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Surface elasticity and nonlinear effects are reported in ZnO nanowires and characterized by ab initio calcu-
lations. Fully anisotropic elastic and stress coefficients related to (101̄0) surfaces are provided and used to
construct a continuum model of nanowires based on the Gurtin-Murdoch surface elasticity theory, able to
capture mechanical size effects. Nonlinear elasticity is observed through non-zero third order energy deriva-
tive terms with respect to axial strain in the direction of the nanowire. The associated material parameters
are found to be themselves size-dependent.

I. INTRODUCTION

ZnO nanowires have been intensively studied due
to their potential in different applications, includ-
ing electronic and optoelectric devices, gaz sensors,
photodetectors1, integrated nanodevices2, novel field ef-
fect transistors3,4, detection of polluted or toxic gases
and other species5,6, or prototypes of energy harvest-
ing devices7,8. Their unique properties, like quasi-
one-dimensionality, wide band gap (3.37 eV), or self
assembly2 make them promising as building blocks for fu-
ture integrated electronics and mechanical nanosystems.
Many ZnO nanostructures can nowadays be routinely
synthesized9–14.
Given the high surface-to-volume ratio of nanowires,

effects of surface on their elastic behavior may be
prominent, as revealed by the experiment of Chen et
al.15. The size-dependent mechanical properties can
be well explained by the effects of surface energy. In
particular, the surface elasticity model provided by
Gurtin and Murdoch16 suits well for characterizing the
elastic deformation of nanostructures at the contin-
uum level, as demonstrated experimentally and through
simulations17–20. That model has been widely adopted
to elucidate the surface effects on the elastic bahavior of
nanosystems19–25.
Several first-principles studies have been conducted on

wurtzite ZnO surfaces26–32. Marana et al.33 have inves-
tigated (101̄0) and (112̄0) surfaces by means of DFT,
analyzing relaxation and stability, with comparison to
experiments. Diebold et al.34 have studied elastic and
acoustic vibrations frequencies with surface effects in
ZnO nanoparticles using semi empirical potentials (shell
model). Na and Park35 have analyzed surface energy
and surface relaxation of ZnO and ZnS systems by first-
principles calculations. Experimental studies on ZnO
surfaces can be found e.g. in36,37. In all mentioned stud-
ies, a simple model for the surface was employed, for
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example using an isotropic surface stress parameter38.
Though valid for some systems such as Ag or Pd, this
is not the case for ZnO, where the surface behavior is
fully anisotropic. It is also worth mentioning that exper-
imental results regarding size effects in ZnO nanowires
are highly contradictory, some works reporting an in-
crease of the Young’s modulus with a decrease of the
diameter15,39,40, while others41,42 observe an opposite
trend.

The modeling of surface behavior in nanosystems is
mandatory to construct continuum models able to op-
erate over a wide range of scales, to avoid restric-
tions on the number of atoms and to study complex
integrated nanosystems. In this work, we character-
ize surface elasticity, nonlinear effects and their relation
to size-dependent effective properties of ZnO wurtzite
nanowires, by means of ab initio calculations. First, a
multiscale continuum model able to take into account
arbitrary sizes, geometrical configurations and loads is
presented. Then, surface elasticity of ZnO wurtzite
nanowires is characterized for (101̄0) surfaces by identify-
ing constants of the surface elasticity and residual stress
tensors. A comparison between the continuummodel and
full ab initiomodels of nanowires is provided to assess the
validity of the multiscale modeling approach. In addition,
we report nonlinear elasticity of ZnO nanowires, which
is characterized by a non-zero third derivative of the po-
tential energy with respect to axial strain. We show that
the corresponding coefficients are also size-dependent.

II. CONTINUUM MODEL

According to the Gurtin-Murdoch model16, an elastic
body defined over a domain Ω ∈ R3, coated by an elastic
surface denoted by ∂Ω is characterized in the absence of
body forces by

σij,j = 0 in Ω, (1)

σs
kj,iPkj + [[σijnj ]] on ∂Ω, (2)
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Pij = δij − ninj , (3)

σij = Cijklεkl, (4)

σs
ij = Cs

ijklε
s
kl + τsij , (5)

where indices correspond to cartesian coordinates, σ and
σs denote bulk and surface Cauchy stress tensors, [[.]]
denotes jump between interface and bulk, P is an or-
thogonal projector operator describing the projection on
the plane tangent to ∂Ω at x ∈ ∂Ω and n is the out-
ward unit normal vector to ∂Ω. In Eqs. (4)-(5), ε and C
denote linearized strain and bulk elasticity tensors, and
εs, Cs and τ s denote surface strain, surface elasticity,
and surface residual stress tensors, respectively. Eq. (1)
refers to the bulk equilibrium, Eq. (2) refers to the sur-
face equilibrium25,43, while Eqs. (4), (5) define the bulk
and surface stress-strain constitutive laws. Surface strain
is related to bulk counterpart through εsij = PikεklPlj .
The surface is assumed to be attached to the bulk. Eqs.

