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TWO PROPERTIES OF VOLUME GROWTH ENTROPY

IN HILBERT GEOMETRY

BRUNO COLBOIS AND PATRICK VEROVIC

Abstract. The aim of this paper is to provide two examples in Hilbert geometry which show
that volume growth entropy may vanish for a non-polygonal domain in the plane on the one
hand, and that volume growth entropy is not always a limit on the other hand.

1. Introduction

A Hilbert domain in Rm is a metric space (C, dC), where C is an open bounded convex set in Rm

and dC is the distance function on C — called the Hilbert metric — defined as follows.

Given two distinct points p and q in C, let a and b be the intersection points of the straight line
defined by p and q with ∂C so that p = (1− s)a+ sb and q = (1− t)a+ tb with 0 < s < t < 1.
Then

dC(p, q) :=
1

2
ln[a, p, q, b],

where

[a, p, q, b] :=
1− s

s
×

t

1− t
> 1

is the cross ratio of the 4-tuple of ordered collinear points (a, p, q, b).
We complete the definition by setting dC(p, p) := 0.

a

b

p

q

∂C

Figure 1. The Hilbert metric dC

The metric space (C, dC) thus obtained is a complete non-compact geodesic metric space whose
topology is the one induced by the canonical topology of Rm and in which the affine open
segments joining two points of the boundary ∂C are geodesic lines. It is to be mentioned here
that in general the affine segment between two points in C may not be the unique geodesic
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joining these points (for example, if C is a square). Nevertheless, this uniqueness holds whenever
C is strictly convex.

Moreover, the distance function dC is associated with the Finsler metric FC on C given, for any
p ∈ C and any v ∈ TpC ≡ Rm (the tangent vector space to C at p), by

FC(p, v) :=
1

2

(

1

t−
+

1

t+

)

if v 6= 0,

where t− = t−C(p, v) and t+ = t+C(p, v) are the unique positive numbers such that p − t−v ∈ ∂C
and p+ t+v ∈ ∂C, and FC(p, 0) := 0.

Remark. For p ∈ C and v ∈ TpC ≡ Rm with v 6= 0, we will define p− = p−C(p, v) := p− t−C(p, v)v
and p+ = p+C(p, v) := p+ t+C(p, v)v. Then, given any arbitrary norm ‖·‖ on Rm, we can write

FC(p, v) =
1

2
‖v‖

(

1

‖p− p−‖
+

1

‖p− p+‖

)

.

p

p+

p−

vv

∂C

Figure 2. The Finsler metric FC

Finally, let vol be the canonical Lebesgue measure on Rm and define ωm := vol(Bm).

For p ∈ C, let BC(p) := {v ∈ Rm | FC(p, v) < 1} be the unit open ball with respect to the norm
FC(p, ·) on TpC ≡ Rm.
The measure µC on C associated with the Finsler metric FC is then defined, for any Borel set
A ⊆ C, by

µC(A) :=

∫

A

ωm

vol(BC(p))
dvol(p)

and will be called the Hilbert measure associated with (C, dC).

Remark. The Borel measure µC is the classical Busemann measure of the Finsler space (C, FC)
and corresponds to the Hausdorff measure of the metric space (C, dC) (see [3, page 199, Exam-
ple 5.5.13]).

Thanks to this measure, we can make use of a concept of fundamental importance, the volume
growth entropy, which is attached to any metric space. Very often, this notion is introduced for
cocompact metric spaces and is defined as follows in Hibert geometry.
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Let (C, dC) be a Hilbert domain in Rm admitting a cocompact group of isometries, for which we
may assume 0 ∈ C since translations in Rm preserve the cross ratio.

If for any R > 0 we denote by BC(0, R) := {p ∈ C | dC(0, p) < R} the open ball of radius R
about 0 in (C, dC), then the volume growth entropy of dC writes

h(C) := lim
R→+∞

1

R
ln[µC(BC(0, R))].

Now, when we drop cocompactness, it is not known whether this limit still exists, as stated in
[10, question raised in section 2.5].

Therefore, the main goal of this paper is to answer to this question and to show that the answer
is negative.

Main Theorem. There exists a Hilbert domain (C, dC) in R2 that satisfies

lim sup
R→+∞

1

R
ln[µC(BC(0, R))] > 0,

and

lim inf
R→+∞

1

R
ln[µC(BC(0, R))] = 0.

Remark. However, it is to be noticed that these two limits coincide not only for Hilbert
domains having a cocompact group of isometries as mentioned above, but also in the case when
the boundary ∂C of C is strongly convex (see [9]) together with the case when C is a polytope
(see [15]).

The proof of this theorem will be given in the last section by constructing an explicit example
which is a convex ‘polygon’ with infinitely many vertices having an accumulation point around
which the boundary of the ‘polygon’ strongly looks like a circle.

The intuitive idea behind this construction is that, depending on where we are located in the
‘polygon’, its boundary may look like the one of a usual polygon — and hence the volume
growth entropy behaves as if it were vanishing — (this corresponds to the lim inf part in the
theorem) or like a small portion of a circle (around the accumulation point) — and hence the
volume growth entropy behaves as if it were positive — (this corresponds to the lim sup part
in the theorem).

On the other hand, using such ‘polygons’ with infinitely many vertices, we show that there
exist non-polygonal Hilbert domains whose volume growth entropy is zero. This is stated in
Theorem 3.2.

For further information about Hilbert geometry, we refer to [4, 5, 11, 12, 14] and the excellent
introduction [13] by Socié-Méthou.

