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Abstract

In this paper we investigate the interfacial stress effects on the macroscopic yield
strength of plastic porous media containing nanosized spheroidal cavities. The solid
matrix is assumed to obey the von Mises criterion with associated flow rule. Analysis
of a rigid-ideal plastic spheroidal unit cell, containing a confocal spheroidal cavity,
and subjected to arbitrary mechanical loadings is made. Void size effects are cap-
tured by considering at the interface between the matrix and the cavity a surface
stress model, which relates the jump of the traction vector to the interfacial residual
stress and to interfacial plastic strain. The resulting macroscopic criterion for the
nanoporous material exhibits unusual features such as (i) an increase of the yield
stress when the void size is decreased, (ii) asymmetry between the yield stress in
uniaxial tension and compression.

Key words: Ductile Materials, Yield Criterion, Size effect, Spheroidal Voids,
Interfacial Stress.

1 Introduction

The elastic properties of a solid are significantly affected by the presence of
surfaces and interfaces (see [24,2] for experimental evidence and [19,3] for nu-
merical results). Surface effects are attributed to the presence of few layers
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of atoms which experience a different local environment than atoms in the
bulk and have a different equilibrium positions and energy. The classic three-
dimensional linear-elasticity theory generally neglects these effects since the
considered objects and structural elements are, at less, microsized but never of
the size of one or few nanometers. For such nanosized objects, the interfacial
effects become predominant since the area of surface per unit of volume is
very high. Surface effects in standard continuum theories are treated within
the framework of the Gurtin and Murdoch stress interface model [13] which
assumes a jump of the traction vector while the displacement field is consid-
ered continuous across the surface. The jump condition may comply with a
generalized Young-Laplace equation which extends to solid-solid interface the
well known equation that describes capillarity effects in fluid mechanics. Thus,
the discontinuity of the traction vector consists of two parts, the first one is
attributed to the presence of interfacial residual stresses, independent of the
deformation, and the second one being related to elastic deformation of the
interface. Stress surface model have been used to model the inclusions size
dependency of elastic properties of nanocomposites [7,22,15,1].

However, surface effects on the yield strength and plastic behavior of nano ob-
jects and nanostructured materials have also been observed (see for instance
[18,25] for experimental evidence and [4,5,8,26] for numerical simulations). In-
deed, atomistic-based simulations performed by [8] have shown that the yield
stress of gold nanowires strongly increases as the cross-section decreases. Note
also that [4] reports that the magnitude of the yield stress is larger in tension
than in compression for very small nanowires, the authors attributing this
asymmetry mainly to surface effects. Few recent studies consider stress inter-
faces effects in the context of non-linear composites and nanoporous plastic
materials [27–29,6,11]. In particular, by performing a limit analysis of a hol-
low sphere, [6] generalize the Gurson model [12] in order to predict void size
effects. To this end, they make use of a plastic version of the Gurtin stress
interface model (see for instance [21]) which relates the interfacial stress to
the plastic deformation at the cavity surface. The resulting model shows a
void size dependency of the macroscopic yield strength of nanoporous media:
for nanosized cavities, the strength domain appears to be significantly larger
than that predicted by the Gurson model. Alternatively, non-local plasticity
theories have been used in [23,14,16,17] instead of the von Mises criterion for
describing the plastic behavior of the solid matrix. Yet, a major advantage of
the analysis based on stress interface over non-local plasticity theories, is hat
it is possible to derive closed-form expressions of the overall plastic dissipation
of porous solids containing nanosized cavities. Nevertheless, in [6], the authors
restrict their analysis to the case of spherical cavities. In this contribution, we
provide an extension of the model presented in [6] to the case of spheroidal
cavities. By doing so, we also extend the work of Gologanu et al. [9,10] by
incorporating both void shape and void size effects.
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2 Definition of the unit cell

Let us consider a spheroidal cavity of semi-axes a1 and b1 embedded in a
spheroid of semi-axes a2 and b2. The axis of the spheroids are aligned with
0x3, where (0, x1, x2, x3) is a cartesian coordinate system of orthonormal basis
(e1, e2, e3). The volume of the cavity is V1 = 4πa1b

