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TWO PROPERTIES OF VOLUME GROWTH ENTROPY IN HILBERT GEOMETRY

The aim of this paper is to provide two examples in Hilbert geometry which show that volume growth entropy is not always a limit on the one hand, and that it may vanish for a non-polygonal domain in the plane on the other hand.

Introduction

A Hilbert domain in R m is a metric space (C, d C ), where C is an open bounded convex set in R m and d C is the distance function on C -called the Hilbert metric -defined as follows.

Given two distinct points p and q in C, let a and b be the intersection points of the straight line defined by p and q with ∂C so that p = (1 -s)a + sb and q = (1 -t)a + tb with 0 < s < t < 1. Then d C (p, q) := 1 2 ln[a, p, q, b] ,

where [a, p, q, b]

:= 1 -s s × t 1 -t > 1
is the cross ratio of the 4-tuple of ordered collinear points (a, p, q, b) (see Figure 1). We complete the definition by setting d C (p, q) := 0 for p = q. The metric space (C, d C ) thus obtained is a complete non-compact geodesic metric space whose topology is the one induced by the canonical topology of R m and in which the affine open segments joining two points of the boundary ∂C are geodesic lines. It is to be mentioned here that in general the affine segment between two points in C may not be the unique geodesic joining these points (for example, if C is a square). Nevertheless, this uniqueness holds whenever C is strictly convex.

Moreover, the distance function d C is associated with the Finsler metric F C on C given, for any p ∈ C and any v ∈ T p C ≡ R m (the tangent vector space to C at p), by 2). Then, given any arbitrary norm • on R m , we can write Thanks to this measure, we can make use of a concept of fundamental importance, the volume growth entropy, which is attached to any metric space. Very often, this notion is introduced for cocompact metric spaces and is defined as follows in Hibert geometry.

F C (p, v) := 1 2 1 t -+ 1 t + for v = 0 , where t -= t - C (p, v) and t + = t + C (p, v) are the unique positive numbers satisfying p -t -v ∈ ∂C and p + t + v ∈ ∂C, and F C (p, v) := 0 for v = 0. Remark. For p ∈ C and v ∈ T p C ≡ R m with v = 0, we will define p -= p - C (p, v) := p -t - C (p, v)v and p + = p + C (p, v) := p + t + C (p, v)v (see Figure
F C (p, v) = 1 2 v 1 p -p -+ 1 p -p + . p p + p - v v ∂C
Let (C, d C ) be a Hilbert domain in R m admitting a cocompact group of isometries, for which we may assume 0 ∈ C since translations in R m preserve the cross ratio. 

h(C) := lim R→+∞ 1 R ln[µ C (B C (0, R))] .
Now, when we drop cocompactness, this limit still exists in the case when the boundary ∂C of C is strongly convex (see [START_REF] Colbois | Hilbert geometry for strictly convex domains[END_REF]) or in the case when C is a polytope (see [START_REF] Vernicos | Spectral radius and amenability in Hilbert geometry[END_REF]), but it is not known whether this is true in general as stated in [10, question raised in section 2.5].

Therefore, the main goal of this paper is to answer to this question and to show that the answer is negative.

Main Theorem. There exists a Hilbert domain

(C, d C ) in R 2 with 0 ∈ C that satisfies lim sup R→+∞ 1 R ln[µ C (B C (0, R))] = 1 , and 
lim inf R→+∞ 1 R ln[µ C (B C (0, R))] = 0 .
The proof of this theorem will be given in the third section by constructing an explicit example which is a convex 'polygon' with infinitely many vertices having an accumulation point around which the boundary of the 'polygon' strongly looks like a circle.

The intuitive idea behind this construction is that, depending on where we are located in the 'polygon', its boundary may look like the one of a usual polygon -and hence the volume growth entropy behaves as if it were vanishing -(this corresponds to the lim inf part in the theorem) or like a small portion of a circle (around the accumulation point) -and hence the volume growth entropy behaves as if it were positive -(this corresponds to the lim sup part in the theorem).

On the other hand, using such 'polygons' with infinitely many vertices and considering the same techniques as in the proof of the main theorem, we show that there are other Hilbert domains in the plane than polygonal ones whose volume growth entropy is zero. This is stated in Theorem 4.2.

