
HAL Id: hal-00711326
https://hal.science/hal-00711326v2

Preprint submitted on 22 Sep 2012 (v2), last revised 29 Oct 2012 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Noise generation in the solid Earth, oceans, and
atmosphere, from non-linear interacting surface gravity

waves in finite depth
Fabrice Ardhuin, Thomas H. C. Herbers

To cite this version:
Fabrice Ardhuin, Thomas H. C. Herbers. Noise generation in the solid Earth, oceans, and atmosphere,
from non-linear interacting surface gravity waves in finite depth. 2012. �hal-00711326v2�

https://hal.science/hal-00711326v2
https://hal.archives-ouvertes.fr


Under consideration for publication in J. Fluid Mech. 1

Noise generation in the solid Earth, oceans,
and atmosphere, from non-linear interacting

surface gravity waves in finite depth

FABRICE ARDHUIN1
AND T. H. C. HERBERS2
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Oceanic observations, even in very deep water, and atmospheric pressure or seismic
records, from anywhere on Earth, contain noise with dominant periods between 3 and
10 seconds, that can be related to surface gravity waves in the oceans. This noise is
consistent with a dominant source explained by a nonlinear wave-wave interaction mech-
anism, and takes the form of surface gravity waves, acoustic or seismic waves. Previous
theoretical works on seismic noise focused on surface (Rayleigh) waves, and did not con-
sider finite depth effects on the generating wave kinematics. These finite depth effects
are introduced here, which requires the consideration of the direct wave-induced pres-
sure at the ocean bottom, a contribution previously overlooked in the context of seismic
noise. That contribution can lead to a considerable reduction of the seismic noise source,
which is particularly relevant for noise periods larger than 10 s. The theory is applied
to acoustic waves in the atmosphere, extending previous theories that were limited to
vertical propagation only. Finally, the noise generation theory is also extended beyond
the domain of Rayleigh waves, giving the first quantitative expression for sources of seis-
mic body waves. In the limit of slow phase speeds in the ocean wave forcing, the known
and well-verified gravity wave result is obtained, which was previously derived for an
incompressible ocean. For all these acoustic, gravity-acoustic or seismic modes, the noise
level of each mode is given by a mode-specific amplification of the same wave-induced
pressure field near the zero wavenumber.

Key words: Hydrodynamic noise, Surface gravity waves, Air/sea interactions

1. Introduction

Ocean waves generate noise in a wide range of acoustic frequencies fs. The upper end
of the spectrum, fs > 100 Hz, is dominated by wave breaking and associated bubbles
(Knudsen et al. 1948), whereas the lower frequency part, nominally fs < 2 Hz is mostly
expected to be caused by the nonlinearity of the hydrodynamic equations, on which we
focus here. The general sound generation by fluid flows was described theoretically by
Lighthill (1952). Longuet-Higgins (1950) showed how seismic waves can be generated by
the same process, with noise radiating along the Earth’s crust in the form of Rayleigh
waves. That theory was extended to random waves by Hasselmann (1963), and later cast
in the more general framework of wave-wave interactions (Hasselmann 1966). Work on
compressible flows has also been extended to the study of tsunamis. In that context,
Okal (1988) discussed the compressibility effect on gravity modes, which we will call here
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’acoustic-gravity modes’, and the gravity effect in seismic ’pseudo-Rayleigh’ waves, that
we will refer to as ’Rayleigh’ modes. Interest in seismic noise has risen sharply over the
last few years with the enforcement of the Comprehensive Nuclear Test Ban Treaty, and
motivated by the work of Shapiro et al. (2005) who demonstrated that seismic noise
correlation could provide a unique monitoring method for the properties of the solid
Earth.
Recent numerical models based on the Longuet-Higgins–Hasselmann (LH-H) theory

for Rayleigh wave generation have shown good agreement of modeled seismic noise spec-
tra with observations (Kedar et al. 2008; Ardhuin et al. 2011). It is still unclear whether
most of the uncertainties on the modeled noise level can be attributed to errors in the
seismic sources, associated with a poorly controlled directional distribution of the ocean
surface wave spectrum, or to errors in the seismic propagation. In particular, the gen-
eration of Love waves, which are shear waves polarized in the horizontal direction, is
not well understood. These Love waves are sometimes observed to be important (e.g.
Bonnefoy-Claudet et al. 2006; Nishida et al. 2008), but otherwise considered to be a
minor component of the noise field (Webb 1998). The only known process leading to
Love waves is mode conversion due to propagation across heterogeneous media, or, in
the case of frequencies below 0.02 Hz, the direct action of long surface gravity waves
(known as infragravity waves), on a sloping bottom (Fukao et al. 2010), in a way similar
to the generation of primary microseisms described by Hasselmann (1963). Such effects
are certainly important. Here we narrow the scope of our investigation and only con-
sider non-linear wave-wave interactions, which leads to noise with frequencies doubled
compared to that of the surface gravity waves.
Seismic observations have focused on body waves (e.g. Koper et al. 2010; Landès et al.

2010; Hillers et al. 2012), for which no complete theory has been proposed to date. Vinnik
(1973) did propose a theory for compressional (P ) waves, but he did not consider the
important effect of the water layer.
Finally, the level of acoustic noise has also been explored as a potential source of in-

formation on the poorly known directional spectrum of short gravity waves (Tyler et al.
1974). Farrell & Munk (2008, 2010) and Duennebier et al. (2012) showed a large vari-
ability of the spectral level in the frequency range 0.1–50 Hz that is clearly related to the
sea state. Their interpretation of the data, following previous studies of underwater noise
(e.g. Hughes 1976; Lloyd 1981; Kibblewhite & Ewans 1985), is based on sound generated
by waves in an unbounded ocean. Although this simplified approach is reasonable for high
frequency noise, the neglected reflection from the seafloor and subsequent reverberations
in the bounded ocean may strongly amplify the lower frequency resonant modes.
Given the renewal of interest in seismic and acoustic noise, we found it appropriate to

revisit Hasselmann’s theory. We thus illustrate, correct, and add a few missing aspects.
These corrections include important terms for intermediate and shallow water that have
not been considered before for the compressible conditions, although they were verified in
the incompressible limit (Herbers & Guza 1994). The compressible equations of motion
are used to derive a consistent solution in terms of gravity, acoustic and seismic modes,
including both surface Rayleigh waves and compressional (P) or shear (S) body waves.
This solution for body waves has not been given before.
Building on the seismo-acoustic paradigm proposed by Arrowsmith et al. (2010), the