2
1/3 while the total volume

of the unit-cell is V2 = 4πa2b
2
2/3. The shape of the cavity is described by

the aspect ratio a1/b1, with a1 > b1 corresponding to a prolate cavity while
b1 > a1 to an oblate one. Let us denote by c the focal distance and by e1 the
void eccentricity, defined by:

c =
√

a21 − b21 =
√

a22 − b22 e1 =
c

a1
e2 =

c

a2
(prolate)

c =
√

b21 − a21 =
√

b22 − a22 e1 =
c

b1
e2 =

c

b2
(oblate)

(1)

We will use both cylindrical coordinates ρ, θ, z with (eρ, eθ, ez) the associated
orthonormal basis and the classical spheroidal coordinates λ, ϕ, θ (associated
orthogonal basis (eλ, eφ, eθ)) defined by:



























x1 = b sin(ϕ) cos(θ)

x2 = b sin(ϕ) sin(θ)

x3 = a cos(ϕ)







































eλ =
1

Lλ

{

a sin(ϕ) eρ + b cos(ϕ) e3
}

eϕ =
1

Lλ

{

b cos(ϕ) eρ − a sin(ϕ) e3
}

eθ = eθ

(2)

with Lλ =
√

a2 sin2(ϕ) + b2 cos2(ϕ), λ ∈ [0,+∞[, ϕ ∈ [0, π] and eρ = cos(θ)e1+
sin(θ)e2, θ ∈ [0, 2π]. In the above equations: a = c cosh(λ) and b = c sinh(λ)
for a prolate void, while for the case of an oblate void a = c sinh(λ) and b =

c cosh(λ). The iso-λ surfaces define confocal spheroids with foci c =
√

|a2 − b2|

and eccentricity e = c/a, for a prolate void while e = c/b for an oblate one.
The porosity f is defined by: f = (a1b

2
1)/(a2b

2
2). The matrix of the spheroidal

unit cell is made of a rigid-plastic material obeying to the von Mises yield
criterion, σeq ≤ σ0, (σ0 being the yield stress in tension and σeq the von Mises

equivalent stress σeq =
√

3

2
σ : σ) and the associated flow rule:

σ =
2σ0

3

d

deq
, with deq =

√

2

3
d : d, d =

1

2
(∇⊗ v + v ⊗∇) (3)

where v is the velocity field, d the strain rate tensor and deq the von Mises
equivalent strain rate.
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The surface between the void and the solid matrix, denoted Γ, is assumed to
be described by a stress-type interface model, which was introduced by [13] in
the context of elasticity and extended by [6,21] to plasticity. Stress interfaces
ensure the continuity of the velocity field while the traction vector, t = σ.n,
undergoes a jump which is governed by the Young-Laplace equation:

[t]
Γ
= − divs(τ ) (4)

In the above equation, divs(τ ) denotes the surface divergence of the tensor τ
such that vector divs(τ ) = (τ ⊗∇) : P (n), with P (n) = I − n ⊗ n, I being
the second order identity tensor and n the normal unit vector taken on the
interface Γ and oriented from the void to the solid matrix. In (4), the notation
[t]

Γ
represents the jump of t across Γ defined as follows: [t]

Γ
= t+ − t−, where

t+ and t− are the values of the traction vector calculated on both sides of Γ.
When the interface Γ is the bounday between a void and a solid, t− = 0 and
relation (4) reduces to t+ = − divs(τ ).
In equation (4), the interfacial stress, τ , is given by:

τ = τrP (n) +
2τ0
3dseq

(ds + tr(ds)P (n)) (5)

where τr is the interfacial residual stress, τ0 is a material parameter and ds

is the interfacial plastic strain rate which is defined as the restriction of the
total strain rate to the tangent plane of normal unit vector n. In (5), dseq is
the surface equivalent strain rate. The expressions of ds and dseq are:

ds = P (n).d.P (n)

dseq =
[

2

3

(

ds : ds + tr(ds)
2
)

]1/2 (6)

Note that for a spheroidal surface n = eλ, P (n) = eθ ⊗ eθ + eϕ ⊗ eϕ and the
quantities ds and dseq read:

ds = dθθeθ ⊗ eθ + dϕϕeϕ ⊗ eϕ + dθϕ(eθ ⊗ eϕ + eϕ ⊗ eθ)

dseq =
[

4

3
(d2θθ + d2ϕϕ + d2θϕ + dθθdϕϕ)

]1/2 (7)
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3 Limit analysis taking into consideration interfacial stresses

As already mentioned, Hill-Mandel kinematic homogenization approach will
be used to derive the overall plastic potential of the porous solid. Thus, uni-
form strain rate boundary conditions are considered on external surface of the
hollow spheroid:

v(λ = λ2) = D.x (8)

where D is the macroscopic strain rate tensor.

von Mises 

Matrix

v=D.x

void

stress 

interface

Fig. 1. Schematic diagram showing the hollow spheroid with a stress interface.