For further information about Hilbert geometry, we refer to [START_REF] Busemann | The geometry of geodesics[END_REF][START_REF] Busemann | Projective geometry and projective metrics[END_REF][START_REF] Egloff | Uniform Finsler Hadamard manifolds[END_REF][START_REF] Goldman | Projective geometry on manifolds[END_REF][START_REF] Vernicos | Introduction aux géométries de Hilbert[END_REF] and the excellent introduction [START_REF] Socié-Méthou | Comportements asymptotiques et rigidités des géométries de Hilbert[END_REF] by Socié-Méthou.

About the importance of volume growth and topological entropies in Hilbert geometry, we may have a look at the interesting work [START_REF] Crampon | Entropies of compact strictly convex projective manifolds[END_REF] by Crampon and the references therein.

Preliminaries

This section is devoted to listing the key ingredients we will need in the present work.

Notations. From now on, the canonical Euclidean norm on R 2 will be denoted by • .

On the other hand, for any three distinct points a, b and c in R 2 , we will denoted by abc their open convex hull (open triangle), and by ∢(bac) the sector defined as the convex hull of the union of the half-lines a + R + -→ ab and a + R + -→ ac.

The first ingredient, whose proof can be found for example in [16, page 69], is classic and concerns the hyperbolic plane given here by its Klein model (B 2 , d B 2).

Proposition 2.1. We have

(1) d B 2(0, p) = atanh( p ) for any p ∈ B 2 , and (2) 
µ B 2(B B 2(0, R)) = π 2 sinh 2 (R) for any R > 0.
The (1) Given any two distinct points p, q ∈ C, we have d C (p, q) d D (p, q) with equality if and only if

(p + R + -→ pq) ∩ ∂C = (p + R + -→ pq) ∩ ∂D and (p + R - -→ pq) ∩ ∂C = (p + R - -→ pq) ∩ ∂D hold.
(2) For any p ∈ C, we have vol(B C (p)) vol(B D (p)).

(3) For any Borel set A ⊆ C, we have µ C (A) µ D (A).

Proposition 2.3. If Q := (-1, 1)×(-1, 1) ⊆ R 2
denotes the standard open square, then for any p = (x, y) ∈ Q we have

2(1 -x 2 )(1 -y 2 ) vol(B Q (p)) 4(1 -x 2 )(1 -y 2 ) .
The last ingredient can be found in for all R > 0 and p ∈ B C (0, R).

We now give two technical lemmas which will be used for proving both Theorem 3.1 and Theorem 4.2. (2)

µ C B C (0, R) ∩ P 0Q 2πR 2 . Q P -P -Q 0 B T (0, R) B C (0, R) ∂T ∂C Figure 3. Comparing B C (0, R) ∩ P 0Q and B T (0, R) ∩ P 0Q
Proof (see Figure 3).

• Point 1. The equality case in Point 1 of Proposition 2.2 proves that any point p ∈ P 0Q satisfies d C (0, p) = d T (0, p), and hence we get S C (0, R)

∩ P 0Q = S T (0, R) ∩ P 0Q. Then, writing B C (0, R) = r∈[0,R) S C (0, r), we have B C (0, R) ∩ P 0Q = B T (0, R) ∩ P 0Q.
• Point 2. The previous point implies

B C (0, R) ∩ P 0Q ⊆ B T (0, R) ⊆ T ⊆ C , and hence (2.1) µ C B C (0, R) ∩ P 0Q µ T (B T (0, R)) .
Now, if f denotes the unique linear transformation of R 2 such that f (P ) = (1, -1) and f (Q) = (1, 1), we have

f (T ) = Q := (-1, 1)×(-1, 1) ⊆ R 2 (standard open square) .
The cross ratio being preserved by the linear group GL(R 2 ), the map f induces an isometry between the metric spaces (T , d T ) and (Q, d Q ) with f (0) = 0, and thus we obtain

µ T (B T (0, R)) = µ Q (B Q (0, R)).
But Proposition 2.3 yields

µ Q (B Q (0, R)) = 8 tanh(R) 0 x 0 π vol(B Q (x, y)) dy dx 4 tanh(R) 0 x 0 π (1 -x 2 )(1 -y 2 )
dy dx = 2πR Then for any R > 0 we have

µ C B C (0, R) ∩ ∢(A0B) πe 8R vol(B C (0, 1)) × A0B/2 ,
where A0B is the spherical distance between the vectors -→ 0A and -→ 0B ( i. e. , the unique number

θ in [0, π] defined by cos θ = -→ 0A/ -→ 0A , -→ 0B/ -→ 0B ∈ [-1, 1]
, where • , • stands for the canonical Euclidean scalar product on R 2 ).

