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We investigate the determinants of renewable energy R&D intensity and the impact of renewable energy innovations on firm performance, using several dynamic panel data models. We estimate these models using a large data set of European firms from 19 different countries, with some patenting activity in areas related with renewable energies during the 1987-2007 period. Our results confirm our priors on the determinants of the rapid development of renewable energy R&D intensity during the last decades. Additionally, we find evidence that renewable patent intensity has a significant dynamic impact on the stock market value of firms.

I. Introduction

Ever since the energy crises of the 1970s, many governments started to promote the use of renewable energies as desirable substitutes for traditional fossil fuels. Climate change concerns and fluctuating oil prices are factors behind the increase in the share of renewable energy relative to the world energy consumption. In this scenario, the increasing demand for electricity, the strict environmental policies and the potential future gains from access to renewable energy markets have stimulated the private sector's interest in developing innovations in these alternative energies. Indeed, from 1971 to 2004, total renewable energy supply grew at a 2.3 percent annual rate. Particularly, wind, solar and geothermal experienced an increase of 48 percent, 28 percent and 7.5 percent during the same period, respectively (IEA, 2007). More recent data show that, in 2008, global energy coming from renewable sources increased 75 percent relative to 2004. In the same period, solar photovoltaic (PV) capacity and biodiesel production increased sixfold, ethanol production and solar heating capacity doubled, while wind capacity increased 250 percent. Germany and Spain overcame the other of European countries in total renewable power, wind power and solar PV capacities by the end of [START_REF] Horbach | Determinants of environmental innovation -new evidence from German panel data sources[END_REF](Renewables: Global Status Report, 2009).

Much R&D has been carried out at the firm level to reduce costs and accelerate the expansion of renewable energy innovations. While private R&D expenditures and factors such as fossil fuels price increases or growing energy demand are expected to stimulate renewable energy innovations, how effective these factors are in the generation of new technologies in these specific areas has yet to be proved empirically. In this paper, we inquire into the main determinants of the evolution of R&D activities related to renewable energy. Additionally, we estimate the impact of renewable energy R&D intensity on firm performance using recently developed dynamic panel data techniques. Specifically, we will estimate panel data models that are specific to count data, as well as a panel vector auto-regression model. We analyze a panel of European firms, spanning over a 21-year period between 1987 and 2007, for 19 European countries. We find statistically significant effects of R&D expenditures on patenting activities, and of patenting on firm performance.

We make use in this paper of measures of firms' R&D intensity based on patent data, since measures of inputs of the innovative activity -such as R&D expenditures or R&D intensity-show a relatively weak power to evaluate the real innovation activity of firms. Furthermore, innovations protected by patents have played a key role in business strategies. Patents sustain competitive advantages for instance by increasing the production cost of competitors, by signaling a better quality of products and by serving as barriers to entry. [START_REF] Griliches | Patent statistics as economic indicators: a survey[END_REF] states that the main advantages of patent data are: (a) by definition patents are closely related to inventive activity; (b) patent documents are objective because they are produced by an independent patent office and their standards change slowly over time; and (c) patent data are widely available in several countries, over long periods of time, and cover almost every field of innovation. [START_REF] Popp | Lessons from patents: using patents to measure technological change in environmental models[END_REF] considers that patent counts are a good measure of innovative output of the firm and that they indicate the corporate level of innovative activity. Moreover, [START_REF] Dernis | Using patent counts for cross-country comparisons of technology output[END_REF] point out at the extensively recognized relationship between patents and innovative output and also at the interesting information contained in patents. Patents also provide relevant information on the nature of the inventions, application dates, the identity and the home country of the applicant, the detailed description of the invention and even the citation of previous patents related to the current innovation. Moreover, patents may be classified according to their area of application following the International Patent Classification (IPC) codes developed at the World Intellectual Property Organization.

In our empirical analysis, we employ a Poisson-type patent count model. Patent counts are the number of successful patent applications assigned to firms during a given year.1 A common characteristic of these models is that patent counts are treated as discrete-valued random variables and are analyzed by a count data model. In these models, it is assumed that: (1) the arrival rate (or conditional intensity) of patents has some parametric functional form, and (2) the arrival rate is constant over a period of time. The consequence of the second assumption is that the statistical inference of the model can be done based on the number of patent applications during each period and the exact time of the innovation is irrelevant. Although in recent patent databases the application date of patents is available with daily precision, this information is a noisy measure of the time of innovations. Therefore, following [START_REF] Hausman | Econometric models for count data with an application to the patents-R&D relationship[END_REF] most authors aggregate patent data over the year. Thus, the patent counts are assumed to follow a Poisson distribution. Fortunately, [START_REF] Wooldridge | Econometric Analysis of Cross Section and Panel Data[END_REF] notes that the Poisson distribution has a very nice robustness property: whether or not the Poisson distribution holds, we still get consistent, asymptotically normal estimators of the parameters given that the conditional mean is correctly specified and the regularity conditions hold (see [START_REF] Wooldridge | Quasi-likelihood methods for count data[END_REF]2002). [START_REF] Johnstone | Renewable energy policies and technological innovation: evidence based on patent counts[END_REF], using a panel of patent counts from 25 OECD countries over the 1978-2003 period find that renewable R&D public spending and public policy are both significant factors influencing patent activity in renewable energy. They also find that growing electricity consumption is likely to increase incentives to innovate in renewable energy technologies. [START_REF] Sagar | Evidence of under-investment in energy R&D in the United States and the impact of federal policy: a comment on Margolis and Kammen[END_REF] argues that, unlike in sectors such as pharmaceuticals, where returns to R&D can be very high, in the energy sector R&D mainly serves to lower capital expenditures of energy conversion plans or the substitution of fuel based technologies.