About the importance of volume growth and topological entropies in Hilbert geometry, we may
have a look at the interesting work [10] by Crampon and the references therein.
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2. Preliminaries

This section is devoted to recalling a result by Berck, Bernig and Vernicos ([1]) that is useful
for our purpose, and on the other hand to proving a technical result we will need throughout
the present work.

Definition 2.1. A subset Y of Rm will be called a pseudo-hypersurface of Rm if and only if

(1) Y is a topological hypersurface of Rm, and

(2) there exists a Borel set Z in Y such that

(a) Z has measure zero, and

(b) Y rZ is a C
1
hypersurface of Rm.

Remark 2.1. Recall that having measure zero for a Borel set in a topological manifold is an
intrinsic notion that does not depend on any Borel measure. On the other hand, being of class

C
1
at a point of a topological manifold is a local property, and hence Y rZ is open in Y , that

is, Z is closed in Y .

Given a pseudo-hypersurface Y ofRm such that Y ⊆ C, let us denote by λC(Y ) the n-dimensional
Hausdorff measure of Y associated with dC.

This number does not of course depend on the Borel set Z arising in Definition 2.1 and is equal
to the Busemann measure of Y rZ associated with the restriction of the Finsler metric FC to
Y rZ.

Now, if for any R > 0 we denote by SC(0, R) := {p ∈ C | dC(0, p) = R} the sphere of radius R
about 0 in the metric space (C, dC), then we have the following result proved in [1]:

Proposition 2.1. The following properties hold:

(1) the boundary ∂C is a pseudo-hypersurface of Rm;

(2) for all t > 0, the sphere SC(0, t) ⊆ C is a pseudo-hypersurface of Rm;

(3) the volume growth entropy of dC is equal to

h(C) = lim sup
R→+∞

1

R
ln[λC(SC(0, R))].

Notations. From now on, the canonical Euclidean distance between any two points p and q
in R2 will be denoted by pq, the canonical Lebesgue measure vol on R2 by A (area), and the
open convex hull of any three points a, b and c in R2 by abc (open triangle).

In addition, the spherical distance between two vectors u 6= 0 and v 6= 0 in R2 will be denoted
by ∢(u, v) (defined as the unique θ ∈ [0, π] such that cos θ = 〈u/‖u‖ , v/‖v‖〉 ∈ [−1, 1], where
〈· , ·〉 and ‖·‖ stand for the canonical Euclidean scalar product and the canonical Euclidean
norm on R2, respectively).

With these notations, here is the second key ingredient we will use in the sequel:

Proposition 2.2. Let (C, dC) be a Hilbert domain in R2 with 0 ∈ C and A, P , Q, B be points
in ∂C such that
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(i) (
−→
0A,

−→
0B), (

−→
0A,

−→
0P ), (

−→
0P ,

−→
0Q) and (

−→
0Q,

−→
0B) are bases of the vector space R2 with the same

orientation,

(ii) A and B do not belong to the straight line (PQ), and

(iii) the affine segments [A, P ], [P,Q] and [P,B] are in the boundary ∂C.

Denote by P̆ and Q̆ the intersection points of the boundary ∂C with the half-lines R−
−→
0P and

R−
−→
0Q, respectively.

Then for any R > 0 the points p, q ∈ C defined by p ∈ [0, P ], q ∈ [0, Q] and dC(0, p) = dC(0, q) =
R satisfy the following properties:

(1) the half-lines p+R+
−→qp and P +R+

−→
PA meet if and only if one has e2R > τA, where

τA :=
A(P0Q)

A(P̆0Q̆)
×
A(A0Q̆)−A(A0P̆ )−A(P0Q̆)

A(PAQ)
;

(2) the half-lines q +R+
−→pq and Q +R+

−−→
QB meet if and only if one has e2R > τB, where

τB :=
A(P0Q)

A(P̆0Q̆)
×
A(B0P̆ )−A(B0Q̆)−A(Q0P̆ )

A(PBQ)
;

(3) the half-line p + R+
−→qp intersects with the segment [A, P ] if and only if R > ρA holds,

where

ρA :=
1

2
ln

(

A(P0Q)

A(P̆0Q̆)
×
A(P̆AQ̆)

A(PAQ)

)

;

(4) the half-line q +R+
−→pq intersects with the segment [B,Q] if and only if R > ρB holds,

where

ρB :=
1

2
ln

(

A(P0Q)

A(P̆0Q̆)
×
A(P̆BQ̆)

A(PBQ)

)

;

(5) whenever R > ρ := max{ρA, ρB}, we have

e2dC(p,q) =

(

1 +
A(Apq) +A(Ppq)

A(ApP )

)

×

(

1 +
A(Bqp) +A(Qqp)

A(BqQ)

)

.

Remarks.

1) In Points (1) and (2), the constants τA and τB may be non-positive.

2) In Points (3) and (4), if we have A ∈ (P̆ Q̆) or B ∈ (P̆ Q̆), then we get ρA := − ∞ or
ρB := −∞, respectively.

3) As we shall see in the proof of Points (3) and (4), one always has τA < e2ρA and τB < e2ρB .

Proof of Proposition 2.2.

Let α := ∢(
−→
0A,

−→
0P ), θ := ∢(

−→
0P,

−→
0Q) and β := ∢(

−→
0Q,

−→
0B), and define αP := ∢(

−→
P0,

−→
PA),

θp := ∢(
−→
p0,−→pq), θq := ∢(

−→
q0,−→qp) and βQ := ∢(

−→
Q0,

−−→
QB) (see Figure 3).