Proof.

Since we have 1/vol(B C (p)) e 8R /vol(B C (0, R)) for every p ∈ B C (0, R) by Proposition 2.4, one can write

µ C B C (0, R) ∩ ∢(A0B) πe 8R vol(B C (0, R)) vol B C (0, R) ∩ ∢(A0B) πe 8R vol(B C (0, 1)) vol B 2 ∩ ∢(A0B) (noticing B C (0, 1) ⊆ B C (0, R) ⊆ B 2 ) = πe 8R vol(B C (0, 1)) ×π× A0B/(2π) = πe 8R vol(B C (0, 1)) × A0B/2 ,
where we used vol(B 2 ) = π.

Entropy may not be a limit

We prove in this section the main result of this paper which states that the volume growth entropy for a Hilbert domain may not be a limit. To this end, we will approximate a disc in the plane by an inscribed 'polygonal' domain with infinitely many vertices that have two accumulation points around which the boundary of the 'polygonal' domain looks very strongly like the boundary of the disc.

Let (n k ) k 0 be the sequence of positive integers defined by

n 0 := 3 and ∀ k 0, n k+1 = 3 n 2 k .
It is increasing and satisfies n k -→ +∞ as k -→ +∞.

Next, define the sequences (α k ) k 0 and (θ k ) k 0 in R by α k := 2π/n k together with

θ 0 := 0 and ∀ k 1, θ k := k-1 ℓ=0 α ℓ = 2π k-1 ℓ=0 1 n ℓ .
Finally, consider the sequence (M k ) k 0 and the family (P k (j)) (k,j)∈{(k,j)∈Z 2 | k 0 and 0 j n k } of points in S 1 defined by

M k := (cos(θ k ) , sin(θ k )) and P k (j) := (cos(θ k + α k j/n k ) , sin(θ k + α k j/n k )) ,
and denote by C the open convex hull in R 2 of the set {P k (j), -P k (j) | k 0 and 0 j n k } .

Then we get the following (see Figure 4):

Theorem 3.1. We have (1) h(C) := lim sup R→+∞ 1 R ln[µ C (B C (0, R))] = 1, and ( 
2) lim inf R→+∞ 1 R ln[µ C (B C (0, R))] = 0. M 0 M 1 M ∞ M 2 0 S 1 P 0 (1) P 0 (2) ∂C α 0 /n 0 α 0 /n 0 α 0 /n 0 θ 1 Figure 4.
A Hilbert domain in the plane whose entropy is not a limit Remarks. 1) For all k 0, one has

P k (0) = M k and P k (n k ) = M k+1 .
2) For all ℓ 0, we have n ℓ 3 ℓ+1 (by induction and using 9 m m for all integer m 0), and hence the increasing sequence (θ k ) k 0 converges to some real number θ ∞ which satisfies 0 < θ ∞ < π (since we have

+∞ ℓ=0 1/3 ℓ+1 = (1/3) +∞ ℓ=0 (1/3) ℓ = 1/2 and (n ℓ ) ℓ 0 = 3 ℓ+1 ℓ 0 ).
In order to prove this theorem, we shall use two different sequences of balls about the origin. The first one corresponds to the sequence of radii r k := ln(n k ) for k 0 that makes look the balls like those in the Klein model (B 2 , d B 2) as k -→ +∞, from which we get Point 1. The second one corresponds to the sequence of radii R i := n i for i 0 that makes look the balls like those in a polygonal domain as i -→ +∞, leading to Point 2.

Proof of Theorem 3.1.

• Point 1. Since we already have h(C) 1 by [1, Theorem 3.3], let us prove h(C) 1.
Consider the sequence of positive numbers (r k ) k 0 defined by r k := ln(n k ).