Using German panel data applied to firms in the environmental sectors, [START_REF] Horbach | Determinants of environmental innovation -new evidence from German panel data sources[END_REF] finds that R&D activities encourage environmental innovation. Also, [START_REF] Margolis | Evidence of under-investment in energy R&D in the United States and the impact of federal policy[END_REF] show that R&D investments are positively correlated with the total number of patents granted in energy sector in the US. In their study applied to 15 EU-Member States, [START_REF] Ragwitz | Evidence from R&D spending for renewable energy sources in the EU[END_REF] confirm that in R&D intensive renewable energy technologies, R&D spending constitutes a major factor influencing the generation of international patents. [START_REF] Popp | Induced innovation and energy prices[END_REF] considers that energy prices have a strong positive impact on patenting activity for various environmentally-friendly technologies. Indeed, he sustains that energy prices tend to generate more environmental regulations, such as taxes and abatement policies that encourage the development of new energy technologies. He also finds that prices of fossil fuels are likely to stimulate the development of these types of research in relatively short period of time.

Regarding firm performance, innovation activity exists because it has a positive impact on future profits of a company. Indeed, the R&D intensity of private firms is an important source of wealth in developed countries. Since profits on R&D are usually realized during several years in the future, current accounting-based net profit is a very noisy measure of R&D benefits. Therefore, in the economics literature, several papers have decided to investigate the impact of R&D on stock market price, which treats the problem of timing differential of R&D expenses and associated future profits using a forwardlooking perspective.

Several papers have investigated the impact of R&D activity on the stock market value of firms. [START_REF] Pakes | On patents, R&D, and the stock market rate of return[END_REF] focuses on the dynamic relationships among the number of successful patent applications of firms, a measure of the firm's investment in inventive activity (its R&D expenditures), and an indicator of its inventive output (the stock market value of the firm). Pakes concludes that the events that lead the market to reevaluate the firm are significantly correlated with unpredictable changes in both the R&D and the patents of the firm. [START_REF] Hall | The stock market's valuation of research and development investment during the 1980s[END_REF] shows that the stock market overvalues R&D. Nevertheless, [START_REF] Hall | The market value of knowledge assets in U.S. and European firms[END_REF] shows that the valuation on R&D has been relatively low during the past decade. On the other hand, a number of studies have shown the correlation of R&D activity with contemporaneous and future market value (see Lev and[START_REF] Lev | The capitalization, amortization and value-relevance of R&D[END_REF][START_REF] Lev | R&D-related reporting biases and their consequences[END_REF]. [START_REF] Chan | The stock market valuation of research and development expenditures[END_REF] show a positive relationship between R&D intensity as measured by R&D to market value and abnormal future returns. This association of R&D activity and future excess stock returns could be due to delayed reaction by the stock market or inadequate adjustment for risk (Chambers et al., 2002). Moreover, [START_REF] Chan | The stock market valuation of research and development expenditures[END_REF] also show that the future excess returns for R&D intensive firms are driven by lower stock price valuation in the current year due to R&D firm's earnings being depressed. Recently, [START_REF] Lev | The stock market valuation of R&D leaders[END_REF] show that R&D leaders earn significant future excess returns, while R&D followers only earn average returns. [START_REF] Lev | The stock market valuation of R&D leaders[END_REF] find that R&D leaders show higher future profitability and lower risk than followers, but the investors' reaction seems to be delayed. They conclude that investors probably do not get information in a timely fashion leading to a delayed reaction. We model R&D intensity and stock market value in dynamic setup and to use a multivariate model to identify R&D leader and follower companies.

The remainder of the paper is organized as follows. Section II presents and discusses the data set used in this paper. In Section III, we present the panel data models to be estimated. Section IV discusses the estimation results, and finally, we present a number of concluding remarks in Section V.

II. The data

We provide a general discussion of the data set employed, which comes from different sources. First, we describe the characteristics of our patent data, then data on firm characteristics, and finally macroeconomic data.

Patent data

Our sample of patents in renewable energy includes 15 EU countries: (1) Austria, (2) Belgium, (3) Denmark, (4) Finland, (5) France, (6) Germany, (7) Greece, (8) Ireland, (9) Italy, (10) Luxembourg, (11) Netherlands, (12) Portugal, (13) Spain, (14) Sweden, (15) United Kingdom and four EFTA : (1) Iceland, (2) Liechtenstein, (3) Norway and (4) Switzerland. The patent data set used in this paper is We have collected a sample of 141,276 patent applications over the period 1960-2007 for the 19 countries in the sample. For each patent, we have obtained the following information: (1) patent ID number, (2) application date, (3) publication date, (4) IPC code, (5) assignee name (firm name), (6) number of citations received from future patents and (7) country name.