basic idea of the present paper is that all modes of motion can be excited by ocean surface
gravity waves (OSGW) of any frequency. For a given pair of interacting frequencies f and
f ′, the frequency of the generated noise is f+f ′, and the different types of waves are only
distinguished by their phase velocity, or equivalently by their horizontal wavenumber K
which is the norm of the vector sum of the wave numbers, K = k+ k′ of the interacting
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Figure 1. (a) The vertical evanescent or propagating nature of the noise field in the solid and
liquid layers is defined by the horizontal phase speeds relative to the distinct values of the sound
speed in the ocean (αw), and the shear (β) and compression (αc) speeds in the crust. From
slow to fast, there are the acoustic-gravity (AG) domain, the Rayleigh (R) wave domain, and
two body wave domains (S only, and P and S together) (b) For any fixed frequency, the four
domains correspond to 4 concentric regions in the wavenumber plane. For three selected noise
frequencies generated by OSGW in the infragravity, dominant and high frequency ranges of
the forcing wave field, the limiting wavelengths between the four domains are indicated, using
αw = 1.5 km/s, β = 3.2 km/s, αc = 5.54 km/s. One example of interaction (black vectors) is
shown with two gravity wave modes that interact to generate a Rayleigh wave.

OSWG, as shown in figure 1. This type of wave-wave interaction is one of the lowest
order interactions (Hasselmann 1966).
In the physical space, one such interaction excites waves with horizontal wavelength

Lh = 2π/K, and different vertical patterns in the atmosphere, ocean and crust, due to
the very different speeds for compression waves in these three media. Figure 2 shows how
the same forcing can give almost vertical-propagating waves in the atmosphere, waves
that propagate almost horizontally in the ocean, and evanescent waves in the crust. The
analysis of a pair of interacting wave-trains is key to our interpretation of the different
noise modes. In practice, the broad-banded wave spectrum results in the superposition of
all possible pairs of OSGW waves trains, and thus all possible noise waves propagating or
evanescent, that radiate in all directions. For wavelengths much larger than those of the
interacting OSWG and for a spatially homogeneous wave field, the wave-induced forcing
is equivalent to a point force exerted on the sea surface (Longuet-Higgins 1950). Table 1
points directly to the main theoretical results of the present paper, and all symbols and
notations are listed in tables 2–3.

2. Water waves theory and noise sources

Here we give only a brief derivation of the solution, which is a straightforward com-
pressible extension to the solution given by Hasselmann (1962). Water column motions
are expanded in powers of the sea surface slope with a linear motion for which com-
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Figure 2. Left, schematic of second-order pressure field, in colours, associated with double-fre-
quency noise, forced by the interaction of a single pair of directionally opposing monochromatic
wave trains on the sea surface that form periodic groups. The individual waves in the group
advance very slowly, at the OSWG phase speed. However, in this particular case, the group as
a whole travels slightly faster than the sound speed in water, and slower than the crust shear
and compression velocity. As a result, the crust elastic waves are evanescent while ocean and
atmospheric waves propagate also in the vertical. In the ocean, the superposition of upward and
downward waves (dashed lines) gives the vertical mode structure. The number of waves in the
group was reduced for visibility, and for the same reason the amplitudes of the sea surface and
bottom elevations have been exaggerated as well as the pressure fluctuation in the atmosphere
relative to those in the ocean. Right, schematic of ocean waves with a relatively broad spec-
trum, giving rise to the interaction of all possible pairs of wave trains and noise radiation in all
directions.

Table 1. Summary of theoretical expressions for the gravity, acoustic and seismic noise fields.
infinite water depth finite water depth h

Surface forcing field eq. (2.29) eq. (2.28)
Bottom forcing field n.a. eq. (2.31)
gravity-like modes eq. (3.11) not given
acoustic spectrum eq. (3.10) eq. (4.23)
microbaroms eq. (3.19) eq. (3.19)
seismic source (R) n.a. eq. (4.32)
seismic source (P) n.a. eq. (4.38)
seismic source (S) n.a. eq. (4.40)
seismic spectrum (R) n.a. eq. (4.36)
seismic spectrum (P) n.a. eq. (4.45)

pressible effects may be neglected (Longuet-Higgins 1950), and a second order motion
with pressure p2 and velocity potential φ2. It is for this second order motion that we are
extending previous results. Following again Longuet-Higgins (1950) we will see that φ2
approximately obeys the same linear acoustic wave equation as φ1, so that the forcing
of the double-frequency noise is only due to boundary conditions. In contrast to Hassel-
mann (1963), we consider here the general finite depth expression for the surface pressure
forcing p̂2,surf , and in the boundary condition at the ocean bottom the additional forcing
p̂2,bot that accounts for the Bernoulli effect of the near-bed orbital wave motion. The
theory presented here extends the second order finite depth theory of Hasselmann (1962)
to a compressible ocean and elastic seafloor.

2.1. Equations of motion

We decompose the water density into a mean value ρw and a perturbation ρ ≪ ρw. Ne-
glecting stratification effects due to temperature and salinity, the fluctuations in pressure
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p and water density ρ are related by an equation of state, which involves the speed of
sound in water αw (Lighthill 1978, eq. 32).

dp

dt
= α2

w

dρ

dt
, (2.1)

We assume that the motion is irrotational so that the velocity field is given by the
gradient of the velocity potential φ. This assumption, which implies a frictionless interior
ocean, is well supported by the observed weak attenuation of swells propagating across
ocean basins (Ardhuin et al. 2009) and local comparisons of the observed wave orbital
motion with second order wave theory (e.g. Herbers et al. 1992). Vorticity effects can be
important in the vicinity of the surface and bottom boundary layers (e.g. Longuet-Higgins
1970), or in the presence of sheared currents (e.g. Peregrine 1976). The former effect has
little influence on the pressure field, which is our primary interest, and we will not consider
here the effects of currents. Because of the importance of the apparent gravity acceleration
g, which defines the vertical axis, we separate horizontal and vertical components using
vectors and gradient operators in the horizontal plane, e.g. u = ∇φ = (∂φ/∂x, ∂φ/∂y)
and w = ∂φ/∂z. The conservation of mass of sea water is

dρ

dt
= −ρw∇2φ− ρw

∂2φ

∂z2
. (2.2)

Equations (2.2)–(2.1) can be combined to eliminate ρ,

dp

dt
= −ρwα2

w

[
∇2 +

∂2

∂z2

]
φ (2.3)

From eq. (2.1), the water density is only a function of the pressure. The two unknowns
p and φ are also related by the momentum conservation equation, with can be cast in
the form of Bernoulli’s equation (see e.g. Lamb 1932, section 20),

∂φ

∂t
= −1

2

[
|∇φ|2 +

(
∂φ

∂z

)2
]
− p

ρw
− gz + C(t), (2.4)

with C(t) a time-varying but spatially uniform function.

