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ABSTRACT

Sensitivity of a transient &ard-Marangoni problem is
studied using stochastic models to simulate the unceitsimf
thermal initial conditions. Using different assumptioribree
probabilistic models are developed and compared. Stesistie
performed on flow velocities and temperatures. Transitiznes
examined with respect to the stochastic models.

NOMENCLATURE

Bi Biot number

e Fluid layer thickness

Hin Global heat transfer coefficient
k Thermal conductivity

L Length of the fluid layer
Ley Latent heat of vaporization
Ma  Marangoni number

p Dimensionless pressure
Pr Prandtl number

Ra Rayleigh number

To Ambient temperature

Y, Dimensionless velocity vectos; ug, -+ vé,

Y/ Theith value of the vigintiles

X Dimensionless spatial coordinatesxe, + y&,
Greek symbols

a Thermal diffusivity,
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Br Thermal expansion coefficient
AT Temperature scale

Y Surface tension

®e, Evaporation flux

vl Dynamic viscosity

p Density

O Standard deviation of the stochastic vale
t Dimensionless time

0 Dimensionless temperature

©¢(x) Probabilistic condition for the initial temperature field
Other symbols

< Xg >Mean value of the stochastic quantiy

X Spatial average of the stochastic quantty
Subscripts

S Probabilistic variable

INTRODUCTION

The drying of a solution involves mass, momentum and
energy exchanges between the liquid film and the surroundin
gas. Phase change of the volatile component modifies th
thickness of the fluid layer, the different concentrationghe
solution close to the free surface, and therefore the Idugdipal
properties of the fluid mixture, and also the temperaturdat t
interface due to the vaporization latent heat. These mads ar
thermal imbalances are able to create convective motiansrdr
by buoyancy and capillary forces. Numerous authors have
studied buoyant and capillary flows for volatile or nonvidat
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fluids, using the linear stability approach or direct nureri
simulations [1-3]. Thus, more or less complicated numérica
models have been erected but usually with the idea thatystead
flows would develop or by expecting quasi-steady regimes.

The key point of the drying of a solution is that the flow is
transient by nature. From the fluid at rest, a transdiffiisive
regime takes place. During the temporal evolution, the dime
sionless parameters may exceed temporarily critical gadunel
thus perturbationgan linearly grow around a transient basic
stateon a timeinterval before they decrease and disappear for
long times.

The notion of stability thus needs to be revisite@ne way

to do is to freeze successively in tintike basic solution and
then to compute the instantaneous growth rate of the dorhinan
disturbance. The interpretation of frozen time results may
however be problematic, specially when the growth rate ef th
linear perturbation is larger than the characteristic tiohehe
basic flow. Other methods, like the non normal approach stake
into account the transient character of the problem exjglit].

In this last method, the idea is to seek the initial distudgan
that provides the maximum amplification of the kinetic odan
thermal energy. The critical parameter is then defined whisn t
amplification exceeds one and reaches an arbitrary choses va

For experimental works or direct humerical simulations,
the appearance of instabilities during the drying is als&dd
to the magnitude othe disturbances. Whereas the absolute
control of perturbations is illusive in experimental works
it can almost be reacheith numerical approacheby using
very precise numerical schemesBecause such a numerical
solution is in disagreement with experimental results wher
convection is observed, perturbations must be explicitgieal
in the numerical simulations in order to simulate the phaisic
disturbances.
disturbances numerically, while they are usually out oftoain
of experimentalists.

The aim of this paper is to study the sensitivity of fluid flows
and transitions between diffusive and convective statesasc-
tion of initial disturbances. The paper is divided as fokowhe
thermal model of the drying of a solution is first introductn
three uncertainty models for the thermal initial conditare de-
scribed. The next section is devoted to the presentatiossoits
before a conclusive section.