The limit stress at the macroscopic scale, Σ, is:

Σ =
∂Π

∂D
(D) (9)

where Π(D), is the macroscopic dissipation given by:

Π(D) = inf
v∈K

1

V2

[
∫

Ω−ω
σ0deqdV +

∫

Γ

[t]
Γ
.vdS

]

(10)

where K is the space of admissible velocity fields, i.e. of continuous and dif-
ferentiable velocity fields that comply with condition (8). The first integral
in (10) is computed over the solid matrix, defined by Ω − ω, where Ω is the
domain corresponding to the unit cell, while ω is the domain occupied by the
void. The second integral in (10) is performed over the surface Γ of the void.
It is recalled that V2 = 4πa2b

2
2/3 is the volume of Ω. Using the generalized

Young-Laplace equation (4), it is readily seen that the second integral is re-
lated to the interfacial residual stress and interfacial plastic strain. It then
follows that:
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∫

Γ

[t]
Γ
.vdS = −

∫

Γ

divs(τ ).vdS (11)

Moreover, for any continuously differentiable second order tensor τ and vector
v,

divs(τ .v) = divs(τ ).v + τ : ds (12)

The integral over Γ of the quantity divs(τ .v) being null over any closed surface,
it follows that:

∫

Γ

divs(τ ).vdS = −
∫

Γ

τ : dsdS (13)

Finally, replacing τ by its expression (5), one obtains:

Π(D) = inf
[

1

V2

∫

Ω−ω
σ0deqdV +

1

V2

∫

Γ

τ0d
s
eqdS +

1

V2

∫

Γ

τr tr(d
s)dS

]

(14)

Note that this expression of Π(D) contains three terms: the first is classic in
the context of Limit Analysis of ductile porous media; the last two terms are
associated to interfacial plastic dissipations.
Note that, in the spheroidal coordinate system, the surface integral is defined
by:

∫

Γ

• dS =
∫ ϕ=π

ϕ=0

∫ θ=2π

θ=0

• b1Lλ1
sin(ϕ)dϕdθ (15)

where Lλ1
is the value of Lλ for λ = λ1, i.e. Lλ1

=
√

a21 sin
2(ϕ) + b21 cos

2(ϕ);
for the definition of the volume integral in the expression of Π(D, the reader
is referred to [9,10].

4 The trial velocity field

A crucial step in the derivation of an approximate closed form expression of the
macroscopic potential of the ductile porous material lies in the choice of the
trial velocity field. Generally, this field is composed in two parts: one involving
a constant traceless tensor A, one, denoted vE, which is heterogeneous, i.e.

v = A.x+BvE (16)
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Due to additional difficulties related to the consideration of interfacial stress
effects, we propose here to adopt, for vE, the velocity field considered by
Gologanu et al. [9,10] and Monchiet et al. [20]. This field has the property to
comply with uniform strain rate conditions on any iso-λ = cst spheroid. Its
expression is:







































vEλ =
c3

bLλ

[

1 +
1

2
(1− 3α)(1− 3 cos2(ϕ))

]

vEϕ =
3c3

4ab2Lλ

[(1− α)b2 − 2αa2] sin(2ϕ)

vRθ = 0

(17)

where α depends on λ or equivalently on e and is given by:

α =



















ab2

c3
arctanh

{

c

a

}

−
b2

c2
(prolate void)

−
ab2

c3
arctan

{

c

a

}

+
b2

c2
(oblate void)

(18)

For the explicit dependence of a and b on the coordinates λ and e, the reader
is referred to section 2.
The verification of uniform strain rate boundary conditions at the outer spheroid
λ = λ2 leads to:

A = D −DmT ; B =
a2b

2
2

c3
Dm (19)

where the second order tensor T is given by:

T =
3

2
(1− α)(e1 ⊗ e1 + e2 ⊗ e2) + 3αe3 ⊗ e3 (20)