The boundary conditions at the surface z = ζ are given by the continuity of pressure
and vertical velocity

p = pa (2.5)

∂φ

∂z
= ∇φ · ∇ζ +

∂ζ

∂t
at z = ζ, (2.6)

with the atmospheric pressure pa. This expression is translated to the mean sea level
z = 0 with a Taylor expansion for φ

∂ζ

∂t
− ∂φ

∂z
≃ −∇φ · ∇ζ + ζ

∂2φ

∂2z
at z = 0. (2.7)

Following Longuet-Higgins (1950), we shall now expand the solution in powers of the
surface slope, with the sea surface elevation ζ1, associated with linear waves, and a non-
linear correction ζ2 such that |ζ2| ≪ |ζ1| (see also e.g. Hasselmann 1962),

ζ = ζ1 + ζ2, φ = φ1 + φ2. (2.8a,b)
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2.2. Linear solution

We consider the case of a constant depth h. Compressibility effects in the linear solution
are negligible for our purpose (see Longuet-Higgins 1950, eq. 123), so that we may use

ζ1 =
∑

k,s

Zs
1,ke

i(k·x−sσt), φ1 ≃
∑

k,s

−i
sg

σ

cosh(kz + kh)

cosh(kh)
Zs
1,ke

i(k·x−sσt) (2.9a,b)

where k is the norm of the horizontal wavenumber vector k, s is a sign index equal to
-1 or 1, so that s = 1 corresponds to waves propagating in the direction of the vector k,
and s = −1 corresponds to the opposite direction. The radian frequency σ is given by
the dispersion relation for linear waves (de Laplace 1776) ,

σ =
√
gk tanh(kh), (2.10)

giving the group speed

Cg =
∂σ

∂k
=
σ

k

[
1

2
+

kh

sinh(2kh)

]
. (2.11)

2.3. The negligible near-surface forcing

Eliminating p between (2.3) and (2.4), we obtain the acoustic wave equation

α2
w

[
∇2 +

∂2

∂z2

]
φ =

d

dt

[
∂φ

∂t
+

1

2

(
|∇φ|2 +

(
∂φ

∂z

)2
)]

, (2.12)

where the gravity term has been removed by our approximation of a constant mean
density. That term is usually neglected eventually in the solution (Stoneley 1926). The
expression for the C(t) term in eq. (2.4), is given by eq. (28) in Longuet-Higgins (1950)
and it is actually zero provided that there are no standing waves, i.e. we do not consider
the case of waves trains of exactly equal frequency and opposite direction. For broad
wave spectra we may indeed neglect these contributions since the measure of such pairs
of wave components is zero while the measure of nearly opposite waves is finite.
Our eq. (2.12) corresponds to eq. (130) in Longuet-Higgins (1950), who showed that

the non-linear terms yield a contribution (his F terms) that is of the order of g/(2α2
wk)

times the other terms. Even for very long waves with a wavelength of 50 km, this factor
is 0.02, so that we shall neglect this source of wave forcing. This leads to a linear wave
equation for the second order velocity potential

∂2φ2
∂2t

≃ α2
w

[
∇2 +

∂2

∂z2

]
φ2, for − h 6 z 6 0 (2.13)

2.4. Surface forcing

Because the compressibility only affects the mass conservation equation, it does not
modify the kinematic and dynamic boundary conditions. These are given by Hasselmann
(1962). The unknown ζ is eliminated from the linear terms by adding ∂(2.4)/∂t evaluated
with (2.5), and g× (2.7). This combination of kinetic and dynamic boundary condition
gives an equation for the velocity potential to second order in the wave slope, valid at
z = 0. Keeping the lowest order non-linear terms we have,

(
∂2

∂t2
+ g

∂

∂z

)
φ2 = −g

[
∇φ1 · ∇ζ1 + ζ1

∂2φ1
∂2z

]
− 1

2

∂

∂t

[
|∇φ1|2 +

(
∂φ1
∂z

)2

+ 2ζ1
∂2φ1
∂t∂z

]
.

(2.14)
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We now give the explicit form of the right hand side using eqs. (2.9). As noted by
Hasselmann (1963), we may rewrite (2.14) as

(
∂2

∂t2
+ g

∂

∂z

)
φ2 = − 1

ρw

∂p̂2,surf
∂t

. (2.15)

Namely, our problem is equivalent to the effect of a pressure field p̂2,surf applied at z = 0.
Using the linear solution (2.9),

p̂2,surf = ρw
∑

k,s,k′,s′

Dz (k, s,k
′, s′)Zs

1,kZ
s′

1,k′eiΘ(k,k′,s,s′)

(2.16)

with the phase function of interacting wave trains defined by

Θ(k,k′, s, s′) = [(k+ k′) · x− (sσ + s′σ′) t] (2.17)

and coupling coefficient Dz (k, s,k
′, s′) given by eq. (A 1).

The shape of this pressure pattern is well understood when the full sum in eq. (2.16)
is reduced to only two interacting deep water wave trains with amplitudes a and a′ and
slightly different frequencies σ and σ′, traveling in opposite directions, as shown in figure
3. For kh ≫ 1 we may use Dz (k, 1,−k, 1) = −2σ2 and Dz (k, 1,k, 1) = 0. Defining
K = k − k′, the equivalent surface pressure is given by the sum interaction,

p̂2,surf = −2ρwσ
2aa′ {cos [Kx+ 2σt]} . (2.18)

The corresponding difference interaction yields a short wave, with wavenumber 2k, that
will not be considered here (see e.g. Hasselmann 1963). We note that the wave forcing
p̂2,surf is out of phase with −u2/2, the part of the Bernoulli head which comes from the
horizontal velocities. Indeed, as the wave trains propagate in opposite directions their
velocity partially cancel where the surface elevation add up, so that the long wavelength
perturbations of −u2/2 have a sign opposite to p̂2,surf . That effect will be very important
for waves in shallow water. In deep water, the contribution of −w2/2 is important. Using
σ ≃ σ′, one has

u = σa cos(kx− σt)− σ′a′ cos(kx+ σt) (2.19)

w = σa sin(kx− σt)− σ′a′ sin(kx+ σt) (2.20)

−(u2 + w2)/2 = aa′σ2 cos [Kx+ 2σt]− σ2
(
a2 + a′2

)
/2. (2.21)

Eq. (2.18) generalizes the result given by Longuet-Higgins (1950) for equal wave pe-
riods. The standing wave studied by Longuet-Higgins (1950) is thus obtained, somehow
paradoxically, as the limit of wave groups that travel at an infinite speed, but that are
infinitely long.
For wave directions nearly opposite, instead of exactly opposite, this first term can

propagate in any horizontal direction, given by the direction of K = k+ k′.