PHYSICAL AND NUMERICAL MODELS
Thermal model of drying - Transient B énard-Marangoni
problem

The main question is how to reproduce these

polymer solution at the ambient temperature is poured irsh di
located under an extractor hood [5]. The physical model unde
consideration corresponds to the beginning of the drying, on
when the convective motions have been experimentally show
to be driven by thermal gradients [5]. Thus for the sake of sim
plicity, the polymer mass fraction is assumed frozen, etpas
initial value, and the interface velocity is neglected. Bvapo-
ration at the free surface is taken into account throagfiobal
heat transfer coefficiet;, between the ambient air and the fluid
interface. More details upon assumptions can be found in [6]

In a first attempt anéh orderto reduce the computational cost,
the numerical analysis is restricted to two-dimensigmablems
The liquid film is located in a rectangular domain of length
and thicknes®. No-slip conditions are imposed on the adia-
batic lateral and bottom solid walls. The dimensionles®ael
ity V(X,t) = u(X,t)&+ v(X,1)8, and temperaturé(X;t) fields are
solutions of the Navier-Stokes and energy equations urger t
Boussinesq approximation:

[.v=0

%wﬁ-(mw = —Op+Pr0%+RaP®s, (1)

0,, = 2
6+0-(8v) = %0

with Pr = p/(pa) and Ra= pgBrAT €3/ (ua) are the Prandtl and
Rayleigh numbers. The lengths are scaled by the thickeess
€ /at is the time,a/evV(X,t) the velocity,p(a/e)?p(Xt) the
dynamical pressure anth + ATO(X;t) the temperature. The
temperature scalAT = (Ley®ev(To))/Hin measures the differ-
ence between the temperature at the final equilibrium (eobst
and uniform temperature) and the ambient temperafgivehich

is also the mean initial temperature. The boundary contio
write:

x=0, V=0, ¥=0
x=L/e V=0, 2=0
y=0, V=0, & =0 (2)
g*u = 7Ma% 90 .
y=1 {VV & = —Bi(6+1)
where Ma= —% (g—}’) and Bi= "° stand for the Marangoni

and Biot numbers.

Using the properties of the Polyisobutylene (PIB)/Toluene
[5], we can express the dimensionless parameters as adancti
of two physical parameters onlthat were the control parame-
ters used in the experimentsamely the thickness of the liquid

The simulations presented in this paper are based on drying film, e, and the viscosity of the solutiop, Notice that the vis-

experiments of a Polyisobutylene (PIB)/Toluene mixturehe

cosity can be adjusted by modifying tivétial mass fraction of
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the polymer in the mixture. The Rayleigh, Prandtl, Mararigon
and Biot numbers write respectively Ra451e®/y, Pr = 12,
Ma = 585@/p andBi = 0.2e with [¢) = mmand[y] = mPa-s.

Uncertainty model for the thermal initial condition

As presented in Introduction, itis crucial to introducetdis
bances into the numerical model in order to recover theitians
between thaliffusive and convective states which has been ob-
served in experiments. Because it is very difficult, if nhtdlve,
to reproduce the experimental disturbances, the ideatier&d
consider a family of perturbations by using a stochastic@ggh.
In this study, perturbations are imposed on the initial terafure
field in the following way.The fluid is initially at rest:

0) ®3)

with a dimensionless temperature defined by some small proba
bilistic fluctuations ©¢ (x), around the dimensionlessill ambi-
ent temperature:

GE (Y,t = 0) =0+ GE (X) (4)

For the sake of simplicity, the probabilistic fluctuati@} (x)
only depends ox and is invariant in thg-direction.

The stochastic behavior of the outpXitis measured through
the mean value< X; >, the standard deviatiooy,, and the
confidence interval 90% which is defined by the vigintiles-(20
quantiles). We denote B¥; andVaxg the first and last of the vigin-
tiles. Statistical quantities are approximated by the Mdadarlo
method which consists in performing many deterministicusim
lations, n for instance, with different random initial conditions
G)ék) (x), k=1,---,n. The specific way to construct the initial
conditions is described in the next subsectiand the influence

of stochastic models on temperature and flow field evolutions
will be studied in the result section.