Patents are classified into seven main renewable energy categories: (1) biomass, (2) geothermal, (3) hydro, (4) solar, (5) waste, (6) wave/tide and ( 7) wind. In order to identify these patents, we used the specific International Patent Classification (IPC) codes related to renewable energy patents in these areas as proposed by [START_REF] Johnstone | Renewable energy policies and technological innovation: evidence based on patent counts[END_REF]. The IPC codes referring to Hydro Energy were collected from the World Intellectual Property Organization (WIPO) web page. We show the evolution of different types of renewable R&D during 1960-2007 in Table 1 and Fig. 2. The ranking of renewable energy types according to patent counts over 1960-2007 is: (1) waste, (2) wind, (3) solar, (4) biomass, (5) geothermal, (6) hydro and ( 7) wave/tide.

[APPROXIMATE LOCATION OF TABLE 1]

During the recent years, the number of patent applications in renewable energy has dramatically increased. Table 1 andFigs 1 and2 show an exponentially increasing trend of the number of renewable energy patents in Europe over the 1960-2007 period. However, on these figures it can be seen that during the last 5 years of our sample period the number of observed patents decreases significantly. [START_REF] Ayari | Renewable energy innovations in Europe: a dynamic panel data approach[END_REF] explain this fact by presenting the empirical distribution of the application-grant lag. They show that more than 95 percent of the patents, used in this paper, have been published during the 1960-2002 time period. Since in our sample we only observe published patents, then the final years in our sample exclude patents that have been submitted to EPO but they have not been published by the end of 2007. We aggregated the patent information over each year for each firm to get a panel data set. This way we created the following two variables: (1) number of patent applications, (2) sum of the number of patent applications and the number of citations received from future patents. 2 Ayari et al. (2009) show the rapid growth of the sum of the number of patent applications and the number of citations received from future patents.

[APPROXIMATE LOCATION OF FIGURES 1, 2]

The patent data set contains the application date and issue (publication) date for each patent. Following [START_REF] Hall | The NBER patent citation data file: lessons, insights and methodological tools[END_REF] we date an innovation using its application date because inventors have incentive to apply for patent as soon as possible after completing the innovation. The patent database contains patents published until the end of the observation period. This means that the data set excludes patents, which were submitted to the EPO before that date but were not published before the end of our sample. In order to investigate the impact of the sample truncation, we analyze the distribution of the application-grant-lag (i.e., time elapsed between the publication date and the application date of a patent) in our sample. We find that the last five years of the sample (i.e. 2003-2007) are affected by the truncation bias (see [START_REF] Ayari | Renewable energy innovations in Europe: a dynamic panel data approach[END_REF]. Therefore, in the empirical part we need to control for these years due to missing data. The observations for the 1960-2002 period are not affected, thus, we observe all patents of the corresponding period.

We measure the quality of knowledge embodied in a patent by the number of citations the patent receives from future patents (see also [START_REF] Hall | The NBER patent citation data file: lessons, insights and methodological tools[END_REF]. However, this measure of patent quality is subject to sample truncation bias because the sample excludes future patents, which may potentially cite the observed patents. This is a limitation of our measure. However, we believe it is better to use citations-weighted patent counts than simple patent counts because the number of citations received is informative on patent quality. This motivates us to compute two alternative measures of patent counts: (1) number of patent applications and (2) number of patent applications plus number of citations received from future patents.

Firm data

The accounting, R&D expenditure and market value data of firms have been gathered from the Compustat Global database, a broad database containing financial statements and market data of more than 6,200 companies from European countries. Industry classification is made using the modified SIC codes of [START_REF] Hall | Estimating the productivity of research and development in International Productivity Differences, Measurement and Explanations for French and United States Manufacturing Firms[END_REF] that is (1) paper and printing, (2) chemicals, (3) rubber and plastics, (4) wood and misc., (5) primary metals, (6) fabricated metals, (7) machinery, (8) electrical machinery, (9) autos, (10) aircrafts and other trans., (11) textiles and leather, (12) pharmaceuticals, (13) food, ( 14) computers and inst., (15) oil, ( 16) nonmanufacturing.

More specifically, we use the following firm specific variables: (1) R&D expenditure, (2) R&D expenses of competitors in the industry, (3) R&D expenses of other industries, (3) number of employees, (4) country name, (5) Standard Industry Classification (SIC) code, (6) return on assets (ROA) and ( 7) stock return. We use the ROA and stock return variables as alternative measures of firm performance. We account for R&D spillovers effects by computing the total R&D expenditure of competitors in the same industry and also the total R&D expenses of other industries for each company and each year. As the R&D spillover process is dynamic, in our application we shall consider several lags of these R&D variables. Data coverage in the Compustat database ranges from 1987 to 2007.

Macroeconomic data

We also include macroeconomic data collected from Reuters EcoWin Energy database in order to control for the economic factors related to traditional and renewable energy that could influence the patenting activity of firms in renewable energy area.