2.5. Noise spectrum and finite depth effects

Both LH50 and H63 used the deep-water approximation

p̂2,surf ≃ ρw

[
|∇φ|2 +

(
∂φ

∂z

)2
]

valid for kh≫ 1, (2.22)

instead of the more complex but more general form given by eq. (2.16). We will illustrate
the important differences between these two expressions for kh < 1, by considering the
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Figure 3. Generation of supersonic wave groups (in blue) by the superposition of two opposing
deep water monochromatic wave trains of nearly equal periods T and T ′. The curves show the
surface elevation of the individual wave trains (black and red) or their combination (blue). The
group with length 12 km propagates in the same direction as the wave train with the shortest
wavelength. If the wave trains are not exactly directionally opposing, the group propagates in
the direction of the vector K = k + k′. The red and black dots are attached to the wave crest
of each train, and move 100 times slower than the blue group.

forcing of very long components. Indeed, sound waves in the ocean have velocities in
excess of 1.4 km s−1. As a result, regardless of the vertical wavenumber l, the horizontal
wavenumber vector is relatively small K =

√
(ω2

s/α
2
w − l2) < ωs/αw. Thus the acous-

tically noisy wave interactions verify K ≪ k, which gives k′ ≃ −k, and f ≃ f ′ with
fs ≃ 2f . We may thus focus on the estimation of the spectrum of p̂2,surf at K ≃ 0.
For this purpose we introduce the spectral density of this surface pressure in the three

spectral dimensions (Kx,Ky, fs). Using the Fourier amplitude p̂2,surf(K, fs) of the forcing
pressure p̂2,surf , with wavenumber vector K and frequency fs,

Fp2,surf(K, fs) = 2 lim
|dK|→0,dfs→0

|p̂2,surf(K, fs)|2
dKxdKydfs

, (2.23)

The factor 2 in the expression makes this a single-sided spectrum, with non-zero values
only for fs > 0. This spectral density is in a three-dimensional spectral space, with S.I.
units of Pa2 m2 s; it is denoted Fp3D in Ardhuin et al. (2011).
Using (2.16) the surface pressure spectrum can be expressed in terms of quadratic

products of the (linear) sea surface elevation spectrum

E(kx, ky) = 2 lim
|dk|→0

∣∣∣Z+
1,k

∣∣∣
2

dkxdky
(2.24)

with a coupling coefficient from (A 1) that simplifies for K ≃ 0 to

Dz (k, 1,−k, 1) = −2σ2

[
1 +

1

4 sinh2(kh)

]
. (2.25)

To transform the spectra to frequency-direction space we use the Jacobian transfor-
mation

E(f, θ) =
2πk

Cg
E(kx, ky). (2.26)
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We now introduce the directional distribution M such that E(f, θ) = E(f)M(f, θ), and
we define the directional integral

I(f) =

∫ π

0

M(f, θ)M(f, θ + π)dθ. (2.27)

With these notations we finally obtain

Fp2,surf(K ≃ 0, fs) ≃ ρ2wD
2
z

∫
E(f, θ)E(f, θ + π)

C2
gdkxdky

k24π2dfs

≃ ρ2wg
2fsE

2(f)I(f) tanh2(kh)

[
1 +

2kh

sinh(2kh)

] [
1 +

1

4 sinh2(kh)

]2

(2.28)

In deep water (kh≫ 1), the equivalent surface pressure is p̂2,surf ≃ ρw(u
2
1 +w2

1), and its
spectrum (Hasselmann 1963; Ardhuin et al. 2011)

Fp2,surf(K ≃ 0, fs) = ρ2wg
2fsE

2(f)I(f). (2.29)

As shown in figure 4, this spectral density of surface pressure is, in finite depth, up
to four times smaller than the deep water approximation obtained from eq. (2.22) and
used by Webb (2007) and Tanimoto (2007). This is because the surface pressure actually
combines two terms. One is ρw(u

2
1 + w2

1)/2, from the momentum conservation equation
– which here takes the form of the Bernoulli equation (2.4) – and the other, equal in
magnitude in deep water, comes from the non-linearity of the surface boundary condition
(2.7). As kh goes to zero, both the latter term and the vertical velocity contribution to the
Bernoulli pressure are small compared with ρwu

2
1/2, thus reducing the surface pressure

forcing by a factor four.
This effect is not important for the dominant microseismic peak, generated by waves

of period about 10 s, but it may be important for the much longer waves, known as hum,
driven by long surface gravity waves. However, in that case, one should also consider the
direct action of the wave-induced pressure on the bottom.

2.6. Additional bottom forcing

To evaluate noise in the water column, both the second order pressure forcing applied
at the surface and bottom have to be taken into account. This includes the well known
Bernoulli effect of a pressure drop in response to an increase in velocity. At the bottom,
this wave-induced pressure is −ρwu21/2 which is exactly out of phase with p̂2,surf . In the
limit kh → 0, it cancels the source of noise that would have resulted from the surface
forcing alone. In physical terms, for kh = 0, we have the same momentum balance at
the sea surface and bottom, and thus the same pressure perturbations, which are zero
because the pressure just below the surface has to match the atmospheric pressure.
For any value of kh, the coupling coefficient given by eq. (2.25) differs from the full

second order coefficient for the bottom pressure (e.g. eq. 4 in Herbers & Guza 1991),
which also involves the Bernoulli head (the bracket in eq. 2.4). However, that extra
term is also relevant to the generation of seismic noise due to the bottom boundary
condition that couples the solid crust to the water column. Indeed, the second-order
pressure perturbation at the bottom writes,

p2(−h) = −ρw
∂φ2
∂t

+ p̂2,bot, (2.30)

where the Bernoulli head contribution to the pressure can be expressed from the first
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Figure 4. Compared to deep water, the source of seismic noise power in finite water depth is
amplified by a factor tanh2(kh) [1 + 2kh/sinh(2kh)], when accounting for both the surface and
bottom forcing. This is very different from the approximation that considers the surface forcing
only (leading to eq. 2.28), even more so when using its deep water approximation (eq. 2.22)
which gives an additional factor 4 difference for kh≪ 1.