It is to be noticed that we have 0 < θ, 0 < α 6 π − θ and 0 < β 6 π − θ by Assumption (i)
(which yields α, β, θ ∈ (0, π)). Moreover, Assumption (i) implies that the canonical Euclidean
distances AP , pq and BQ do not vanish.

Now, applying the sine law in the triangles 0AP and 0pq, we have

(2.1) sinαP =
0A

AP
×sinα and sin θp =

0q

pq
×sin θ.
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Q̆
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Q
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B

0
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q
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θ

β
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θq

αP

βQ

Figure 3. Proposition 2.2

(Passing by, this shows that αP and θp are in (0, π).)

On the other hand, considering the triangle 0AP , the cosine law yields

2×0A×0P×cosα = 0A2 + 0P 2 −AP 2 and 2×AP×0P×cosαP = AP 2 + 0P 2 − 0A2,

from which we get (by adding these two equations)

(2.2) cosαP =
0P − 0A×cosα

AP
.

In a similar way, considering the triangle 0pq, one has

(2.3) cos θp =
0p− 0q×cos θ

pq
.

Therefore, combining Equation 2.1, Equation 2.2 and Equation 2.3 with the formula

sin(αP + θp) = sinαP×cos θp + sin θp×cosαP ,

we can write

(2.4) sin(αP + θp) =
0A×0p×sinα + 0P×0q×sin θ − 0A×0q×sin(α + θ)

AP×pq
.

Applying the same arguments as above in triangles 0BQ and 0qp also gives

(2.5) sin(βQ + θq) =
0B×0q×sin β + 0Q×0p×sin θ − 0B×0p×sin(β + θ)

BQ×qp
.

•Point (1): The half-lines p+R+
−→qp and P +R+

−→
PA meet if and only if

∢(
−→
PA,

−→
Pp) + ∢(

−→
pP ,−→qp) < π,

i. e., αP +θp < π since we have ∢(
−→
PA,

−→
Pp) = ∢(

−→
PA,

−→
P0) = αP and ∢(

−→
pP ,−→qp) = ∢(

−→
p0,−→pq) = θp.
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In other words, the half-lines p + R+
−→qp and P + R+

−→
PA meet if and only if sin(αP + θp) is

positive since one already has αP + θp > 0 (see the remark made after Equation 2.1).

Using Equation 2.4, this writes

(2.6) 0A×0p×sinα + 0P×0q×sin θ > 0A×0q×sin(α + θ).

But

e2R = e2dC(0,p) = [P̆ , 0, p, P ] =
P̆ p

P̆0
×
P0

Pp
=

P̆0 + 0p

P̆0
×

0P

0P − 0p
=

0P

0P̆
×
0P̆ + 0p

0P − 0p
,

or equivalently

(2.7) 0p =
0P×0P̆×(e2R − 1)

0P + 0P̆×e2R
,

and the same holds for q, i. e.,

(2.8) 0q =
0Q×0Q̆×(e2R − 1)

0Q+ 0Q̆×e2R
.

Hence, from Equation 2.7 and Equation 2.8, Condition 2.6 is the same as

0P×0Q×
(

0A×0Q̆×sin(α + θ)− 0A×0P̆×sinα− 0P×0Q̆×sin θ
)

< 0P̆×0Q̆×
(

0A×0P×sinα + 0P×0Q×sin θ − 0A×0Q×sin(α + θ)
)

e2R,

or

(2.9) A(A0Q̆)−A(A0P̆ )−A(P0Q̆) <
A(P̆0Q̆)

A(P0Q)

(

A(A0P ) +A(P0Q)−A(A0Q)
)

e2R

since we can write 0A×0P ×sinα = 2A(A0P ), 0P ×0Q×sin θ = 2A(P0Q), etc. (according

to the sine law), and 0A×0P̆ × sinα = 2A(A0P̆ ), 0P ×0Q̆× sin θ = 2A(P0Q̆), etc. (using

∢(
−→
0A,

−→
0P̆ ) = π−∢(

−→
0A,

−→
0P )) = π−α, ∢(

−→
0P,

−→
0Q̆) = π−∢(

−→
0P ,

−→
0Q)) = π−θ, etc.) together with

0P×0Q = 2A(P0Q)/sin θ and 0P̆×0Q̆ = 2A(P̆0Q̆)/sin θ (indeed, ∢(
−→
0P̆ ,

−→
0Q̆) = ∢(

−→
0P,

−→
0Q) = θ).

Now, the convexity of C implies that the points 0, A, P and Q are in the boundary of their
convex hull in R2, and hence A(A0P )+A(P0Q)−A(A0Q) = A(PAQ). Using this equality in
Equation 2.9 proves Point (1) in Proposition 2.2.

•Point (2): It is obtained exactly the same way as previously by replacing A by B, α by β, θp
by θq and αP by βQ, and by using Equation 2.5.

•Point (3): Suppose e2R > τA, and let a be the intersection point of p+R+
−→qp with P +R+

−→
PA.

Notice that Pa > 0; indeed, if this were not the case, then q ∈ (ap) = (Pp) = (0P ), which is

false since (
−→
0P,

−→
0Q) is a basis of R2.