Fix k 0, and let (p k (j)) 0 j n k -1 be the sequence of points in R 2 defined by

p k (j) ∈ [0, P k (j)] and d C (0, p k (j)) = r k .
Then fix j ∈ {0, . . . , n k -1}, and let P := P k (j), Q := P k (j + 1), p := p k (j) and q := q k (j + 1) (see Figure 5). 

0 P = P k (j) Q = P k (j + 1) ∂C S 1 p = p k (j) q = p k (j + 1) B C (0, r k ) α k /n k
r k = d C (0, p) = d B 2(0, p) and r k = d C (0, q) = d B 2(0, q) ,
which implies p = q = tanh(r k )

by Point 1 of Proposition 2.1.

Therefore, if a denotes the midle point of p and q, we get

a = tanh(r k ) cos[α k /(2n k )] = tanh(r k ) cos(π/n 2 k ) .
Defining ρ k := d B 2(0, a) and using again Point 1 of Proposition 2.2 together with the formula tanh(ln x) = x 2 -1 x 2 + 1 which holds for any x > 0, one can write

1 -tanh(ρ k ) = 1 -tanh(r k ) cos(π/n 2 k ) = 1 - n 2 k -1 n 2 k + 1 cos(π/n 2 k ) = 2/n 2 k + •(1/n 2 k ) ∼ 2/n 2 k as k -→ +∞ . (3.1)
On the other hand, the inclusions

B B 2(0, ρ k ) ∩ P 0Q ⊆ p0q ⊆ C ⊆ B 2 yield µ C (p0q) µ B 2(p0q) µ B 2(B B 2(0, ρ k ) ∩ P 0Q) = α k /n k 2π ×µ B 2(B B 2(0, ρ k ))
by Point 

0 such that µ C (p k (j)0p k (j + 1)) = µ C (p0q) 1/3
holds for every k k 0 .

We then get

µ C (B C (0, r k )) n k -1 j=0 µ C (p k (j)0p k (j + 1)) (1/3)n k
for each k k 0 since we have p k (j)0p k (j + 1) ⊆ B C (0, r k ) for every j ∈ {0, . . . , n k -1} (indeed, balls of a Hilbert domain are convex), and hence

ln[µ C (B C (0, r k ))] r k ln[(1/3)n k ] ln(n k ) , which yields ln[µ C (B C (0, r k ))] r k -→ 1 as k -→ +∞.
This gives the first point of Theorem 3.1.

• Point 2. Consider the sequence of positive numbers (R i ) i 0 defined by R i := n i .

Then we have (see Figure 6)

Theorem 4.2. The volume growth entropy of d C satisfies

h(C) = lim R→+∞ 1 R ln[µ C (B C (0, R))] = 0 .
Remark. More precisely, we will show in the proof of this result that the volume µ C (B C (0, R)) of the ball B C (0, R) actually has at most the same growth as R 3 when R goes to infinity. This proves Theorem 4.2.

P ∞ P 0 P 1 P 2 S 1 ∂C 0 -P ∞ -P 0 -P 1 -P 2

Figure 1 .

 1 Figure 1. The Hilbert metric d C
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 2 Figure 2. The Finsler metric F C

  If for any R > 0 we denote by B C (0, R) := {p ∈ C | d C (0, p) < R} the open ball of radius R about 0 in (C, d C ), then the volume growth entropy of d C writes

  two following results have been established in [7, Proposition 5 and Proposition 6]. Proposition 2.2. If (C, d C ) and (D, d D ) are Hilbert domains in R m satisfying C ⊆ D, then the following properties are true:

[ 6 ,Proposition 2 . 4 .

 624 Proof of Theorem 12]. Given any Hilbert domain (C, d C ) in R m satifying 0 ∈ C, we have vol(B C (0, R)) e 8R ×vol(B C (p))

Lemma 2 . 1 .

 21 Let (C, d C ) be a Hilbert domain in R 2 with 0 ∈ C, and let P , Q be distinct points in R 2 such that the affine segments [P, Q] and [-P , -Q] are contained in the boundary ∂C. If T is the open quadrilateral in R 2 defined as the open convex hull of P , Q, -P and -Q, then for any R > 0 we have (1) B C (0, R) ∩ P 0Q = B T (0, R) ∩ P 0Q, and

Figure 5 .