(1)-(5) are completed by the displacement and traction
boundary conditions on respective complementary and
disjoint portions of the boundary ∂Ω. The set of equa-
tions can be solved numerically for an arbitrary geome-
try, size, and loading configuration by means of the finite
element method19. For this purpose, the energy of the
system submitted to an applied external force F , in the
absence of body forces, expressed by19,25

∫
Ω

1

2
Cijklεkl(u)εij(u)dV +

∫
∂Ω

1

2
Cs

ijklε
s
kl(u)ε

s
ij(u)dS =∫

∂Ω

FiuidS −
∫
∂Ω

τ sijε
s
ij(u)dS(6)

is varied with respect to the nodal displacements asso-
ciated to a finite element mesh discretizing the domain
Ω. To fully define the problem, the elastic coefficients
Cijkl, C

s
ijkl and τsij must be characterized. In the case of

wurtzite the bulk elastic tensor can be expressed by five
independent constants in Voigt’s notation: C11, C33, C44,
C12 and C13. For hexagonal monocrystalline nanowires,
the external surfaces are identical and correspond to the
(101̄0) facets. The surface stress can be related to the
surface strain through four independent constants Cs

11,
Cs

13, C
s
33 and Cs

55 and two residual stress components τs1
and τs3

19,20.

III. IDENTIFICATION OF BULK AND SURFACE
ELASTIC PARAMETERS

Elastic parameters are calculated by ab initiomethods.
Computations are performed with the periodic CRYS-
TAL09 code44. This code implements both Hartree-
Fock (HF) and Density Functional Theory (DFT) anzats
for electronic structure calculations, using Gaussian-type
nuclei-centered basis functions to express the electronic

TABLE I. Bulk parameters: units of a, c and u are in Å, while
all other elastic constants are in GPa.

a c u C11 C33 C12 C13 C44

PW91 3.274 5.281 0.379 201.4 216.5 117.6 102.9 34.1
PBESOL 3.237 5.220 0.379 214.9 230.2 133.1 119.4 32.1
PBE0 3.261 5.215 0.381 224.9 229.3 128.5 112.4 41.3
B3LYP 3.281 5.281 0.380 217.2 229.0 116.1 98.8 43.1
HF 3.288 5.232 0.383 241.5 231.9 122.2 102.7 57.7

Expt.46 3.250 5.206 0.382 190 196 110 90 39

wave-functions. In our calculations we use the follow-
ing basis sets: 86-411d31G for Zn30 and 8-411(1)G for
O45. For wurtzite bulk system, both HF and DFT cal-
culations are performed. For DFT, the extra large space
integration grid (XXGRID option for CRYSTAL) is em-
ployed. The Pack-Monkhorst shrink parameters was set
to 8. Both local (PW91, PBESOL) and hybrid (PBE0,
B3LYP) DFT functionals have been tested. Note that
the hybrid functionals or HF calculations are much more
expensive, especially for large slabs or wires with many
atoms in the unit cell. Finally, for wires and slabs,
PBESOL and PBE0 methods were retained. In CRYS-
TAL09, the analytic energy derivatives with respect to
cell deformation have recently been implemented. This
allows for more efficient calculations of elastic constants
as first derivatives of code-provided analytic gradients. In
our calculations we use the 3-point numerical derivatives
with deformation amplitudes of ±0.005. At all deformed
configurations, the nuclear positions were fully relaxed
to account for nuclear contribution to elastic properties.
The computed values are reported in Table I and com-
pared with experimental data46. We note that the differ-
ent ab initio results agree within 5-10% which can thus
be considered as a measure of ab initio error.

The same procedure, described in19,20, is employed for
computing the surface parameters. Different slab sys-
tems are defined, each comprising a number N of layers
with 4N atoms in the slab unit cell. In Table II, the
elastic parameters of the slab models (in Hartree/atom)
are provided with respect to the number of atoms lay-
ers N19,20 using PBE0 and PBESOL functionals, respec-
tively.