Since ∢(
−→
Pp,

−→
Pa) = ∢(

−→
P0,

−→
PA) = αP and ∢(

−→
pP ,−→pa) = ∢(

−→
p0,−→pq) = θp, the sine law in the

triangle Pap then yields

ap = Pp×
sinαP

sin(π − (αP + θp))
= (0P − 0p)×

sinαP

sin(αP + θp)
,

that is,

(2.10) ap =
(0P − 0p)×0A×pq×sinα

0A×0p×sinα + 0P×0q×sin θ − 0A×0q×sin(α + θ)

from Equation 2.4 and the first part of Equation 2.1.
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In addition, still in the triangle Pap, the sine law together with Equation 2.1 give

Pa = ap×
sin θp
sinαP

=
ap×0q×AP×sin θ

0A×pq×sinα
,

and hence

(2.11) Pa =
(0P − 0p)×0q×AP×sin θ

0A×0p×sinα + 0P×0q×sin θ − 0A×0q×sin(α + θ)

by Equation 2.10.

Now, the point a belongs to the segment [A, P ] if and only if Pa 6 PA, i. e., using Equation 2.11,

0A×0q×sin(α+ θ) 6 0A×0p×sinα+ 0p×0q×sin θ,

which is equivalent to

(2.12) 0P×0Q×
(

0A×0Q̆×sin(α + θ) + 0P̆×0Q̆×sin θ − 0A×0P̆×sinα
)

6 0P̆×0Q̆×
(

0A×0P×sinα + 0P×0Q×sin θ − 0A×0Q×sin(α + θ)
)

e2R,

by Equation 2.7 and Equation 2.8.

Since the convexity of C implies that the points 0, A, P and Q (respectively 0, A, Q̆ and P̆ ) are
in the boundary of their convex hull in R2, we have A(A0P ) +A(P0Q)−A(A0Q) = A(PAQ)

(respectively A(A0Q̆) +A(P̆0Q̆)−A(A0P̆ ) = A(P̆AQ̆)), and hence writing 0A×0P×sinα =
2A(A0P ), 0P×0Q×sin θ = 2A(P0Q), etc. in Equation 2.12 yields

(2.13) e2R >
A(P0Q)

A(P̆0Q̆)
×
A(P̆AQ̆)

A(PAQ)
= e2ρA .

Finally, using again the fact that the points 0, A, Q̆ and P̆ are in the boundary of their convex
hull in R2, we have A(A0Q̆) 6 A(A0P̆ ) +A(P̆AQ̆). Hence

A(A0Q̆)−A(A0P̆ )−A(P0Q̆) < A(A0Q̆)−A(A0P̆ ) 6 A(P̆AQ̆),

and this implies that τA < e2ρA from the very definitions of τA and ρA given in Proposition 2.2.

Combining this latter inequality with Equation 2.13 shows Point (3) in Proposition 2.2.

•Point (4): On the other hand, if we suppose e2R > τB and let b be the intersection point of

q+R+
−→pq with Q+R+

−−→
QB, then the same reasoning as above yields Point (4) in Proposition 2.2.

•Point (5): Suppose R > ρ := max{ρA, ρB}.

Writing

e2dC(p,q) = [a, p, q, b] =
aq

ap
×
bp

bq
=

(

ap+ pq

ap

)

×

(

bq + qp

bq

)

=

(

1 +
pq

ap

)

×

(

1 +
pq

bq

)

and using Equation 2.10 together with its analogue

bq =
(0Q− 0q)×0B×pq×sinβ

0B×0q×sin β + 0Q×0p×sin θ − 0B×0p×sin(β + θ)
,

we obtain

e2dC(p,q) =

(

1 +
0A×0p×sinα + 0P×0q×sin θ − 0A×0q×sin(α+ θ)

0A×0P×sinα− 0A×0p×sinα

)

×

(

1 +
0B×0q×sin β + 0Q×0p×sin θ − 0B×0p×sin(β + θ)

0B×0Q×sinβ − 0B×0q×sin β

)

.
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In other words,
(2.14)

e2dC(p,q) =

(

1 +
A(A0p) +A(P0q)−A(A0Q)

A(A0P )−A(A0p)

)

×

(

1 +
A(B0q) +A(Q0p)−A(B0P )

A(B0Q)−A(B0q)

)

.

Now, since a ∈ [A, P ] (respectively b ∈ [B,Q]), the points 0, A, p and q (respectively 0, B, q and
p) are in the boundary of their convex hull in R2, and therefore A(A0p)+A(P0q)−A(A0Q) =
A(Apq) +A(Ppq) (respectively A(B0q) +A(Q0p)−A(B0P ) = A(Bqp) +A(Qqp)).

On the other hand, p ∈ [0, P ] (respectively q ∈ [0, Q]) obviously implies that A(A0P ) −
A(A0p) = A(ApP ) (respectively A(B0P )−A(B0q) = A(BqQ)).

Hence Equation 2.14 is equivalent to the equality in Point (5) of Proposition 2.2. �

3. Non-polygonal domains may have zero entropy

In this section, we construct a Hilbert domain in the plane which is a ‘polygon’ having infinitely
many vertices and whose volume growth entropy is a limit that is equal to zero. This ‘polygon’
is inscribed in a circle and its vertices have one accumulation point.

Before giving our example, let us first recall the following result proved in [15]:

Theorem 3.1. Given any open convex polytope P in Rm that contains the origin 0, the volume
growth entropy of dP satisfies

h(P) = lim
R→+∞

1

R
ln[µP(BP(0, R))] = 0.

Remark. Another — but less direct — proof of this theorem consists in saying that (P, dP) is
Lipschitz equivalent to Euclidean plane as shown in [2] (and in [8] for the particular case when
n := 2), and hence h(P) = 0 since the volume growth entropy of any finite-dimensional normed
vector space is equal to zero.