order wave amplitudes,

p̂2,bot = ρw
∑

k,s,k′,s′

Dpb (k, s,k
′, s′, z = −h)Zs

1,kZ
s′

1,k′eiΘ(k,k′,s,s′), (2.31)

with a coupling coefficient Dpb given by eq. (A 2).
We may interpret the bottom pressure (2.30) as the sum of the surface forcing p̂2,surf

transmitted to the bottom by φ2, and a direct effect of the Bernoulli head at the bottom
which is an additional forcing p̂2,bot that partly cancels p̂2,surf .
We shall see in the next section that the forcing term for seismic noise is p̂2,surf +

cos(lh)p̂2,bot, with l 6 K ≪ k the vertical wavenumber in the water. For shallow water
gravity waves, kh ≪ 1 and thus cos(lh) ≃ 1 so that the effective forcing term becomes
p̂2,surf+ p̂2,bot, which equals the bottom pressure in the incompressible limit. The shallow
water asymptote of the spectrum of this total forcing term is very different from the

surface pressure only. Compared to eq. (2.28), the
[
1 + 0.25/ sinh2(kh)

]2
factor is now

replaced by 1. For kh ≪ 1, this is a factor (kh)4/16 smaller, as shown in figure 4.
This asymptote is relevant for the hum, the noise with periods larger than 30 s, which
is believed to be driven by long (infragravity) surface gravity waves (Webb 2007). The
source of this hum is attenuated by several orders of magnitude on the continental shelves
and not amplified according to the deep water approximation given by eq. (2.22).
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3. From surface pressure spectrum to noise spectra

3.1. Dispersion relation and modes

The problem of noise generation by waves has been reduced to that of noise generation
by an equivalent surface pressure field p̂2,surf(x, y, t), with the possible addition of a
bottom pressure field p̂2,bot(x, y, t) for finite depths. From a statistical point of view, this
equivalent surface pressure is fully represented by its spectrum, Fp2,surf(K, fs) whereK =
k+k′ is the sum of the interacting wavenumbers and fs = f±f ′ is the sum or difference of
the interacting frequencies. Subjected to this surface forcing, our linearized wave equation
(2.13) will have linear solutions. In particular, any propagating or evanescent solution
will take the following form

φ2 ∝ exp[i(Kxx+Kyy + lz − ωst)], (3.1)

which, replaced in the wave equation, gives the dispersion relation
{
−ω2

s + α2
w

[
K2 + l2

]}
= 0, (3.2)

where ωs = 2πfs. Both ωs andK = |K| are imposed by the forcing, so that the magnitude
of the complex vertical wavenumber l is given by

l = K

√
ω2
s

K2α2
w

− 1, (3.3)

which yields

φ2 =
(
Ceil(z+h) +De−il(z+h)

)
eiΘ, Θ = (Kxx+Kyy − ωst) (3.4a,b)

where C and D are the bottom amplitudes of the upward and downward propagating
waves, determined by the surface and bottom boundary conditions.
There are two classes of solutions. Those for which ωs/K 6 αw and thus l is imaginary:

these are ’acoustic-gravity ’ modes with an amplitude that decays exponentially from the
surface. For the shortest components, we have ωs/K ≪ αw and thus l = ik, corresponding
to the incompressible limit in which only gravity is important. The other class of solutions,
for which ωs/K > αw and l is real, are the acoustic modes that propagate along both
vertical and horizontal dimensions, as illustrated in figure 5.
The equations of elasticity in the crust yield the same wave equation, one for com-

pressional and another for shear motions, with αw replaced by the crusts compressional
wave speed αc and shear wave speed βs, respectively (e.g. Aki & Richards 2002). Since
we have αw < βs < αc, we can distinguish four different regimes depending on the value
of the horizontal phase speed ωs/K, relative to these three velocities (fig. 1).

In the family of gravity-acoustic modes, there is no resonance in the forcing, namely
there are no free waves with K = k+ k′ and fs = f ± f ′ and thus the motion is locked
with the forcing wave groups, as verified by Herbers & Guza (1994). The acoustic modes
propagate obliquely to the vertical away from the surface, and interact with the ocean
bottom (figure 5). The seismic Rayleigh waves modes propagate horizontally, combining
an acoustic-like motion in the water and evanescent elastic waves in the crust, illustrated
by figure 2. The coupling with the bottom motion selects a few resonant modes that
dominate the solution, with an energy that grows linearly with the propagation distance
(Hasselmann 1963). For wavenumbers that allow a vertical propagation in the crust, we
obtain body waves. These waves can be compression or shear (P or S) waves, and these
two types occur in overlapping ranges of K.
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Figure 5. Schematic of wave groups and forced acoustic and seismic wave motion. For a given
wave group period T , the horizontal wavelength L = 2π/K can be larger than the acoustic
wavelength in the water due to the oblique incidence of the sound waves. The superposition of two
obliquely propagating sound waves (arrows) forms a mode pattern that propagates horizontally

at a supersonic speed. The acoustic wavelength is La = 2π/ka = 2π/
√
K2 + l2 = αw/T . Both

vertical and horizontal wavelengths are larger. For readability, the wave and bottom amplitude
is not to scale, and we have reduced the number of waves in the group from 104 to 10. Other
than that, the angles are preserved. The configuration shown here corresponds to the conditions
for maximum amplification of mode 1 (see below), with a vertical wavelength to water depth
ratio of 0.75. For a water depth h = 4400 m depth, this corresponds to L = 7.7 km and a seismic
frequency fs = 0.29 Hz.

3.2. Acoustic noise in an unbounded ocean

In order to illustrate the different types of solutions, it is interesting to express the
solution for an unbounded ocean, in which sound waves are radiated from the surface
only. The velocity field and associated pressure fluctuations are

φ2 =
1

ρw

∫
iωsp̂2(K, fs)

−ω2
s + igl

ei[−lz+Θ(k,k′,s,s′)]dKdfs (3.5)

p2 =

∫
p̂2(K, fs)

1− igl/ω2
s

ei[−lz+Θ(k,k′,s,s′)]dKdfs (3.6)

where p2 has been obtained using the linearized version of eq. (2.4). The measurable
pressure signal is the sum of the linear pressure p1, p2 given by eq. (3.6), and the Bernoulli
correction p2,B given by

p2,B(z) = ρw
∑

k,s,k′,s′

Dpb (k, s,k
′, s′, z)Zs

1,kZ
s′

1,k′eiΘ(k,k′,s,s′). (3.7)