 5 Figure 5. Showing lim sup k→+∞ ln[µ C (B C (0, r k ))] r k > 0 with r k := ln(n k )

Figure 6 .• 2 .••

 62 Figure 6. A non-polygonal Hilbert domain in the plane with zero entropy

  Lemma 2.2. Let (C, d C ) be a Hilbert domain in R 2 which satisfies 0 ∈ C ⊆ B 2 , and let A, B be two distinct points in S 1 .

		2 ,
	which gives µ C B C (0, R) ∩ P 0Q	2πR 2 from Equation 2.1.

  3 of Proposition 2.2 and since Euclidean rotations induce isometries of (B 2 , d B 2), from

	which one obtains			
	(3.2)	µ C (p0q)	π 2	sinh 2 (ρ k )/n 2 k
	by Point 2 in Proposition 2.1.		
	Now, since we have sinh 2 (x) = tanh 2 (x)/(1 -tanh 2 (x)) for all x ∈ R, Equation 3.1 implies
	π 2	sinh 2 (ρ k )/n 2		

k ∼ π/8 as k -→ +∞ , from which Equation 3.2 insures the existence of an integer k 0

Fixing an integer i 0, we can write the decomposition

with M ∞ := (cos(θ ∞ ) , sin(θ ∞ )) ∈ ∂C (recall that θ ∞ is the limit of the sequence (θ k ) k∈N : see the second remark following Theorem 3.1). * First step. Here, we deal with the two first terms in Equation 3.3.

For each k 0 and j ∈ {0, . . . , n k -1}, let T k (j) be the open rectangle that is equal to the open convex hull in R 2 of P k (j), -P k (j), P k (j + 1) and -P k (j + 1).

Then, by Lemma 2.1, we have

Next, we focus on the third term in Equation 3.3.

Lemma 2.2 with

where τ := π 2 /vol(B C (0, 1)) is a positive constant.

But for any ℓ i we have

with n i /n 2 ℓ 1/n i from the monotone increasing of the sequence (n ℓ ) ℓ 0 .

Hence, since 1/n i -→ 0 as i -→ +∞, there exists an integer i 0 0 such that for all ℓ i one has e 8R i /n ℓ+1 3 -n 2 ℓ /2 whenever i i 0 . Equation 3.6 then implies

for all i i 0 (notice that we have n 2 ℓ /2 9 ℓ ℓ for any ℓ 0: see the second remark following Theorem 3.1). Now we have 3 -i -→ 0 as i -→ +∞, and thus there exists an integer i 1 i 0 such that for all i i 1 one has

1 . * Third step. Combining Equations 3.3, 3.4, 3.5 and 3.7, we eventually get

i for all i i 1 (since we have R ℓ := n ℓ 3 ℓ+1 ℓ + 1 1 for every ℓ 0), and hence

This proves the second point of Theorem 3.1.

Remark. Considering the proof of Point 1 in Theorem 3.1, we can observe that the conclusion h(C) > 0 we obtained is actually true for any sequence of positive integers (n k ) k 0 provided the sequence (θ k ) k∈N converges to some real number θ ∞ which satisfies 0 < θ ∞ < π.

Non-polygonal domains may have zero entropy

In this section, we construct a Hilbert domain in the plane which is a 'polygon' having infinitely many vertices and whose volume growth entropy is a limit that is equal to zero. This 'polygon' is inscribed in a circle and its vertices have one accumulation point.

Before giving our example, let us first recall the following result proved in [START_REF] Vernicos | Spectral radius and amenability in Hilbert geometry[END_REF]:

Given any open convex polytope P in R m that contains the origin 0, the volume growth entropy of d P satisfies

Remark. Another -but less direct -proof of this theorem consists in saying that (P, d P ) is Lipschitz equivalent to Euclidean plane as shown in [START_REF] Bernig | Hilbert geometry of polytopes[END_REF] (and in [START_REF] Colbois | Hilbert geometry for convex polygonal domains[END_REF] for the particular case when n := 2), and hence h(P) = 0 since the volume growth entropy of any finite-dimensional normed vector space is equal to zero. Now, let us show that having zero volume growth entropy for a Hilbert domain in R 2 does not mean being polygonal, that is, that the converse of Theorem 4.1 is false.

Let (P n ) n∈N be the sequence of points in S 1 defined by