To extract surface parameters, these data are fit to a
linear function of surface weight

w =
2

N
. (7)

For example,

Cslab
11 (w) = (1− w)C11(0) + wCS

11, (8)

where C11(0) = C∞
11 is a bulk limiting value19,20. Figure 1

provides plots of the elastic constants for the slabs with
respect to the surface weight w, while figures 2 shows
the plots of the surface stress. In these figures, all units



3

TABLE II. Slab elastic parameters (in Hartree/atom) using
PBE0 and PBESOL functionals

N Cslab
11 Cslab

33 Cslab
13 Cslab

55 τslab
1 τslab

3

PBE0
3 0.45457 0.38404 0.13944 0.12682 -0.01418 -0.00952
4 0.44783 0.40824 0.13998 0.12359 -0.01032 -0.00679
5 0.44201 0.42391 0.13966 0.12458 -0.00834 -0.00573
6 0.43759 0.43051 0.13767 0.12043 -0.00678 -0.00462
7 0.43475 0.43809 0.13791 0.12083 -0.00590 -0.00421
8 0.43194 0.44137 0.13650 0.11902 -0.00509 -0.00363
9 0.43061 0.44616 0.13689 0.12082 -0.00456 -0.00339
10 0.42862 0.44743 0.13555 0.11803 -0.00402 -0.00296
12 0.42642 0.45345 0.13587 0.11728 -0.00332 -0.00255
20 0.42242 0.46087 0.13439 0.11617 -0.00193 -0.00173
∞ 0.41691 0.47641 0.13266 0.11377 0 0

PBESOL
3 0.38863 0.35218 0.11891 0.09407 -0.01279 -0.00871
4 0.38318 0.37874 0.12230 0.09199 -0.00931 -0.00617
5 0.37825 0.38976 0.12348 0.09075 -0.00741 -0.00465
6 0.37434 0.39867 0.12339 0.09005 -0.00621 -0.00385
7 0.37230 0.40406 0.12282 0.08957 -0.00532 -0.00329
8 0.36968 0.40845 0.12210 0.08920 -0.00466 -0.00285
9 0.36820 0.41191 0.12196 0.08889 -0.00414 -0.00251
10 0.36771 0.41468 0.12219 0.08866 -0.00373 -0.00224
20 0.36159 0.42751 0.12115 0.08727 -0.00190 -0.00121
∞ 0.35972 0.44484 0.12349 0.08724 0 0

TABLE III. Surface elastic parameters for ZnO (in N/m).

Cs
11 Cs

33 Cs
13 Cs

55 τs
1 τs

3

PBE0 49.127 34.899 15.096 13.677 -2.126 -1.362
PBESOL 42.435 32.568 13.345 10.121 -1.906 -1.174

are in Hartree/atom and the PBESOL solution is shown.
Conversion from Hartree/atom to N/m is done through

C(N/m) =
4

S
C(Hartree/atom), (9)

where S = ac is the area of the surface unit cell.
For coefficient Cslab

13 (see figure 1), the variations of
the values with respect to the number of slab layers N
are comparable to numerical errors and cannot be used
to clearly perform a linear fit. We use only the values
for N ≥ 5 to compute Cs

13. It is worth noting that the
coefficient Cs

13 has a negligible influence on the simula-
tion results. The obtained surface elastic parameters are
reported in Table III.

IV. COMPARISONS BETWEEN FULL AB INITIO NW
MODELS AND CONTINUUM MODEL

To provide a reference solution, full nanowires models
with different diameters are solved by ab initio calcula-
tions. Periodicity is taken into account in the axial di-
rection. Results regarding the effective Young’s modulus
E and axial residual stress τ3 are provided in Table IV
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FIG. 1. Sample plots of Cslab
11 , Cslab

33 , Cslab
13 and Cslab

55 against
the surface weight w (in Hartree/atom).

in Hartree/atom and in GPa. Conversion into standard
units (GPa) is realized by

C(GPa) =
M

V
C(Hartree/atom), (10)

where M = 12N2 is the number of atoms in the unit cell,
and V is the unit cell volume. The unit cell volume is
calculated according to

V =
3
√
3

8
cd2, (11)
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FIG. 2. Sample plots of τslab
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3 against the surface
weight w (in Hartree/atom).

where c is the unit cell length (unrelaxed, i.e. taken as the
unperturbed bulk value) and d is the nanowire diameter.
The definition of the nanowire diameter is controversial.
In the present work, we adopt the following definition:
we take the unrelaxed nanowire diameter such that the
nanowire volume is equal to that of ideal, unrelaxed in-
ternal bulk-like part of the nanowire, V = Nbulk

Vbulk

4 ,

where Nbulk = 12(N − 1)2 is the number of atoms in
the internal part of the wire, and Vbulk

4 is the per-atom
volume in the bulk material. This definition leads to

d = 2(N − 1)a. (12)

The full ab initio results are compared to the solution
obtained by solving the finite element model described
in19. Results related to Young’s modulus and axial re-
laxation ε03 = −τ/E are provided in figures 3 (a) and (b).
No noticeable change was observed between continuum
solutions obtained by both sets of surface elastic param-
eters reported in table III. In each case, we can note a
reasonable agreement between the continuum model us-
ing the surface elastic parameters and the full ab initio
calculations.