We note that p2,bot defined in eq. (2.31) is equal to p2,B(z = −h).
We shall neglect g|l|/ω2

s, which is bounded by the ratio between the deep water gravity
and sound speeds, which is less than 0.1 for wave periods less than 180 s. We express the
velocity potential as a sum of propagating (acoustic, l real) and evanescent (acoustic-
gravity, l imaginary) modes,

φ2 = φ2,p + φ2,e. (3.8)

We get the frequency spectrum of the propagating modes by integrating over the inner
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regions of the wavenumber space (labelled P+S, S and R in figure 1),

Fp2,p(fs) =

∫

K<ωs/αw

Fp2,surf(K, fs)dK. (3.9)

For this range of wavenumbers |k − k′| < K < ωs/αw, and using the relations ωs ≃ 4πf
and, (for small |f − f ′|), |k − k′| ≃ 2π|f − f ′|/Cg ≃ 8π2f |f − f ′|, we obtain an upper
bound for the frequency difference |f − f ′| < g/(2παw) which is close to= 0.001 Hz.
Typical ocean wave spectra have a relative frequency half-width σf/f that is between
0.03 for swells and and 0.07 for wind-seas (Hasselmann et al. 1973), so that E(f) ≃ E(f ′)
is a good approximation for typical wave frequencies, larger than 0.05 Hz.
The wave spectrum is thus broad enough for us to evaluate Fp2,surf at K = 0 using eq.

(2.29), and take it out of the integral in eq. (3.9). The acoustic spectrum simplifies to

Fp2,p(fs) =
πω2

s

α2
w

ρ2wg
2fsE

2(f)I(f). (3.10)

This is identical to the expression given by Lloyd (1981).

3.3. Gravity noise in an unbounded ocean

The pressure associated with acoustic-gravity modes is the other part of the integral
in (3.9), for K > ωs/αw. The imaginary wave number l gives a vertical attenuation of
the power spectrum by a factor e−2|l|z. With that attenuation we may, for large enough
depths, consider that only modes with K ≪ k contribute to the result, so that we may
take Fp2,surf(K, fs) ≃ Fp2,surf(K = 0, fs), and take it out of the integrand. This is only
valid up to a maximum wavenumber Kmax = ǫk. For numerical applications we have
used ǫ = 0.2.
With this approximation we have,

Fp2,e(fs, z) = Fp2,surf(K = 0, fs)2π

∫ Kmax

ωs/αw

Ke2|l|zdK

= Fp2,surf(K = 0, fs)2π

∫ Kmax

0

|l|e2|l|zd|l|

=
π

2z2
ρ2wg

2fs
[
1− e2zKmax

]
E2(f)I(f) (3.11)

A previous investigation by Cox & Jacobs (1989) included an extra factor (1 + zKmax)
in front of the exponential term e2zKmax , because they neglected compressibility effects.
That term, however, becomes negligible very early as the depth increases. Hence, their
observations at depth 100 to 290 m, in more than 4000 m of water, are not affected by
this small compressibility correction.
As shown in figure 6, the oceanic pressure signals can be dominated by linear grav-

ity waves down to depths of a few hundred meters. When looking at the double fre-
quency band, linear waves may only dominate in the top 100 m. At these frequencies,
the acoustic-gravity modes have the most important contribution between about 100 to
500 m, provided that E2(f)I(f) is large enough. Propagating modes should dominate
only beyond about 1000 m in the case of an unbounded ocean, or only 300 m, when
accounting for the reverberation in a finite depth ocean, assuming a typical tenfold am-
plification for a sea floor with realistic elastic properties†. These depths will be reduced

† This amplification depends not only on the impedance ratio of the water and crust, which
defines the amplification coefficients cj derived below, but also on the seismic attenuation coef-
ficient Q, which is discussed in section 4. Realistic calculations following Ardhuin et al. (2011)
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Figure 6. Example of (a) directional wave spectrum and (b) resulting profiles of the different
contributions to the pressure fluctuations in the ocean, assuming infinite water depth. The ratio
of double frequency to linear wave contributions depends on the amplitude of the waves and on
the directional spectral shape, because all double frequency contributions are proportional to
E2(f)I(f). Here we have used a numerically estimated directional spectrum that corresponds
to the source of a loud noise event recorded at the ocean bottom seismometer H2O, on 31 May
2002, with the encounter of swell from a North Pacific storm, with swell from Hurricane Alma
(This event is analyzed in detail by Obrebski et al. 2012).

in the case of surface gravity waves with shorter periods than the 15 s swell taken for the
example in figure 6.

3.4. Atmospheric noise source: microbaroms

The source of noise in the atmosphere can also be derived with the same formalism, as
an alternative to the Green functions used by Waxler & Gilbert (2006). Indeed, we may
consider the atmospheric motion to be irrotational, so that the equations of motion are
identical in the atmosphere and in an unbounded ocean, with the only difference that
the atmospheric density is ρa and the atmospheric sound speed is αa. The second-order
velocity potential takes the form,

φ2,a ∝ exp[i(Kxx+Kyy + laz − ωst)] for z > 0, (3.12)

with

la =

√
ω2
s

α2
a

−K2. (3.13)

Because ρw/ρa ≃ 1000, the air motion has only a small O(ρw/ρa) local influence on
the water motion, so that the solutions derived earlier for the water motion remain valid
in the presence of air. The air motion, with a velocity potential φa also obeying eq. (2.13)
is fully determined from the water motion via the kinematic boundary conditions on the
air and water-sides of the interface (2.7),

∂φa
∂z

− ∂φ

∂z
≃ ∇ (φa − φ) · ∇ζ − ζ

∂2 (φa − φ)

∂2z
at z = 0. (3.14)

typically give a factor 10 to 20 amplification of the sound in the water column due to the bottom
elasticity.
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From the first order potential in the air (e.g. Waxler & Gilbert 2006)

φ1 =
∑

k,s

is
g

σ
Zs
1,ke

−kzei(k·x−sσ) (3.15)

we obtain the second order potential,

∂φ2,a
∂z

=
∂φ2
∂z

+
∑

k,s,k′,s′

Dza (k, s,k
′, s′, z)Zs

1,kZ
s′

1,k′eiΘ(k,k′,s,s′) (3.16)

and a new coupling coefficient

Dza (k, s,k
′, s′, z) = −2isg

σ
(kk′ + k · k′) .