From equation (17), it is readily seen that the strain rate field in the matrix is
the sum of a homogenous deviatoric field A and a non-homogeneous field d

E:

d = A+Bd
E (21)

with d
E given by:
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dEλλ = −
3c3

ab2
(1− α) +

3c3a

2b2L2
λ

(1− 3α) sin2(ϕ)

dEϕϕ =
3c3

2ab2
(1− α)−

3c3a

2b2L2
λ

(1− 3α) sin2(ϕ)

dEθθ =
3c3

2ab2
(1− α)

dEλϕ =
3c3

4bL2
λ

(1− 3α) sin(2ϕ)

(22)

For application purpose, we consider axisymmetric mechanical loadings. Thus,
the non-null components of the macroscopic strain rate tensor, D, are D11 =
D22 and D33. Let us denote Dq = 2(D33 −D11)/3. It can then be shown that
the equivalent strain rates deq and dseq, which appear in the expression of the
macroscopic dissipation Π(D) (see (14)) read:

deq =
√

D2
q + 2DqDmF1(λ, ϕ) +D2

mF2(λ, ϕ)

dseq =
√

D2
qG1(ϕ) + 2DqDmG2(ϕ) +D2

mG3(ϕ)

(23)

In which, functions Fi(λ, ϕ) and Gi(λ, ϕ) being given by:















































































F1(λ, ϕ) = −(z2 + 3u(α− w2)),

F2(λ, ϕ) = z22 + 6z2u(α− w2) + 3u2

[

1 + 3α2 + 2(1− 3α)w2

]

,

G1(ϕ) = 1− 3w2 + 3w4,

G2(ϕ) =
1

f

[

(1− 3w2)− (1− 3w2 + 3w4)∆
]

,

G3(ϕ) =
1

f 2

[

4− 2(1− 3w2)∆ + (1− 3w2 + 3w4)∆2

]

(24)

with:

u =
a2b

2
2

ab2
, w =

b cos(ϕ)

Lλ

∆ = z1 − fz2, z1 = 1− 3α1, z2 = 1− 3α2

(25)

The invariants of the macroscopic stresses at yielding are:
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Σm =
1

3

∂Π

∂Dm

Σq =
∂Π

∂Dq

(26)

where Σm = tr(Σ/3 = (2σ11 + Σ33)/3 and Σq = Σ33 − Σ11 (see equation
(14) for the expression of Π(D) and (23) to (25) for deq and dseq). Thus, the
macroscopic criterion is obtained by computing numerically the three integrals
in equation (14).

5 Results

In this section, we propose to illustrate the salient features of the new model,
namely the effects of the void size on the macroscopic yield strength of the
ductile material containing spheroidal nanocavities, in this section we present
projections of the developed analytic macroscopic criterion in the deviatoric
plane. As mentioned above, axisymmetric loadings are considered; the stress
invariants being Σq = Σ33 − Σ11 and Σm = (2Σ11 + Σ33)/3.

0 0.5 1 1.5 2 2.5 3

−1.5

−1

−0.5

0

0.5

1

1.5

k=0

k=0.25
k=0.5

Σq/σ0

Σm/σ0

Fig. 2. Yield loci for spherical nanovoids. Comparison between the upper bound of
[6] (dashed line) and the exact, numerical two-field criteria (full line with circles)
for a porosity f = 0.1 and for various values of k = τ0/(b1σ0).

We first consider the limiting case of spherical nano-cavities. In figure 2, we
compare the predictions obtained by numerically evaluating the integral (14)
with that obtained with the approximate criterion [6] for various values of
the non dimensional parameter k = τ0/(b1σ0) and fixed porosity f = 0.1 (τr,
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being considered null). Clearly, the results shows an important effect of the
the cavity size on the macroscopic yield locus, the yield surface being larger
when the parameter k = τ0/(aσ0) increases, this corresponding to a decrease
of the size of the void.
Note the very good agreement between the approximate criterion of Dormieux-
Kondo [6] and the numerical results. One reason is that the trial velocity field
used by [6] is the one already used by Gurson [12] to which the trial velocity
field (Eq. (16) with (17)) reduces in the case of spherical cavities. Thus, the
numerical results validate the approximations used in [6] by these authors. In
the particular case k = 0, the criterion [6] reduces to Gurson’s one. This is
physically sound, since for large values of the cavity radius the term related
to the interfacial stress vanishes.