Now, let us show that having zero volume growth entropy for a Hilbert domain in R2 does not
mean being polygonal, that is, that the converse of Theorem 3.1 is false.

Let (Pn)n∈N be the sequence of points in S1 defined by

Pn := (cos(2−n) , sin(2−n)),

and denote by C the open convex hull in R2 of the set

{Pn,−Pn | n ∈ N}.

Then we have

Theorem 3.2. The volume growth entropy of dC satisfies

h(C) = lim
R→+∞

1

R
ln[µC(BC(0, R))] = 0.

Remark. More precisely, we will show in the proof of this result that the volume µC(BC(0, R))
of the ball BC(0, R) actually has the same growth as R3 when R goes to infinity.
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P∞

P0

P1

P2

S
1

∂C

0

−P∞

−P0

−P1

−P2

Figure 4. A non-polygonal Hilbert domain in the plane with zero entropy

In order to prove this result, we need the following:

Lemma 3.1. Let (C, dC) be a Hilbert domain in R2 with 0 ∈ C, and P , Q be distinct points in
∂C such that the affine segment [P,Q] is in the boundary ∂C.

Denote respectively by P̆ and Q̆ the intersection points of the boundary ∂C with the half-lines

R−
−→
0P and R−

−→
0Q.

If [P̆ , Q̆] ⊆ ∂C, then for any R > 0 the intersections of BC(0, R) and SC(0, R) with the triangle
P0Q are equal to the triangle p0q and the open segment ]p, q[, respectively, where the points p
and q are defined in C by p ∈ [0, P ], q ∈ [0, Q] and dC(0, p) = dC(0, q) = R.

Proof.
Denote by ∆ and ∆̆ the straight lines (PQ) and (P̆ Q̆), respectively.

Since the cross ratio is invariant under PGL(R3), we may assume that ∆ and ∆̆ are not parallel
(replacing C by its image by a projective transformation), and hence consider their intersection
point Ω.

Then the four lines ∆, ∆̆, (Ω0) and (Ωp) define a pencil with common vertex Ω, which implies
that for any point m ∈ P0Q we have the equivalence

(3.1) [M,m, 0, M̆ ] = [P, p, 0, P̆ ] ⇐⇒ m ∈ (Ωp),

where M and M̆ are the intersection points of (0m) with ∆ and ∆̆, respectively.

Since one has [P, p, 0, P̆ ] = e2dC(0,p) = e2R, Equivalence 3.1 then yields

SC(0, R) ∩ P0Q = {m ∈ P0Q | [M,m, 0, M̆ ] = e2R} = P0Q ∩ (Ωp).

But [Q, q, 0, Q̆] = e2dC(0,q) = e2R implies q ∈ (Ωp) by Equivalence 3.1, and hence P0Q ∩ (Ωp) =
]p, q[ since we have q ∈ [0, Q].

Next, writing BC(0, R) =
⋃

r∈[0,R)

SC(0, r), we get BC(0, R) ∩ P0Q = p0q.

This proves Lemma 3.1. �
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P

M

Q

q

p

0Q̆

M̆

P̆

Ω

∂C

m

BC(0, R)

SC(0, R)

∆̆

∆

Figure 5. Lemma 3.1

Proof of Theorem 3.2.
For each k ∈ N, let Tk be the open rectangle that is equal to the open convex hull in R2 of Pk,
−Pk, Pk+1 and −Pk+1.

Fixing an integer n > 0 and a number R > 1, we can write

1

2
µC(BC(0, R)) = µC

(

BC(0, R) ∩ −P∞0P0

)

+

n
∑

k=0

µC

(

BC(0, R) ∩ Pk0Pk+1

)

+ µC

(

BC(0, R) ∩ S(Pn+10P∞)
)

(3.2)

with P∞ := (1, 0) = lim
k→+∞

Pk ∈ ∂C and where S(Pn+10P∞) denotes the sector defined as the convex

hull of the union of the half-lines R+
−−−→
0Pn+1 and R+

−−→
0P∞.

•First step: For any k ∈ N, noticing that [Pk, Pk+1] ⊆ ∂C ∩ ∂Tk and [−Pk,−Pk+1] ⊆ ∂C ∩ ∂Tk,
we have

BC(0, R) ∩ Pk0Pk+1 = BTk(0, R) ∩ Pk0Pk+1

by Lemma 3.1, and hence the inclusions

BC(0, R) ∩ Pk0Pk+1 ⊆ BTk(0, R) ⊆ Tk ⊆ C

hold.
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Pk

Pk+1

S
1

∂C

−Pk+1

−Pk

BC(0, R)

BTk
(0, R)

∂Tk

0

∂C

S
1

Figure 6. Comparing BC(0, R) ∩ Pk0Pk+1 and BTk(0, R) ∩ Pk0Pk+1

Using Point (iv) of Proposition 5 in [7], we then get

(3.3) µC

(

BC(0, R) ∩ Pk0Pk+1

)

6 µTk(BTk(0, R)).

Now, if f denotes the unique linear transformation of R2 such that f(Pk) = (1,−1) and
f(Pk+1) = (1, 1), we have

f(Tk) = Q := (−1, 1)×(−1, 1) ⊆ R2 (standard open square).

The cross ratio being preserved by the linear group GL(R2), the map f induces an isom-
etry between the metric spaces (Tk, dTk) and (Q, dQ) with f(0) = 0, and hence we obtain
µTk(BTk(0, R)) = µQ(BQ(0, R)).