(3.17)

We note that for k′ = −k, Dza = 0, so that the long-wavelength motion with K ≪ k
simplifies to

∂φ2a
∂z

≃ ∂φ2
∂z

at z = 0. (3.18)

consistent with the result given by Posmentier (1967) for the interaction of monochro-
matic wave trains, and in disagreement with a factor 8 correction proposed by Arendt &
Fritts (2000).
This gives a pressure spectrum for the propagating atmospheric waves,

Fp2,ap(fs) =

∫

K<Kmax

ρ2al
2

ρ2wl
2
a

Fp2,surf(K, fs)dK = R(Kmax)
πω2

s

α2
w

ρ2ag
2fsE

2(f)I(f). (3.19)

In order to avoid the singularity for la = 0, and atmospheric ducting effects not repre-
sented here, we takeKmax = ωs/(2αa) which restricts the acoustic propagation directions
to be within 30 degrees from the vertical. In that case we have R(Kmax) = 0.5 instead of
R(Kmax) = 0.25 with the vertical propagation approximation of Waxler & Gilbert (2006),
which replaces the l2/l2a factor in the integral by its value α2

a/α
2
w for K = 0. Other than

that, our expression is consistent with their low Mach number asymptote, i.e. σ/k ≪ αa

(Waxler & Gilbert 2006, eq. 61). The present theory also allows the estimation of the
evanescent wave components given by wavenumbers K > ωs/αa.

4. Noise in a finite depth ocean

For large depths compared to the OSGW wavelength, kh ≫ 1, the finite depth has
little effect on the evanescent modes except for a doubling of the motion amplitude
near the bottom, as the vertical profiles of the form exp(Kz) are replaced by cosh(Kz+
Kh)/ cosh(Kh). This is similar to the finite depth effect on linear wave motions. However,
the propagating modes radiated by the surface will now undergo multiple reflections at
the bottom and sea surface, as shown in figure 5. The oceanic acoustic field is tightly
coupled to elastic waves in the crust through these reflections.
One of the greatest complications induced by the presence of a bottom is the hetero-

geneity of the sediment and rock layers below the water column. The natural layering
of the crust has a strong influence on the sound reflection and the nature of the seis-
mic modes (e.g. Latham & Sutton 1966; Abramovici 1968). These effects will not be
considered here, and we follow exactly the theoretical setting of Hasselmann (1963).
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4.1. Elastic wave theory

For simplicity, we assume here that the ocean bottom is a uniform and semi-infinite solid,
with constant density ρs and compression and shear wave velocities αc and β given from
the Lame coefficients λ and µ,

α2
c =

λ+ 2µ

ρs
, β2 =

µ

ρs
. (4.1a,b)

Assuming that the crust is a Poisson solid, µ = λ and αc =
√
3β.

The free wave problem in these conditions was solved by Stoneley (1926). Here we
consider the forced problem treated by Hasselmann (1963) with a forcing by a pressure
field p̂2,surf at the sea surface, but now generalized to an additional wave-induced bottom
pressure p̂2,bot.
The equations of motion in the water column are unchanged from the previous section,

but they are now coupled to the elastic motions of the crust. Crustal motions can be
separated in an irrotational part with a velocity potential φc and a rotational part with
a stream function ψ, both solution to Laplace’s equation. With a wave source at the
surface, a horizontal propagating wave of phase Θ = Kx−ωst, implies that φ and ψ are
either decaying or propagating downwards. They must therefore take the following form,

φc = Aem(z+h)eiΘ, ψ = Ben(z+h)eiΘ. (4.2a,b)

Both vertical wavenumbers m and n are given by the Fourier transform of eq. (2.13),

m =

√
K2 − ω2

s

α2
c

, n =

√
K2 − ω2

s

β2
(4.3a,b)

where the sound speed in water has been replaced by the compression and shear velocities.
For K > ωs/βs, m and n are real and both compression and shear waves are evanescent.
For ωs/αc < K < βs the compression wave is evanescent but there is a shear (S) wave
that propagates through the crust.
The constants A and B have dimensions of m2/s and are determined by the boundary

conditions at the ocean bottom.
Horizontal and vertical ground displacements are given by the real parts of

ξx =
(
KAem(z+h) + inBen(z+h)

)
eiΘ/ωs (4.4)

ξz =
(
−imAem(z+h) +KBen(z+h)

)
eiΘ/ωs. (4.5)

Hooke’s law of elasticity gives us

τzz = λ

(
∂ξx
∂x

+
∂ξz
∂z

)
+ 2µ

∂ξz
∂z

, τxz = µ

(
∂ξx
∂z

+
∂ξz
∂x

)
(4.6a,b)

The zero tangential stress on the ocean bottom τxz(z = −h) = 0 yields the following
relationship between A and B, which is typical of Rayleigh waves,

B =
2iKm

n2 +K2
A. (4.7)

Thus, in addition to the unknown water-side amplitudes C and D of the velocity
potential at the bottom, we have one more unknown, the compression wave amplitude
A on the solid side.
The three equations that relate C, D and A are: the combined kinematic and dynamic



double-frequency noise generation by surface gravity waves waves 17

boundary condition (2.15), and the bottom continuity of normal velocity

∂φ2
∂z

=
∂φc
∂z

+
∂ψ

∂x
at z = −h (4.8)

and normal stress,

−τzz(−h) = p(−h) = ρw
∂φ2(−h)

∂t
+ p̂2,bot. (4.9)

For waves in intermediate or shallow water, i.e. kh < π, the Bernoulli term p̂2,bot that
was not considered by Hasselmann (1963) should be included. We thus obtain the linear
system of equations

(
−ω2

sρw + gil
)
eilhC +

(
−ω2

sρw − gil
)
e−ilhD =

iωs

ρw
p̂2,surf(K, fs) (4.10)

qA− ilC +ilD = 0 (4.11)

rA− iωsρwC −iωsρwD = −p̂2,bot(K, fs) (4.12)

with

q =
mω2

s

ω2
s − 2K2β2

(4.13)

r =
i

ωs
ρs

[
− 4β4K2mn

ω2
s − 2K2β2

+
(
ω2
s − 2K2β2

)]

=
i

ωs

[
−ρsm2α2

c + λk2 + 4µ
K2mn

n2 +K2

]
(4.14)

Since we are in the range where l < ωs/αw we may neglect again g|l|/ω2
s, which is less

than 0.1 for OSGW periods less than 180 s. We rewrite these equations in matrix form,

M [A, C, D]T = [−p̂2,surf(K, fs), 0,−p̂2,bot(K, fs)]T (4.15)

with

M =




0 iρwωse
ilh iρwωse

−ilh

q −il il
r −iωsρw −iωsρw


 (4.16)