These data refer to (1) oil price (USD), (2) electricity production (TWh), (3) hydro electricity consumption (TWh), (4) nuclear energy consumption (TWh) and (5) primary energy consumption (tonnes of oil equivalents, toe) in each country of our sample. In our application, the oil price quoted in USD is changed to EUR price using exchange rate data obtained from Reuters. The data period of these variables is 1960-2007. We present the evolution of oil price in USD during 1960-2007 on [APPROXIMATE LOCATION OF FIGURES 3,4] After matching the three databases, our final data set is a panel of 154 firms from 14 European countries that applied to the EPO for patent protection over the period 1987-2007. The final panel used in our calculations includes 8,404 patent applications in the renewable energy and 18,233 patent applications plus number of citations received to account for renewable energy patent quality. The number of patents and firms included in the matched panel data set is significantly lower than these numbers in the separate PATSTAT and Compustat databases. This is a limitation of our data set used in the estimation procedure. However, we believe that we used the two most complete data sets available for European renewable patents and EU-EFTA company specific information and great care has been taken in constructing our final panel data set to exploit the available information efficiently. 3

III. The econometric model

As it was stated in the introduction, the purpose of this paper is to inquire into the determinants of R&D intensity, as well as to estimate the impact on performance of firms' innovative activities. This section describes the econometric procedures used to carry out the estimations, specifically panel count data models that will be used to identify firms' renewable energy R&D intensity, and other panel data specifications required in order to measure the impact of innovative activity in renewable energy on various measures of firm performance. The purpose of this section is to present the econometric specifications. See [START_REF] Ayari | Renewable energy innovations in Europe: a dynamic panel data approach[END_REF] for the technical details on the likelihood functions and on how inference is carried out.

Patent count data models

Our data set consists of a panel of i = 1, . . . , N firms observed over t = 1, . . . , T periods. Depending on the specification, n it denotes either the number of patent applications or the sum of the number of patent applications and number of citations received from future patents of the i-th firm at the t-th year. 4 Denote a set of exogenous explanatory variables associated to the i-th firm at period t by Z it . The Z it may include: (1) firm specific variables, (2) energy specific variables, (3) dummy variables controlling time, country and industry effects. 5 Suppose that the conditional distribution of n it given all previous observable information

F it = σ[(n i1 , Z i1 ), . . . , (n it-1 , Z it-1 ), Z it ] available at time t is n it |F it ∼ P oisson(λ it ).
In what follows, we shall parameterize the λ it intensity parameter of this distribution.

3 An extension of the present work could be the application of a more complete firm specific data set, which would result a more complete panel after matching firm data with the PATSTAT database. 4 We have two alternative choices for the endogenous variable in the patent count data model. We shall estimate two alternative specifications for each count data model. (See Sections II and IV.) 5 We shall be more precise regarding the Z it term in the empirical applications section. We are going to consider count panel data models that may or may not include an unobservable heterogeneity term. We will also consider models that include a dynamic component and employ the specification suggested by [START_REF] Wooldridge | Simple solutions to the initial conditions problem in dynamic, nonlinear panel data models with unobserved heterogeneity[END_REF]. First, we shall specify the Basic Poisson model that excludes unobserved heterogeneity. In these models, we control for heterogeneity of individuals by including firm and country specific constant variables into the specification for example industry and country dummies. Next, we also consider models with fixed effects specifications for the unobservable heterogeneity term ω i . In the models that do not include the unobserved heterogeneity component, we replace ω i by a constant parameter denoted ω.

In the basic Poisson model, we specify the λ it > 0 parameter of the patent count distribution as follows:

ln λ it = ω + θZ it (1)
In this and all the following specifications, all parameters are real numbers because we specify the logarithm of the intensity parameter.

In the basic dynamic Poisson model, we include a first-order term of n it as follows:

ln λ it = ω + βn it-1 + θZ it (2)
where n i0 = κ is a parameter controlling for the initial conditions and |β| < 1 is the dynamic coefficient.6 

In the fixed effects Poisson model, we specify the λ it parameter of the patent count distribution by replacing ω by the unobservable heterogeneity term:

ln λ it = ω i + θZ it (3)
In the fixed effects dynamic Poisson model of [START_REF] Wooldridge | Simple solutions to the initial conditions problem in dynamic, nonlinear panel data models with unobserved heterogeneity[END_REF], we also include a dynamic term of n it :

ln λ it = ω i + βn it-1 + θZ it (4)
where n i0 = κ is a parameter controlling for the initial conditions and |β| < 1 is the dynamic coefficient.

Firm performance panel data models

In this set of regressions, we use the same panel of i = 1, . . . , N firms observed over t = 1, . . . , T periods. We use the R&D intensity estimates obtained in the count data model to characterize R&D activity. Denote the log R&D intensity of the i-th firm at the t-th year by ln λ it . Let y it denote the performance of the i-th firm in period t. 7 In the following part of this subsection, we present two alternative panel data models that evaluate the impact of R&D activity on firm performance. These panel data models account for unobserved heterogeneity among firms that we denote by ω i in the equations.