But Proposition 6 in [7] yields

µQ(BQ(0, R)) = 8

∫ tanh(R)

0

(
∫ x

0

π

vol(BC(x, y))
dy

)

dx 6 4

∫ tanh(R)

0

(
∫ x

0

π

(1− x2)(1− y2)
dy

)

dx = 2πR2,

which gives

(3.4) µC

(

BC(0, R) ∩ Pk0Pk+1

)

6 2πR2

from Equation 3.3.

For the same reasons, we also have

(3.5) µC

(

BC(0, R) ∩ −P∞0P0

)

6 2πR2.

•Second step: Considering the proof of Theorem 12 in [6], we have

1

vol(BC(p))
6

e8R

vol(BC(0, R))

for all p ∈ BC(0, R).
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Therefore, the following is true:

µC

(

BC(0, R) ∩ S(Pn+10P∞)
)

6
πe8R

vol(BC(0, R))
vol
(

BC(0, R) ∩ S(Pn+10P∞)
)

6
πe8R

vol(BC(0, 1))
vol
(

B2∩ S(Pn+10P∞)
)

(using BC(0, 1) ⊆ BC(0, R) ⊆ B2)

=
πe8R

vol(BC(0, 1))

+∞
∑

k=n+1

sin
(

2−k − 2−(k+1)
)

=
πe8R

vol(BC(0, 1))

+∞
∑

k=n+1

sin
(

2−(k+1)
)

6
πe8R

vol(BC(0, 1))

+∞
∑

k=n+1

2−(k+1) = τe8R/2n,

(3.6)

where τ := π/(2vol(BC(0, 1))) is a positive constant.

So, if we choose n := [12R] + 1 (where [ · ] denotes the integer part), we have e8R/2n 6 1, and
hence Equation 3.6 implies

(3.7) µC

(

BC(0, R) ∩ S(Pn+10P∞)
)

6 τ.

•Third step: Combining Equations 3.2, 3.4, 3.5 and 3.7, we eventually get

µC(BC(0, R)) 6 4πR2 + 4π(n+ 1)R2 + τ

6 4πR2 + 4π(12R + 2)R2 + τ

(since n− 1 = [12R] 6 12R)

6 (144π + τ)R3

for any R > 1, and hence

ln[µC(BC(0, 1))]

R
6

ln[µC(BC(0, R))]

R
6

ln((144π + τ)R3)

R
,

which yields
ln[µC(BC(0, R))]

R
−→ 0 as R −→ +∞.

This proves Theorem 3.2. �

4. Entropy may not be a limit

We now come to the main goal of this paper which is to show that the volume growth entropy
for a Hilbert domain may not be a limit. To this end, we will approximate a disc in the plane by
an inscribed ‘polygonal’ domain with infinitely many vertices that have one accumulation point
around which the boundary of the ‘polygonal’ domain looks very strongly like the boundary of
the disc.

Let (nk)k>0 be the sequence of positive integers defined by

n0 := 3 and ∀k > 0, nk+1 = 3n
2

k .

It is increasing and satisfies nk −→ +∞ as k −→ +∞.
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Next, define the sequences (αk)k>0 and (θk)k>0 in R by αk := 2π/nk together with

θ0 := 0 and ∀k > 1, θk :=

k−1
∑

ℓ=0

αℓ = 2π

k−1
∑

ℓ=0

1

nℓ
.

Finally, consider the sequence (Mk)k>0 and the family (Pk(j))(k,j)∈{(k,j)∈Z2 | k> 0 and 06 j 6nk}
of

points in S1 defined by

Mk := (cos(θk) , sin(θk)) and Pk(j) := (cos(θk + αkj/nk) , sin(θk + αkj/nk)),

and denote by C the open convex hull in R2 of the set

{Pk(j),−Pk(j) | k > 0 and 0 6 j 6 nk}.

Then we get the following:

Theorem 4.1. We have

(1) h(C) := lim sup
R→+∞

1

R
ln[µC(BC(0, R))] > 0, and

(2) lim inf
R→+∞

1

R
ln[µC(BC(0, R))] = 0.

M0

M1

M∞

M2

0

S
1

P0(1)

P2(1)

∂C

α0/n0

α0/n0

α0/n0

θ1

Figure 7. A Hilbert domain in the plane whose entropy is not a limit

Remarks.

1) For all k > 0, one has Pk(0) = Mk and Pk(nk) = Mk+1.
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2) For all ℓ > 0, we have nℓ > 3ℓ+1 (by induction and using 9m > m for all integer m > 0),
and hence the increasing sequence (θk)k>0 converges to some real number θ∞ which satisfies

0 < θ∞ < π (since

+∞
∑

ℓ=0

1/3ℓ+1 = 1/3

+∞
∑

ℓ=0

(1/3)ℓ = 1/2 and (nℓ)ℓ>0 6=
(

3ℓ+1
)

ℓ>0
).

Proof of Theorem 4.1.
•Point (1): Consider the sequence of positive numbers (rk)k>0 defined by rk := ln(n2

k).

Fix k > 0, and let (pk(j))16j6nk−1 be the sequence of points in R2 defined by

pk(j) ∈ [0, Pk(j)] and dC(0, pk(j)) = rk.

Then fix j ∈ {1, . . . , nk−2}, and let A := Pk(j−1), P := Pk(j), Q := Pk(j+1) and B := Pk(j+2).

These latter points and C satisfy all the three assumptions of Proposition 2.2, and we have
P̆ = −P and Q̆ = −Q.