V. NONLINEAR EFFECTS

We report nonlinear elasticity when nanowires are
stretched in the axial direction. We have computed by
ab initio method the third derivative of the energy, which
is found to be nearly constant with respect to the axial
strain. Higher-order derivatives are also computed and

TABLE IV. Effective elastic Young’s modulus E and residual
stress τ3 (in Hartree/atom) and in GPa

N E τ3 E τ3

PBESOL (in Hartree/atom) PBE0 (in Hartree/atom)
2 0.26257 -0.00714 0.28846 -0.00780
3 0.31984 -0.00463 0.33506 -0.00500
4 0.32856 -0.00334 0.35872 -0.00368
5 0.34301 -0.00260 0.37256 -0.00292
6 0.35242 -0.00213 0.38223 -0.00244
7 0.35873 -0.00183 0.39024 -0.00212
∞ 0.40245 0 0.43420 0

PBESOL (in GPa) PBE0 (in GPa)
2 386.7 -10.5 419.0 -11.3
3 265.0 -3.84 273.8 -4.09
4 215.1 -2.19 231.6 -2.38
5 197.3 -1.50 211.4 -1.66
6 186.9 -1.13 199.9 -1.28
7 179.8 -0.92 192.9 -1.05
∞ 148.3 0 157.8 0
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FIG. 3. Comparison between full ab initio calculations and
continuum model: (a) Young’s modulus; (b) axial relaxation
strain.

found to be negligible. In Hartree/atom, the third deriva-
tive of the strain density energy is expressed by

T =
1

M

∂3E

∂ε33
, (13)

with M being the number of atoms per unit cell, and its
volume equivalent, in GPa, defined similarly to Young’s
modulus as

T (GPa) =
1

V

∂3E

∂ε33
, (14)
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with V being the effective volume of the nanowire defined
by Eq.(11). Taking into account this non-linear term, the
tangent effective Young’s modulus becomes deformation
dependent:

ET (ε) = E + εT. (15)

Thus, to get Young’s modulus for fully relaxed
nanowire, the corresponding value of ε defined in the pre-
vious section, must be used. This leads to the predicted
value of the relaxed Young’s modulus, ET,pred = ET (ε

0
3).

The computed values of T are provided in Table V,
and the predicted Young’s modulus is compared with ab
initio values ET,calc calculated independently at fully re-
laxed nanowire length. One can immediately notice that
accounting for nonlinear term greatly improves the agree-
ment between predicted and calculated values. We fur-
ther remark that the values of T are size-dependent, when
expressed in GPa, while almost constant when expressed
in Hartree/atom.
We point out that the change of the reference length in

the definition of the strain results in a modified definition
of dimensionless deformation and thus in the Young’s
modulus. We found that this change is very small for the
considered cases and can be safely omitted. Also, the
unrelaxed diameter was used to calculate both ET,pred

and ET,calc. Finally, we point out that if the nonlinear-
ity is taken into account, the continuum model described
in section II is no more available. In that case, a full non-
linear constitutive law should be identified for both bulk
and surface and an iterative solving procedure should be
used to numerically solve the problem.

VI. CONCLUSIONS

We have performed ab initio calculations on ZnO
(101̄0) surfaces and on full ZnO nanowires with differ-
ent diameters. A special procedure has been established
to extract the surface elastic coefficients. These coeffi-
cients can be used in multiscale continuum models, which
are very useful to avoid the limitations of ab initio cal-
culations for nanowires of larger diameter, non periodic
configurations, or when many interacting nanowires are
involved. The conclusions are summarized below.

1. We have provided elastic surface parameters for
ZnO wurtzite nanowires using ab initio calcula-
tions.

2. A continuum model using the computed coeffi-
cients has been compared to full ab inito models
of wurtzite nanowires. A good agreement is no-
ticed regarding the effective Young’s modulus as
well as the axial relaxation of the nanowire. The
size-dependent properties are well captured by the
constructed continuum model.

3. We have reported size-dependent nonlinear elastic-
ity in ZnO nanowires. The related coefficients, also
computed by means of ab initio calculations, are
provided.
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