the following conditions are verified:

- (1) S contains the support of the homology of the complex C_{\bullet} ,
- (2) for all i, C_i is a submodule of a free module,
- (3) for i = 1, ..., l, C_i has projective dimension at most d,
- (4) *X* is normal and $l + d \le p 1$.

Then C_{\bullet} is acyclic and for j = 0, ..., l, Z_j has projective dimension at most l + d - j - 1.

Proof. Let prove by induction on l - j that the complex

$$0 \longrightarrow C_l \longrightarrow \cdots \longrightarrow C_{j+1} \longrightarrow Z_j \longrightarrow 0$$

is acyclic and that Z_j has projective dimension at most l + d - j - 1. For j = l, Z_j equals zero since C_l is torsion free by Condition (2) and since Z_l a submodule of C_l , supported by S by Condition (1). Let suppose $j \le l - 1$ and let suppose the statement true for j + 1. By Condition (2), C_{j+1} has a projective resolution P_{\bullet} whose length is at most d and whose terms are finitely generated. By induction hypothesis, Z_{j+1} has a projective resolution Q_{\bullet} whose length is at most l + d - j - 2 and whose terms are finitely generated, whence an augmented complex R_{\bullet} of projective modules whose length is l + d - j - 1,

$$0 \longrightarrow Q_{l+d-j-2} \oplus P_{l+d-j-1} \longrightarrow \cdots \longrightarrow Q_0 \oplus P_1 \longrightarrow P_0 \longrightarrow Z_j \longrightarrow 0$$

Denoting by d the differentials of Q_{\bullet} and P_{\bullet} , the restriction to $Q_i \oplus P_{i+1}$ of the differential of R_{\bullet} is the map

$$(x, y) \mapsto (\mathrm{d}x, \mathrm{d}y + (-1)^l \delta(x)),$$

with δ the map which results from the injection of Z_{j+1} into C_{j+1} . Since P_{\bullet} and Q_{\bullet} are projective resolutions, the complex R_{\bullet} is a complex of projective modules having no homology in positive degree. Hence the support of the homology of the augmented complex R_{\bullet} is contained in S by Condition (1). Then, by Proposition A.2 and Conditions (3) and (4), R_{\bullet} is a projective resolution of Z_j of length is l + d - j - 1 since Z_j is a submodule of a free module by Condition (2), whence the corollary.

References

- [Au61] M. Auslander, Modules over unramified regular local rings, Illinois Journal of Mathematics, 5 (1961), p. 631-647.
- [Bol91] A.V. Bolsinov, Commutative families of functions related to consistent Poisson brackets, Acta Applicandae Mathematicae, 24 (1991), n°1, p. 253–274.
- [Bou02] N. Bourbaki, Lie groups and Lie algebras. Chapters 4–6. Translated from the 1968 French original by Andrew Pressley, Springer-Verlag, Berlin (2002).
- [Bou98] N. Bourbaki, Algèbre commutative, Chapitre 10, Éléments de mathématiques, Masson (1998), Paris.
- [Bru] W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge studies in advanced mathematics n°39, Cambridge University Press, Cambridge (1996).
- [CM008] J.-Y. Charbonnel and A. Moreau, *Nilpotent bicone and characteristic submodule of a reductive Lie algebra*, Tranformation Groups, **14**, (2008).
- [CZa12] J.-Y. Charbonnel and M. Zaiter, On the Commuting variety of a reductive Lie algebra and other related varieties, arXiv 1204.0377 [math.RT].
- [Di74] J. Dixmier, Algèbres enveloppantes, Gauthier-Villars (1974).
- [Di79] J. Dixmier, *Champs de vecteurs adjoints sur les groupes et algèbres de Lie semi-simples*, Journal für die reine und angewandte Mathematik, Band. **309** (1979), 183–190.
- [Gi10] V. Ginzburg Isospectral commuting variety and the Harish-Chandra D-module arXiv 1002.20311 [Math.AG].
- [Gi11] V. Ginzburg Isospectral commuting variety, the Harish-Chandra D-module, and principal nilpotent pairs arXiv 1108.5367 [Math.AG].
- [H77] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics n°52 (1977), Springer-Verlag, Berlin Heidelberg New York.
- [HuWi97] G. Huneke and R. Wiegand, *Tensor products of modules, Rigidity and Local cohomology*, Mathematica Scandinavica, **81**, (1997), p. 161–183.
- [Ko63] B. Kostant, Lie group representations on polynomial rings, American Journal of Mathematics 85 (1963), p. 327-404.
- [MA86] H. Matsumura, Commutative ring theory Cambridge studies in advanced mathematics n°8 (1986), Cambridge University Press, Cambridge, London, New York, New Rochelle, Melbourne, Sydney.
- [MF78] A.S. Mishchenko and A.T. Fomenko, Euler equations on Lie groups, Math. USSR-Izv. 12 (1978), p. 371–389.
- [Mu88] D. Mumford, The Red Book of Varieties and Schemes, Lecture Notes in Mathematics n°1358 (1988), Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo.
- [Po08] V.L. Popov Irregular and singular loci of commuting varieties, Transformation Groups 13 (2008), p. 819–837.
- [Po08] V.L. Popov and E. B. Vinberg, Invariant Theory, in: Algebraic Geometry IV, Encyclopaedia of MathematicalSciences n°55 (1994), Springer-Verlag, Berlin, p.123–284.
- [Ri79] R. W. Richardson, *Commuting varieties of semisimple Lie algebras and algebraic groups*, Compositio Mathematica **38** (1979), p. 311–322.
- [V72] F.D. Veldkamp, The center of the universal enveloping algebra of a Lie algebra in characteristic p, Annales Scientifiques de L'École Normale Supérieure 5 (1972), p. 217–240.

UNIVERSITÉ PARIS 7 - CNRS, INSTITUT DE MATHÉMATIQUES DE JUSSIEU, GROUPES, REPRÉSENTATIONS ET GÉOMÉTRIE, CASE 7012, BÂTIMENT CHEVALERET, 75205 PARIS CEDEX 13, FRANCE

E-mail address: jyc@math.jussieu.fr