In the basic panel data regression, we parameterize firm performance y it as follows: where ω i is a company specific fixed effect, ζ measure the contemporaneous impact of log patent activity on firm performance and it ∼ N (0, σ 2 ) is the error term. In this model, we assume that ln λ it is an exogenous variable.

y it = ω i + ζ ln λ it + it (5)
In the previous panel data regression, we assumed the exogeneity of ln λ it and we only measured the contemporaneous impact of R&D on firm performance. However, patent intensity is endogenous as firm performance impacts R&D activity and the relationship between R&D and firm performance is dynamic over several years. Therefore, we also estimate a panel data model where both variables are endogenous in the dynamic panel vector autoregression (PVAR) setup suggested by [START_REF] Binder | Estimation and inference in short panel vector autoregressions with unit roots and cointegration[END_REF].

Define a 2 × 1 vector of endogenous variables for the i-th firm at period t by X it = (y it , ln λ it ) . Then, formulate the PVAR(1) model as follows:

X it = ω i + δ t + ζ(X it-1 -δ t-1 ) + it , it ∼ N (0, Ω ). ( 6 
)
where ω i = (ω 1i , ω 2i ) is a 2 × 1 vector of firm specific random effects with covariance matrix Ω ω and δ t = (δ 1t , δ 2t ) is a 2×1 vector of time effects. The ζ is a 2×2 matrix capturing the lagged impact of the first lag of firm performance and log patent intensity on current firm performance and R&D activity.

We control for the initial conditions Xi0 by introducing the Ω 0 covariance matrix of Xi0 because in this paper we are in a short-panel setup. Moreover, it ∼ N (0, Ω ) is a vector of error terms where Ω is a 2 × 2 covariance matrix of the error terms capturing the contemporaneous interaction of R&D and stock returns. Elements of the it vector of error terms may be contemporaneously correlated with each other (through Ω ) but are uncorrelated with their own lagged values and uncorrelated with all the right-hand side variables of the regression equation.

IV. Empirical results

In this section, we discuss the empirical results obtained from the estimation of the panel data models described in Section III. First, we begin by reporting our count data model results on the determinants of the R&D intensity of renewable energy patents. Then, we report the estimation results of several panel data models that measure the effects of renewable R&D activity on firm performance.

Patent intensity

Table 2 displays estimated coefficients in the following specifications: (1) Basic Poisson, (2) Basic dynamic Poisson, (3) Fixed effect Poisson and (4) Fixed effects dynamic Poisson models. In all cases, the dependent variable of the count data model is the patent applications count. In addition, [START_REF] Ayari | Renewable energy innovations in Europe: a dynamic panel data approach[END_REF] present the estimation results of these four models when the dependent variable considered is the sum of patent application and citations received counts. The country, industry and time effects estimates of these models are displayed in [START_REF] Ayari | Renewable energy innovations in Europe: a dynamic panel data approach[END_REF]. The results obtained are robust across the different models and across the two dependent variables: (1) patent applications counts and (2) patent applications counts plus citations received counts (see [START_REF] Ayari | Renewable energy innovations in Europe: a dynamic panel data approach[END_REF].

[APPROXIMATE LOCATION OF Regarding the R&D expenditures variable, we evidence that lagged values of this variable have significant negative impact on patent applications counts. We find that contemporaneous R&D has positive impact on applications counts in case of the fixed effects Poisson models, while it has nonsignificant effect for the Basic Poisson specifications (see Table 2). [START_REF] Ayari | Renewable energy innovations in Europe: a dynamic panel data approach[END_REF] consider applications counts plus citations counts as endogenous in the count data model and find similar results. For the fixed effects specifications, they find significant positive contemporaneous effects while for the Basic Poisson model the estimates are positive but not always significant. Lagged R&D has typically negative impact on applications plus citations counts (see [START_REF] Ayari | Renewable energy innovations in Europe: a dynamic panel data approach[END_REF]. The positive contemporaneous impact of R&D expenditures can be explained by the fact that renewable energy R&D should be protected by patents before competitors imitate them. The significant negative parameters of past own R&D expenses mean that firms do not benefit from previous investments in renewable R&D, therefore, they are motivated to patent them as soon as possible. Indeed, as has been argued by [START_REF] Sagar | Evidence of under-investment in energy R&D in the United States and the impact of federal policy: a comment on Margolis and Kammen[END_REF], firms in energy sectors do not necessarily benefit from the R&D activities they perform to enhance their innovations since these activities serve mainly to reduce capital expenditures required for the development of these kind of innovations. 8The contemporaneous and lagged intra-industry and inter-industry R&D expenditures variables affect negatively both dependent variables. An exception can be noticed for the third lag of competitors' R&D expenditures as it is shown to affect positively own patent applications and citations received intensity. Therefore, it is less likely that firms performing renewable energy R&D benefit from knowledge spillovers from competitors and even less likely that R&D spillover occurs among firms from different sectors. Firms in the currently forming renewable energy sector compete in innovations and they are motivated to protect their R&D investments using patents. Therefore, the negative impact of other firms' R&D on own patent activity can be explained by the fact that competitors and firms from other industries capture certain technological fields by means of their patent publications.

Firm size, measured by the number of its employees, has a positive and significant impact in all the estimated models, suggesting that larger firms have a greater propensity to generate renewable energy patents. Larger firms tend to have a broader array of research projects, which are carried out simultaneously, and this is more likely to generate patents.