0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

k=0

k=0.25

k=0.5

0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

k=0

k=0.25

k=0.5

Σq/σ0 Σq/σ0

Σm/σ0Σm/σ0

Fig. 3. Yield loci for a prolate cavity with an aspect ratio a1/b1 = 2 (at the left)
a1/b1 = 5 (at the right) and a porosity f = 0.1.
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0 0.5 1 1.5 2 2.5 3 3.5

−1

−0.5

0

0.5

1

k=0

k=0.25

k=0.5

Σq/σ0 Σq/σ0

Σm/σ0Σm/σ0

Fig. 4. Yield loci for an oblate cavity with an aspect ratio a1/b1 = 1/2 (at the left)
a1/b1 = 1/5 (at the right) and a porosity f = 0.1.

On figure 3 is represented the yield surface for the case of a prolate cavity. On
the left, the macroscopic yield surface corresponds to cavities having an aspect
ratio a1/b1 = 2 while at the right, similar results are provided for the aspect
ratio a1/b1 = 5. The porosity f = 0.1 is considered and various values of the
non dimensional parameter k = τ0/(b1σ0) are taken (the interfacial residual
stress τr is still considered as zero). Figure 4 displays similar results for the
case of an oblate cavity. At the right, the aspect ratio is a1/b1 = 1/2 while at
the left, the aspect ratio is a1/b1 = 1/5. As for the case of a spherical void,
the surface effect induce an increase of the resistance surface of the ductile
porous medium with nano spheroidal cavities. It must be also noted that the
size effect seems to be more significant in the case of an oblate cavity than
for a prolate one (particularly for the aspect ratio a1/b1 = 1/5). The reason is
that, for the same volume, the area of the void surface is greater for an oblate
cavity than for a prolate one.
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Fig. 5. Yield loci for a prolate cavity with an aspect ratio a1/b1 = 5 (at the left) for
an oblate cavity with a1/b1 = 1/5 (at the right) and a porosity f = 0.1 and for two
values of the parameter kr = τr/(b1σ0).

For completeness, we now propose to evaluate the effect of the interfacial
residual stresses on the macroscopic yield surface of nanoporous materials. On
figure 5, at the left, are represented the surfaces of resistance for a prolate
cavity with the aspect ratio a1/b1 = 1/2, a porosity f = 0.1 and two values for
the non dimensional parameter kr = τr/(b1σ0). At the right, are represented
similar results for the case of an oblate cavity having the aspect ratio a1/b1 =
1/5. A significant influence of the residual stress on the yield strength of ductile
porous media with nanosized spheroidal cavities is observed. More precisely,
that residual stresses induce a translation of the center of the macroscopic
yield surface along both axis related to the macroscopic stress invariants Σm

and Σq. This imply an asymmetry of the macroscopic yield strength between
tension and compression. Again, it is observed that the interfacial stress effects
more pronounced for an oblate cavities than for a prolate one (and for the same
reasons that one already mentioned above).

6 Conclusion

In this study the combined effects of void shape and size on yielding of the
porous aggregate were investigated. To this end we have performed the limit
analysis of a spheroidal unit cell made up of a von Mises solid matrix contain-
ing a confocal spheroidal cavity and a stress interface which induce a jump
of the traction vector across the surface of the void. That surface effects are
considered with the plastic version of the Gurtin model [21]. In the latter,
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the jump of the traction vector at the void-matrix interface results from two
contributions: : surface residual stresses and plastic strain rates that occurs
at the surface of the void. Numerical calculations, based on the trial veloc-
ity field introduced by Gologanu et al. [9,10], has been performed in order to
derive an upper bound for the macroscopic yield criterion. Illustrations has
been provided for various shape of the cavity and various values of the mate-
rial parameters which enter into the stress interface model. That applications
clearly show a significant effect of the stress interface on the macroscopic yield
surface of plastic materials containing spheroidal nanocavities. First, the in-
terfacial stress effect due to the surface plastic deformation is characterized,
at the macroscopic level, by an increase of the yield strength. The interfacial
residual stress induces a change in position of the macroscopic plastic surface
which implies an asymmetry between tension and compression. For complete-
ness, it must be mentioned that the surface effects on the macroscopic yield
strength of nanoporous media are more significant for oblate cavities than for
a prolate one.
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