0

Pk(j − 1)
Pk(j)

Pk(j + 1)

Pk(j + 2)
∂C

S
1

pk(j)
pk(j − 1)

pk(j + 1)

pk(j + 2) SC(0, rk)

αk/nk

αk/nk
αk/nk

Figure 8. Showing lim sup
k→+∞

ln[µC(BC(0, rk))]

rk
> 0 with rk := ln(n2

k)

Using Points (3) and (4) in Proposition 2.2 together with the equalities

2A(PBQ) = 2A(PAQ) = 2A(A0P ) + 2A(P0Q)− 2A(A0Q)

= sin(αk/nk) + sin(αk/nk)− sin(2αk/nk)

= 2 sin(αk/nk)(1− cos(αk/nk))

= 2 sin(2π/n2
k)(1− cos(2π/n2

k))
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and

2A(P̆BQ̆) = 2A(P̆AQ̆) = 2A(A0Q̆) + 2A(P̆0Q̆)− 2A(A0P̆ )

= sin(π − 2αk/nk) + sin(αk/nk)− sin(π − αk/nk)

= sin(2αk/nk)

= 2 sin(αk/nk) cos(αk/nk)

= 2 sin(2π/n2
k) cos(2π/n

2
k),

we first get

(4.1) e2ρA = e2ρB = e2ρ =
cos(2π/n2

k)

1− cos(2π/n2
k)

∼ n4
k/(2π

2) as k −→ +∞.

Then we deduce e2ρ/n4
k −→ 1/(2π2) < 1 as k −→ +∞ from Equation 4.1, which means that

there exists an integer k0 > 0 such that for all k > k0 one has e2ρ/n4
k 6 1, i. e., rk > ρ.

So, whenever k > k0, Point (5) in Proposition 2.2 with p := pk(j) and q := pk(j + 1) yields

(4.2) e2dC(pk(j),pk(j+1)) = e4rk
(

1− (1 + e−2rk) cos(2π/n2
k)
)2

= n8
k

(

1− (1 + 1/n4
k) cos(2π/n

2
k)
)2

since we have

2(A(Bqp) +A(Qqp)) = 2(A(Apq) +A(Ppq)) = 2A(A0p) + 2A(P0q)− 2A(A0Q)

= 0p×sin(αk/nk) + 0q×sin(αk/nk)− sin(2αk/nk)

= 2 sin(αk/nk)(tanh(rk)− cos(αk/nk))

= 2 sin(2π/n2
k)(tanh(rk)− cos(2π/n2

k))

and

2A(BqQ) = 2A(ApP ) = 2A(A0P )− 2A(A0p)

= sin(αk/nk)− 0p×sin(αk/nk)

= (1− tanh(rk)) sin(αk/nk)

= (1− tanh(rk)) sin(2π/n
2
k)

by Equation 2.7 and Equation 2.8 (which give 0p = 0q = tanh(rk)).

But we have n8
k

(

1− (1 + 1/n4
k) cos(2π/n

2
k)
)2

−→ (2π2 − 1)2 > e as k −→ +∞, and hence there

exists an integer k1 > k0 such that for all k > k1 one has e2dC(pk(j),pk(j+1)) > e by Equation 4.2,
i. e.,

dC(pk(j), pk(j + 1)) > 1/2.

By Lemma 3.1, we then get

λC(SC(0, rk)) >

nk−2
∑

j=1

dC(pk(j), pk(j + 1)) > nk/2− 1,

and hence
ln[λC(SC(0, rk))]

rk
>

ln(nk/2− 1)

2 ln(nk)

for all k > k1.

Finally, since ln(nk/2− 1)/ ln(nk) −→ 1 > 1/2 as k −→ +∞, there exists an integer k2 > k1
such that for all k > k2 we have

ln[λC(SC(0, rk))]

rk
>

ln(nk/2− 1)

2 ln(nk)
> 1/4 > 0.
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Since ∂C is a pseudo-hypersurface of R2, Point (3) in Proposition 2.1 gives the first point of
Theorem 4.1.

•Point (2): Consider the sequence of positive numbers (Ri)i>0 defined by Ri := ni.

On the other hand, for each k > 0 and j ∈ {0, . . . , nk − 1}, let Tk(j) be the open rectangle that
is equal to the open convex hull in R2 of Pk(j), −Pk(j), Pk(j + 1) and −Pk(j + 1).

Fixing an integer i > 0, we can write

1

2
µC(BC(0, Ri)) = µC

(

BC(0, Ri) ∩ −M∞0M0

)

+
i
∑

k=0

nk−1
∑

j=0

µC

(

BC(0, Ri) ∩ Pk(j)0Pk(j + 1)
)

+ µC

(

BC(0, Ri) ∩ S(Mi+10M∞)
)

(4.3)

with M∞ := (cos(θ∞) , sin(θ∞)) ∈ ∂C (recall that θ∞ is the limit of the sequence (θk)k∈N: see
the second remark following Theorem 4.1) and where S(Mi+10M∞) denotes the sector defined

as the convex hull of the union of the half-lines R+
−−−→
0Mi+1 and R+

−−−→
0M∞.