Regarding the macroeconomic variables used in the count data models, oil price in EUR has significant positive impact on patent counts when we consider contemporaneous and fourth and fifth lagged variables.9 The oil price variable has the expected lagged positive impact on the number of patent applications in renewable energy, suggesting that the increase in the oil price is an important motivation behind the expansion of renewable energy innovations and that actual fossil fuel prices are affecting the future innovations aimed at reducing the dependence on these limited sources of energy. (See also Fig. 1.) The electricity production variable has a significant and positive effect in the four models estimated where the dependent variable is patent application counts.

Nuclear energy consumption affects negatively the renewable energy innovations in all the estimated F o r P e e r R e v i e w models, mainly due to the fact that nuclear energy can be seen as an alternative to renewable energy. The governments of several countries support nuclear energy as well as renewable energy (see for instance The Economist, 2009b on renewable energy versus nuclear power in the United Kingdom, or The Economist, 2009a, on the future perspectives of nuclear energy in the US and EU). The Economist (2009a) cites the example of Sweden, where some politicians think that nuclear energy can be a real alternative to renewable energy sources. We find similar negative impact of hydro electricity consumption on renewable patent counts which is intuitive because hydro electricity is an alternative to other renewable energy sources like solar or wind energy. Furthermore, a high primary energy consumption has a positive effect on the patenting activity of firms. This indicates that in countries where fossil fuel consumption and therefore carbon dioxide (CO 2 ) emissions are high, firms are more likely to develop more innovations in renewable energy. When a firm emits a large amount of greenhouse gases then it has to buy additional quotes of CO 2 in the existing European market. Thus, the need to buy additional quotes of greenhouse is an incentive to develop renewable electricity production capacities. We observe that the initial condition and lagged dependent variable coefficients used in our autoregressive models are significant. The autoregressive process is also found to be stationary. This is seen in the β coefficient, which is smaller than one in absolute value. We find that country effects have almost the same influence on the two dependent variables considered, see [START_REF] Ayari | Renewable energy innovations in Europe: a dynamic panel data approach[END_REF] for a ranking of country and industry fixed effects. Time dummies for 2004-2007 are negative and statistically significant.

Firm performance

We report our estimation results for the basic panel data regression and the PVAR(1) models in Tables 3A and3B, respectively. The first row of these tables shows the firm performance measure used in each case. We estimate the models for two alternative measures of firm performance: (1) ROA and (2) stock return. In the second row of Tables 3A and3B, we show the count data model used to derive the ln λ it values for the firm performance panel data model. For all count data models of this table, we use the patent applications count dependent variable, i.e. not the patent applications counts plus citations received counts variable. Moreover, we apply the ln λ it estimates obtained by the dynamic Poisson specifications as they are more general than the static Poisson models.

For the Basic panel data regression model, we present the impact of log λ it on ROA and stock return. We find significant positive coefficients for the ROA performance measure. However, for the stock return we do not obtain significant parameters (see Table 3(a)).

Next, we present the probably more realistic, PVAR(1) model estimates in Table 3(b). We evidence significant positive lagged impact of log renewable energy patent intensity on contemporaneous firm performance, ζ 12 > 0 for both measures (i.e., ROA and stock return) for the fixed effects specification. When we consider both the basic Poisson model and the fixed effects Poisson model, we find significant positive impact of lagged firm performance on contemporaneous ln λ it that is ζ 21 > 0. Moreover, we also present the estimates of the covariance of contemporaneous log patent intensity and firm performance, Ω 21 . We find significant positive interaction for all models and variables presented, i.e. Ω 21 > 0. Finally, we find significant correlation between the random effects variables, while the interaction between the initial conditions is non-significant.

[APPROXIMATE LOCATION OF TABLE 3(a), 3(b)]

V. Conclusions

In this paper, we have addressed the question of the determinants and consequences of firms' renewable energy innovations of in 19 European countries using patent data for the 1987-2007 period. We are particularly interested in two issues: The factors influencing the development of firms' renewable energy innovations, and the impact of firms' renewable energy R&D intensity on their performance. These research questions are investigated by using two types of models. To study the first question, we employed four alternative count data specifications designed for dynamic panel data. In the second part of the empirical analysis, we used a recently developed panel vector autoregression framework.

Our results show that contemporaneous R&D expenses have positive impact on renewable innovation activity. However, we find that renewable energy innovators do not benefit from either competitors' or other industries' R&D expenses. Our results also support the hypotheses that increasing oil prices, especially of their fourth and fifth lags, motivate the development of renewable energy patents. We also find evidence that alternatives to renewable energy R&D such as nuclear energy have a negative effect on patents in renewable energy. Moreover, hydro energy which is a specific form of renewable energy also is found to be a competitor of renewable energy patent intensity. Furthermore, primary energy consumption affects positively the patenting activity of firms. This indicates that in countries where CO 2 emissions are high, firms develop more patents in renewable energy. Finally, the dynamic count data models of the paper also evidence that firms' past renewable R&D intensity has a significant positive impact on their contemporaneous performance. These findings exhibit important implications that may be interesting for both researchers and policy makers.