Elementary approach  The simplest idea is based on
the spatial discretization of the thermal initial conditi@ék) (x)
in the following way. By usingN + 1 discretex-coordinates
Xi=L/exi/N,i=0,---,N, {&, i=0,---,N} afamily of ran-
dom variables defined by the uniform and centered probwbilit
law on[—+/3;1/3] then

N—-1
O (%= 3 HiX— X)X~ (5)

with H(x) the Heaviside function. This approach excites in-
dependently the neighboring discrete values of the teryrera

3

along thex-direction. Thus if the mesh size goes to zero, the tem:
perature gradient evaluated@tends to infinity what may affect
the global convergence of the numerical scheme. Furthemor
this specific choice for the initial condition does not fit lvthe
thermal boundary conditions at= 0 andx = L /e where no heat
flux is imposed. At last in physical problems, the disturtesnc
are probably spatially correlated, what is not taken intwoaat

in this elementary approach.

Autocorrelation functions In this approach, we as-
sume that the disturbances should satisfy a specific autscor
lation function which is chosen in order to perform analgtic
calculations. This autocorrelation function writes:

—Ix=x|

)

where A is the dimensionless correlation length aRgl is a
strictly positive real value characterizing the magnitudehe
autocorrelation function, and as a result, it also contfidanean
initial thermal energy injected by the disturbances. Theoeis
ated stochastic process is defined by the Karhunér+.decom-
position [7]:

Ru(X) = Roexp( ©)

Oe(x) = iOJB“mEmwx) ™

where{@m(x)} is a Hilbert base in2([0,L/€]), Bm > 0 such that
Bi+1 < Bi and limy_Bn = 0, and{&y} is a family of random
values which are chosen as being engendered by the unifatm al
centered probability law of-+/3;/3]. The functionspy(x) are
solutions of a differential equation

2ARo — Bm

W)+ 5z

@n(x) =0 (8)

Two different options are available to solve Eqn. (8), dejieg

on whether the perturbations must fulfill the thermal boumda
conditions ak = 0 andx = L /e or whether the stochastic process
must exactly satisfy the autocorrelation function (6).

If the Karhunen-Léve expansion must be compatible with the
thermal boundary conditions, théd@m(x))/(dx) =0 forx=0
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andL/e and we obtain:

(g](x):,ll_z/ecos<[l/ré>, ne N~

_ 1
Qo(x) = Lje 9)
Bn = ﬂz

1422 (%)

In that case, the autocorrelation function (6) is alterelde fiew
autocorrelation function associated to the stochasticgs® is
notedR;(x,X') and writes:

Ro(x.X) = isnw)%m (10)

with @ (x) defined by (9).
If the thermal boundary conditions are released, the swiuti
writes:

@h(X) = AnCOLNX+ Xn)
Ao = 20
|/ wnL/e+sin(wnL/e) cogwnl /e+ 2Xn)
2\Ry
Bn:m (11)
wnpl/e  nm
Xn=— 2 Y
whl/e nm _i
an( ey L

Notice that the last relation of system (11) leads to a tramsc
dental equation which must be solved numerically.

Numerical scheme

Equation (1) with the boundary conditions (2) are dis-
cretized by the finite volume method on staggered grids.i&pat
derivatives are second order accurate. An implicit secaddro
Euler scheme is used for time advance and the non-lineasterm
are approximated with a Adams Bashforth scheme. The cauplin
between the velocity and the pressure is achieved with @@roj
tion algorithm. Linear systems are solved with a Crout metho
using the red-black reordering technique. The random galue
used to construct the stochastic initial conditions aredpced
by the Mersenne Twister algorithm.

RESULTS
Simulations are based on Polyisobutylene (PIB)/Toluene
experiments [5]. The thickness of the fluid layer is fixed to

4
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Figure 1. CONVERGENCE FOR THE ELEMENTARY APPROACH OF
—_— o~ i —
[i] i i
<X >, Vl[], AND VzoH AS A FUNCTION OF THE NUMBER OF

MONTE CARLO RUNS (i) FOR a. ABg AND b. Pés.

1mm(Pr = 12 and Bi= 0.2) and the aspect ratio of the liquid
film is equal toL/e = 20. Unless otherwise specified, results
are presented using mean values associated with error be
corresponding to the confidence interval equal to 90%.