Pk(j + 1)

Pk(j)

S
1

∂C

−Pk(j)

−Pk(j + 1)

BC(0, Ri)

BTk(j)(0, Ri)

∂Tk(j)

0

∂C

S
1

Figure 9. Comparing BC(0, Ri) ∩ Pk(j)0Pk(j + 1) and BTk(j)(0, Ri) ∩ Pk(j)0Pk(j + 1)

•First step: For any k > 0 and j ∈ {0, . . . , nk−1}, noticing that [Pk(j), Pk(j+1)] ⊆ ∂C ∩∂Tk(j)
and [−Pk(j),−Pk(j + 1)] ⊆ ∂C ∩ ∂Tk(j), we have

BC(0, Ri) ∩ Pk(j)0Pk(j + 1) = BTk(j)(0, Ri) ∩ Pk(j)0Pk(j + 1)

by Lemma 3.1, and hence the inclusions

BC(0, Ri) ∩ Pk(j)0Pk(j + 1) ⊆ BTk(j)(0, Ri) ⊆ Tk(j) ⊆ C

hold.

Using Point (iv) of Proposition 5 in [7], we then get

(4.4) µC

(

BC(0, Ri) ∩ Pk(j)0Pk(j + 1)
)

6 µTk(j)(BTk(j)(0, Ri)).
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Now, if f denotes the unique linear transformation of R2 such that f(Pk(j)) = (1,−1) and
f(Pk(j + 1)) = (1, 1), we have

f(Tk(j)) = Q := (−1, 1)×(−1, 1) ⊆ R2 (standard open square).

The cross ratio being preserved by the linear group GL(R2), the map f induces an isometry
between the metric spaces (Tk(j), dTk(j)) and (Q, dQ) with f(0) = 0, and hence we obtain
µTk(j)(BTk(j)(0, Ri)) = µQ(BQ(0, Ri)).

But Proposition 6 in [7] yields

µQ(BQ(0, Ri)) = 8

∫ tanh(Ri)

0

(
∫ x

0

π

vol(BC(x, y))
dy

)

dx 6 4

∫ tanh(Ri)

0

(
∫ x

0

π

(1− x2)(1− y2)
dy

)

dx = 2πR2
i ,

which gives

(4.5) µC

(

BC(0, Ri) ∩ Pk(j)0Pk(j + 1)
)

6 2πR2
i

from Equation 4.4.

For the same reasons, we also have

(4.6) µC

(

BC(0, Ri) ∩ −M∞0M0

)

6 2πR2
i .

•Second step: Considering the proof of Theorem 12 in [6], we have

1

vol(BC(p))
6

e8Ri

vol(BC(0, Ri))

for all p ∈ BC(0, Ri).

Therefore, the following is true:

µC

(

BC(0, Ri) ∩ S(Mi+10M∞)
)

6
πe8Ri

vol(BC(0, Ri))
vol
(

BC(0, Ri) ∩ S(Mi+10M∞)
)

6
πe8Ri

vol(BC(0, 1))
vol
(

B2∩ S(Mi+10M∞)
)

(using BC(0, 1) ⊆ BC(0, Ri) ⊆ B2)

=
πe8Ri

vol(BC(0, 1))

+∞
∑

k=i+1

sin(αk)

6
πe8Ri

vol(BC(0, 1))

+∞
∑

k=i+1

αk = τ

+∞
∑

k=i

e8Ri

nk+1
,

(4.7)

where τ := 2π2/vol(BC(0, 1)) is a positive constant.

But for all k > i we have

e8Ri/nk+1 = e8Ri3−n2

k 6 38Ri3−n2

k = 38ni−n2

k = 3−n2

k
(1−8ni/n

2

k
)

with ni/n
2
k 6 1/ni from the monotone increasing of the sequence (nk)k>0.

Hence, since 1/ni −→ 0 as i −→ +∞, there exists an integer i0 > 0 such that for all k > i one

has e8Ri/nk+1 6 3−n2

k
/2 whenever i > i0.

Equation 4.7 then implies

µC

(

BC(0, Ri) ∩ S(Mi+10M∞)
)

6 τ
+∞
∑

k=i

1/3n
2

k
/2 6 τ

+∞
∑

k=i

(1/3)k = (3/2)τ(1/3)i

for all i > i0 (notice that we have n2
ℓ/2 > 9ℓ > ℓ for all ℓ > 0: see the second remark following

Theorem 4.1).
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Now we have (1/3)i −→ 0 as i −→ +∞, and thus there exists an integer i1 > i0 such that for
all i > i1 one has

(4.8) µC

(

BC(0, Ri) ∩ S(Mi+10M∞)
)

6 1.

•Third step: Combining Equations 4.3, 4.5, 4.6 and 4.8, we eventually get

µC(BC(0, Ri)) 6 4πR2
i + 4πR2

i

i
∑

k=0

nk + 1

6 4πR2
i + 4πR2

i (i+ 1)ni + 1

(since the sequence (nk)k>0 is non-decreasing)

= 4πR2
i + 4π(i+ 1)R3

i + 1

6 12πR4
i

for all i > i1 (since we have Rℓ := nℓ > 3ℓ+1 > ℓ+ 1 > 1 for every ℓ > 0), and hence

ln[µC(BC(0, 1))]

Ri
6

ln[µC(BC(0, Ri))]

Ri
6

ln(12πR4
i )

Ri
,

which yields
ln[µC(BC(0, Ri))]

Ri
−→ 0 as i −→ +∞.

This proves the second point of Theorem 4.1. �

Remark. Considering the proof of Point (1) in Theorem 4.1, we can observe that the conclusion
h(C) > 0 we obtained is actually true for any sequence of positive integers (nk)k>0 provided the
sequence (θk)k∈N converges to some real number θ∞ which satisfies 0 < θ∞ < π.
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