This study provided interesting evidence on the renewable energy patenting activity of firms in several European countries. Although corporate data available on firms in this sector are limited for researchers, the present study can be considered as a first step on the analyses of renewable innovative activity. 

F

  , acquired from the European Patent Office (EPO) for the period1960-2007. 

  Fig. 3. Finally, the total hydroelectricity (TWh), nuclear energy (TWh) and primary energy (toe) consumption of the EU during 1965-2007 is presented on Fig. 4.
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Table 1 .

 1 Total number of patent applications by renewable energy category of 15 EU and 4 EFTA countries over 1960-2007

						Submitted Manuscript	
		Biom.	Geo.	Hydro Solar	Waste W./T. Wind	TOTAL
	Austria	174	386	294	657	890	87	614	3,102
	Belgium	116	40	25	308	328	23	504	1,344
	Switzerland	228	550	590	1,103	1,812	20	668	4,971
	Germany	6,275	2,899 1,004	11,635 26,766 528	18,684 67,791
	Denmark	122	126	67	156	1,229	25	4,493	6,218
	Spain	95	90	218	938	479	221	2,732	4,773
	Finland	258	134	122	505	1,566	37	789	3,411
	France	1,705	749	667	2,688	3,151	244	4,210	13,414
	UK	4,591	320	424	1,081	4,739	222	3,738	15,115
	Greece	5	2	1	41	82	0	212	343
	Ireland	38	0	14	53	21	4	87	217
	Island	0	0	0	4	0	0	48	52
	Italy	588	182	97	960	1,597	73	1,307	4,804
	Liechtenstein 1	48	25	49	123	8	26	280
	Luxembourg	14	10	32	97	84	0	30	267
	Netherlands	763	125	131	693	2,927	132	1,723	6,494
	Norway	73	94	372	251	464	265	1,154	2,673
	Portugal	0	4	3	71	16	13	292	399
	Sweden	332	781	350	610	1,068	153	2,314	5,608
	TOTAL	15,378 6,540 4,436	21,900 47,342 2,055	43,625 141,276
	Notes: Biom., Geo. and W./T. denote biomass, geothermal and wave/tide patents, respectively.
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Table 2 .

 2 Count data results -dependent variable: Applications countit = ω + θZ it ln λ it = ω + βn it-1 + θZ it ln λ it = ω i + θZ it ln λ it = ω i + βn it-1 + θZ itTable 3(a). Basic panel data regression results

	Variable	Basic Poisson	Basic dynam Poisson Fixed effects	Fixed effects dynam
	Constant: ω	0.03(0.116)	0.45(0.192)		-	-
	Initial cond: κ	-	0.72 * * * (0.174)	-	-0.09 * * * (0.026)
	Dynam coeff: β -	0.18 * * * (0.023)	-	0.14 * * * (0.012)
	Exog vars: θ				
	R&D t	-0.20(0.215)	-0.21(0.180)	0.44 * (0.237)	0.42 * * * (0.078)
	R&Dt-1	-0.77 * * * (0.166) -0.72 * * * (0.163)	-0.67 * * * (0.175) -0.60 * * * (0.048)
	R&D t-2	-1.44 * * * (0.260) -1.50 * * * (0.267)	-1.22 * * * (0.261) -1.24 * * * (0.072)
	R&D t-3	-1.97 * * * (0.314) -1.87 * * * (0.317)	-1.82 * * * (0.323) -1.69 * * * (0.121)
	R&Dt-4	-0.31 * * (0.140)	-0.07(0.146)	-0.24(0.155)	0.00(0.041)
	R&D t-5	-0.21(0.144)	-0.27 * * (0.135)	-0.16(0.151)	-0.09 * * (0.043)
	R&D wt	-3.20 * * * (0.782) -3.26 * * * (0.847)	-3.03 * * * (0.800) -3.59 * * * (0.167)
	R&Dwt-1	-3.01 * * * (0.541) -2.34 * * * (0.616)	-3.38 * * * (0.647) -2.86 * * * (0.190)
	R&D wt-2	-2.57 * * * (0.283) -1.93 * * * (0.413)	-2.71 * * * (0.461) -2.19 * * * (0.175)
	R&D wt-3	-0.18(0.129)	0.24(0.153)		-0.37 * * * (0.137) 0.01(0.084)
	R&Dwt-4	-0.80 * * * (0.164) -0.78 * * * (0.152)	-1.08 * * * (0.163) -1.02 * * * (0.079)
	R&D wt-5	0.02(0.136)	0.22 * * (0.112)	-0.23 * (0.126)	-0.02(0.090)
	R&D bt	-0.62 * * * (0.184) -0.60 * * * (0.111)	-0.28(0.182)	-0.37 * * * (0.101)
	R&D bt-1	-1.50 * * * (0.100) -1.28 * * * (0.101)	-1.59 * * * (0.106) -1.42 * * * (0.046)
	R&D bt-2	-1.23 * * * (0.090) -0.99 * * * (0.093)	-1.21 * * * (0.093) -1.03 * * * (0.038)
	R&D bt-3	-1.01 * * * (0.080) -0.87 * * * (0.080)	-1.08 * * * (0.084) -0.95 * * * (0.048)
	R&D bt-4	-0.79 * * * (0.077) -0.67 * * * (0.072)	-1.01 * * * (0.079) -0.86 * * * (0.056)
	R&D bt-5	-1.33 * * * (0.101) -1.34 * * * (0.079)	-1.52 * * * (0.100) -1.47 * * * (0.059)
	Employees	4.82 * * * (0.059)	4.07 * * * (0.106)	6.20 * * * (0.183)	5.77 * * * (0.087)
	P(Oil) t	0.64 * * * (0.177)	0.37 * * (0.180)	0.03(0.198)	-0.19 * * * (0.071)
	P(Oil) t-1	-1.32 * * * (0.220) -1.15 * * * (0.219)	-1.50 * * * (0.222) -1.23 * * * (0.101)
	P(Oil) t-2	0.46 * (0.274)	0.39 * (0.227)	-0.23(0.274)	-0.16(0.107)
	P(Oil) t-3	-0.06(0.166)	-0.26(0.256)	-0.16(0.206)	-0.26 * * * (0.061)
	P(Oil) t-4	3.10 * * * (0.453)	3.11 * * * (0.272)	1.88 * * * (0.478)	2.15 * * * (0.265)
	P(Oil) t-5	4.06 * * * (0.535)	3.23 * * * (0.229)	5.89 * * * (0.554)	4.81 * * * (0.347)
	Electr prod	5.68 * * * (0.360)	4.95 * * * (0.367)	6.74 * * * (0.496)	6.19 * * * (0.304)
	Hydro cons	-5.08 * * * (0.323) -5.09 * * * (0.394)	-5.16 * * * (0.443) -5.15 * * * (0.073)
	Nuclear cons	-4.80 * * * (0.413) -4.51 * * * (0.429)	-6.78 * * * (0.502) -6.39 * * * (0.179)
	Primary cons	5.55 * * * (0.651)	5.00 * * * (0.480)	4.14 * * * (0.731)	3.54 * * * (0.114)
	Mean LL	-525.90	-524.64		-328.68	-327.65
	Notes: Standard errors are reported in parentheses. The ***, ** and * denote parameter significant at the 1%, 5% and
	10% level, respectively. The -denotes parameter not identified. The Mean LL denotes mean log-likelihood. The following
	specifications are presented in the table:		
	Basic Poisson:	Basic dynamic Poisson:	Fixed effects:	Fixed effects dynamic:
	ln λ				