The mesh is regular and consists of 80@0 control
volumes. The time step is initialized equal to f@Gnd increased
by 1% at each iteration until it reaches £0

For computations, the series defined by (7) are split tc
{200}

the 20¢ term and denoted by~ (x); the associated au-
tocorrelation function is notedR!?°%(x,x). In that case,
the lowest dimensionless wave number of the probabilistic
function @ézoo}(x) is equal to 0 and it is discretized on
8 control volumes of the mesh. Notice that the approx-

imation errors ’ IRE99 (%,%) | 210 reg2)/IROG X)) L2 (02 re2) — 1’

200
and ’| < Oi }(X) > ‘LZ([O;L/e])/‘ < OE(X) > |L2([0;L/e]) — 1‘ are

respectively less than-30-3% and 05% for both models (9)
and (11).

The convergence of the statistical quantity(X,t), usingi runs
of the Monte Carlo method, is measured by tté[0;L /€] x
[0;1; [0;T])-norm:

- 1 /T 1 1 rl/e |
= —/ —// {(%,t)2 Xt
X XX,

\/T o L/eJo Jo )

wherex!(%,t) could be either< X¢ > (X,t), oixE (X,t) Vi (X,1)

or Vo (X,t). Figure 1 presents the convergence of both the
mean value and the vigintiles for the&&®et number Pgt) =

12)

\/|U§(X,t)|,_z([0;,_/e]x[o;1]) and the difference between the aver-
age temperatures at the bottom and at the interfs€t) =

6 (x,y = 0,t) — B (x,y = 1,t)], for p= 1mPa- s (Ra= 451 and
Ma = 5850).
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Figure 3. INITIAL THERMAL DISTURBANCES BASED ON Ry (X,X)
AND Ry(X,X') AS A FUNCTION OF X FOR a. A = 1 AND b. A = 10,

We consider that a good approximation of the statisticahtjua
ties are achieved with 200 runs of the stochastic thermaldfiel

The Karhunen-Lo éve model

Figure 2 shows the difference between the autocorrelation
functionsRy (x,X') (Egn. (11)) andRx(x,X) (Eqgn. (9)) for two
X' values and two dimensionless correlation length§ he two
autocorrelation functions are all the more close than theetz
tion points are far from the boundaries ané small. The mea-
sure of theL.2-norm of Ry(x,X) andRx(x,X) clearly illustrates
this sensitivity: forA = 1, |Ry(X,X)/Ro| 2(jo1 /e2) = 195 and
|R2(X7 X/)/R0|L2([O;L/e]2) =22 Wherea$R1(X,X’)/RO‘LZ([O;L/e]Z) =
150 and|Rz(x,X') /Rol, 2(jo. /e2) = 437 forA = 10. The calcu-
lation of the mean thermal energy injected at the initialetim
| < ©¢(x)/vRo > |12(jo.L/e) IS NOteworthy as well. Using the

S, =1 —
// A=
Elemenrély approach
/ilﬁg)l FFUSION
I
1

0.04
0.03
0.02
0.01

0.01 0.1 1 10

0.01 0.1 1 10 .
a. ABg(t) b. Pe(t)
Figure 5. MEAN VALUES AND CONFIDENCE INTERVALS FOR a.

ABg (t) AND b. Peg(t).

ergy equals to 2103, namely a maximum intensity for the dis-
turbance of order 1@ (see Fig. 3). For these Marangoni and
Rayleigh numbers, the flow is driven by surface tension &ffec
A flow evolution is shown at three dimensionless tim&$0008

and 01 (0.6s, 0.8sand 1s) for model (9) and\ = 1 (Fig. 4). We
clearly distinguish the convection of the temperature figidhe
Marangoni cells and the evolution of the flow field.