Table 3 (

 3 b). PVAR(1) estimation resultsNotes: Standard errors are reported in parentheses. The ***, ** and * denote parameter significant at the 1%, 5% and 10% level, respectively. In the first row of the table, the firm performance measure is presented. Consecutively, in the second row, we show the count data model used to derive the ln λ it values for the firm performance model. For all count data models of this table, we use the patent applications count variable. The following specifications are presented in the table:

	Firm perform.		ROA		Stock return
	Count model	Basic dynam Poisson Fixed effects dynam Basic dynam Poisson Fixed effects dynam
	Parameter	estim(st.dev)	estim(st.dev)	estim(st.dev)	estim(st.dev)
	ζ 11	0.07(0.046)	0.01 * * * (0.002)	0.09 * * * (0.009)	0.08 * * * (0.022)
	ζ12	0.00(0.005)	0.11 * * * (0.002)	-0.01(0.005)	0.11 * * * (0.002)
	ζ 21	0.81 * * * (0.039)	0.10 * * * (0.002)	0.09 * * * (0.019)	0.05 * * (0.024)
	ζ 22	0.15 * * * (0.010)	0.80 * * * (0.003)	0.15 * * * (0.005)	0.65 * * * (0.005)
	Ω 21	1.87 * * * (0.117)	1.58 * * * (0.025)	0.12 * * * (0.011)	0.19 * * * (0.024)
	Ω 0 21	0.00(0.002)	0.00(0.002)	0.00(0.002)	0.000.002)
	Ω ω 21	1.89 * * * (0.131)	-1.02 * * * (0.022)	0.20 * * * (0.061)	-2.34 * * * (0.050)
	Basic panel data regression:			

yit = ωi + ζ ln λit + it, it ∼ N (0, σ 2 )

PVAR(1) model:

X it = ω i + δ t + ζ(X it-1 -δ t-1 ) + it , X it = (y it , ln λ it ) , it ∼ N (0, Ω )

See Hausman et al. (1984),[START_REF] Pakes | On patents, R&D, and the stock market rate of return[END_REF],[START_REF] Lanjouw | How to count patents and value intellectual property: the uses of patent renewal and application data[END_REF] or[START_REF] Trajtenberg | A penny for your quotes: patent citations and the value of innovations[END_REF].

These two variables we use alternatively as patent counts in our empirical application.
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We control for initial conditions because we are in a short-panel setup in this paper.

We shall be more specific regarding the firm performance variable in our empirical application section.

For example in solar energy sector where the cost of developing performing photocells is particularly high.

We exchange oil prices to EUR as our sample includes companies from the EU and EFTA that account their costs in EUR.
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