Figure 5a illustrates the evolution of the mean values ofdife
ferences between the average temperatures at the bottom a
at the free surfacep6(t), for the elementary approach, the
Karhunen-L&ve method (9) fok = 1 and\ = 10, and the purely
diffusion problem (Ma= 0 and Ra= 0). As expected, the ap-
pearance of the convection reduces substantially the texitypse
gap between the top and bottom of the liquid layer because c
the mixing. The departure from the diffusive solutions ascu
between 7 and 009 (07s and Q9s). From Fig. 5b, these

elementary approach or the model (11), we find 20. On the other tjmes correspond to aéelet number close to unit. We also note

hand by using (9) we obtain 21 (close to 20) fo& 1 but 30 for
A = 10. Therefore with the model compatible with the thermal
boundary conditions, the modification of the correlationgih
multiplies by ¥2 the mean injected energy. Initial thermal per-

that convection becomes visible earlier with smaller datien
lengths and that the elementary approach based on undedela
disturbances is less effective to engender convectionttiearor-
related case with = 1 because the departure from the diffusion

turbations are drawn in Fig. 3 for the same set of 200 random ¢rye occurs later (Fig. 5a).
numbers. The two curves are close and even superimposegl in th e |ocal velocities at the free surface for three locations

middle region, forA = 1. As a conclusion, statistical solutions
provided by the two Monte Carlo methods (9) or (11) are really
comparable for a giveA-value provided thaR; is adjusted to
get the same mean thermal energy for the initial condition.

Convective flows
The following simulations were performed fa= 1mPa- s
(Ra = 451 and Ma= 5850) and a mean injected thermal en-

5

L/(2e), x=L/(4e) andx = 3L/(4e) are drawn on Figs. 6a-
6c. The mean values are small but confidence intervals aye vel
large, what indicates an extreme sensitivity of the flow fieitth

the initial conditions. Notice that the mean values and tleeim
ans (the 1% values of the vigintiles) are really close. However
fort > 2, the mean flow seems to organize into more robust cells
anticlockwise forx =L /(4e) (< vg > (x=1L/(4e),1,t) < 0) and

Copyright (© 2010 by ASME
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Figure 7. Peg(t) FOR p=5.9mPa-SAND p= 6.2mPa:s.

clockwise forx = 3L/(4e) (< vg > (x=3L/(4e),1,t) > 0). The
center of the interface keeps a zero mean velocity. Except fo
very short times less than or of ordefLQthe different approaches
give the same evolution for the number of cells at mid-theda

of the fluid layer (Fig. 6d). As expected, the number of cells
decreases and should tend to zero when the solution cosverge
the final equilibrium state.

Diffusive/Convective transition

The characterization of the flow is achieved by ttexlet
number. If Pg(t) + Ope (t) < 1, the solutions are considered
purely diffusive. On the other hand, if @) — ope, (t) > 1, the
flow is said convective. The buffer zone between the diffeisiv
and convective states defines the transition.
In the simulations presented here the layer thickness id fixel
the initial viscosity of the solution is variable. For a mdan
jected thermal energy equals to0~°, A = 1 and model (11),
the transition occurs for.9mPa- s < p < 6.2mPa:- s (Fig. 7a).
Notice that the confidence intervals are almost similar ® th
standard deviations (Fig. 7b). The transition region doas n

6

depend significantly on the model adopted and on the valu
of the correlation lengtiA. The most significant parameter is
the value of the mean injected energy at the initial condjtio
< Eg >. For the model (11) and with = 1, the transition zone
goes from mPa- s < pu < 6.2mPa-sfor < Eg >=2-10"°to
4.4mPa s < < 4.6mPa sfor < Eg >=2-10"13. By consider-
ing an average viscosity value pf= 5.3mPa: s, the uncertainty

is less than 20% whereas the energy injected was multipired b
10° what corresponds to a factor 1000 between the highest ar
lowest magnitudes of the mean disturbances.

CONCLUSIONS

We have studied, by means of three probabilistic ap-
proaches, the sensitivity of the thermal model in a drying- pr
cess, to the uncertainties of the initial thermal condgioNo
significant difference has really been observed on mearesalu
standard deviations or vigintiles for the evolution of thecket
number, of some local velocities and of the average temyrerat
variation between the top and bottom of the fluid layer. Weshav
highlighted mixing effect of the fluid flow on the temperature
field and that the convection occurs for @det number value of
unit order. We have also shown that the transition between th
conductive and convective states was finally relatively $ewsi-
tive to the mean thermal energy injected at the initial cbodi
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