The general solution of eq. (4.15) is the sum of one particular forced solution and the
general solution of the homogeneous system, without the right hand side forcing, i.e. the
free waves. This combination of free and forced waves is fully determined by the initial
conditions.
The forced solution is readily expressed using the determinant of the system

det(M) = −ρwωs

(
leilhr + ωsρwe

−ilhq − le−ilhr − ωsρwe
ilhq
)

(4.17)

=
2ρw

(ω2
s − 2K2β2)

{
lρs cos(lh)

[
4β4K2mn−

(
ω2
s − 2K2β2

)2]− ρwm sin(lh)ω4
s

}
,

(4.18)

in the form

A = 2lρwωs
p̂2,surf(K, fs) + cos(lh)p̂2,surf(K, fs)

det(M)
(4.19a)

C =
−i (lr + qωsρw) p̂2,surf(K, fs) + qe−ilhp̂2,bot(K, fs)

det(M)
(4.19b)
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D = i (qωsρw − lr)
(qωsρw − lr) p̂2,surf(K, fs)− qe−ilhp̂2,bot(K, fs)

det(M)
. (4.19c)

As detailed below, this determinant vanishes for the the pairs (ωs,K) that fall on the
dispersion relation of Rayleigh waves. But the solution for random waves can always be
obtained by integrating across this singularity, following Hasselmann (1962).
For kh≫ 1 we may neglect p̂2,bot and,

C =
p̂2,surf(K, fs)

ρwωs

ir′ − q′

2r′ cos(lh)− 2q′ sin(lh)
(4.20a)

D =
p̂2,surf(K, fs)

ρwωs

ir′ + q′

2r′ cos(lh)− 2q′ sin(lh)
(4.20b)

with

q′ = ρwωsq, r′ = ilr. (4.21a,b)

4.2. Acoustic noise in a bounded ocean

Taking typical values of the water and crust density and sound speeds gives r′/q′ >
70 for the free modes that are significantly generated by the waves (i.e. cj > 0.1, as
defined below by eq. 4.34). We can thus consider that q′/r′ ≪ 1, which gives C ≃ D ≃
p̂2,surf(K, fs)/[2ρwωs(cos(lh) + q′/r′)]. The velocity potential and pressure in the water
are given by,

φ2 ≃ ip̂2,surf(K, fs)
cos[l(z + h)− q′/r′]

ρwωs(cos(lh)− q′/r′)
eiΘ, p2 ≃ ip̂2,surf(K, fs)

cos[l(z + h)]− q′/r′

(cos(lh)− q′/r′)
eiΘ.

(4.22a,b)

The small but finite factor q′/r′ ensures that the solution remains finite as a small
fraction of the acoustic energy is radiated into the crust, otherwise the acoustic energy
would accumulate in the water column. The pressure oscillation are thus maximum for
resonant frequencies such that the ratio of the water depth and vertical wavelength
lh/(2π) is 1/4, 3/4, 5/4 ... We note that the vertical wavelength 2π/l is always greater
than the acoustic wavelength 2π/

√
K2 + l2 = fsα. As a result, the resonant frequencies

are shifted to higher values compared to the vertical resonant condition that is given by
fshαw = 1/4 ...
We may now integrate the pressure spectrum for all acoustic wavenumbers to find,

again, the frequency spectrum,

Fp2,ap(fs) = 2πρ2wg
2fsE

2(f)I(f)

∫ ωs/αw

0

[
cos(lz + lh)− q′/r′

cos(lh)− q′/r′

]2
KdK. (4.23)

We now have a depth dependence of the sound spectrum. At the surface it is equal to
the widely used unbounded ocean value (Lloyd 1981), but in the water column it can be
strongly amplified at depths where cos(lh) approaches 0, which includes the near-bottom
region where all the resonant modes have an anti-node.

4.3. Rayleigh waves

In order to simplify the algebra, we consider in this section waves in deep water and
neglect bottom forcing. As a result, this section brings no new results compared to
Hasselmann (1963), but the properties are discussed in more detail and more explicit
expressions are presented that will be used later in the derivation of new solutions for
other types of seismic waves.
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Figure 7. Wavenumbers of seismic and acoustic modes for a fixed frequency, which are the
solutions of eq. (4.24). The right hand side of that equation is abbreviated as RHS. Here we
used h = 5000 m, αw = 1500 m/s, β = 3200m/s, ρw = 1000 kg/m3 and ρs = 2500 kg/m3. This
graph corresponds to a seismic frequency fs = 0.263 Hz, for which fsh/αw = 0.88. Here the
determinant has three real roots, one acoustic mode Ka for which l = 0 (horizontal propagation)
and two seismic modes K0 et K1. The number of these roots increases with the frequency.
One new solution appears every time 2πfs becomes larger than ω0

s,j defined by eq. (4.29). For
reference we also give the wavenumber for which the right hand side of eq. (4.24) is zero, which
is the Rayleigh wavenumber KR in the absence of the ocean layer (h = 0).

For a fixed frequency ωs, there is at least one wavenumber K for which det(M) = 0.
This condition defines the dispersion relation of the Rayleigh modes (Stoneley 1926),

tan (lh) =
lρs
mρw

× 4β4K2mn−
(
ω2
s − 2K2β2

)2

ω4
s

(4.24)

with the fundamental mode corresponding to the largest K value. Figure 7 illustrates
the family of modes for a give frequency.
The phase speeds of the Rayleigh modes vary continuously from the shear wave velocity

β, in the limit n = 0 where the shear waves transition from propagating to evanescent,
to the sound speed in water αw, in the limit l = 0 where the acoustic modes become
evanescent in the water (figure 8.a). This variation of the phase speed has an inflexion
point close to the phase speed of Rayleigh waves without the water layer, corresponding
to a maximum in group speed (figure 8.b).
We may now use eq. (4.19) to obtain the ground displacement amplitude

δ ≡ ξz(−h) = G(Kx,Ky, ωs)p̂2,surf(Kx,Ky, ωs) (4.25)

as a function of the amplitude of the sea surface pressure, with the transfer function

G =
2iρwlm(K2 − n2)

(n2 +K2) det(M)
. (4.26)

An example of this transfer function is shown in figure 9, in which the dispersion
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Figure 8. Phase (top) and group (bottom) speeds of Rayleigh waves as a function of the
dimensionless water depth. Calculations used αw = 1470 m s−1, β = 3000m s−1, ρw = 1000 and
ρs = 2500 kg m−3. Values without the water layer are also indicated with the blue line. In that
case Rayleigh waves are not dispersive.

relation of the Rayleigh modes appear as the narrow red bands around the singularities
of G.
To evaluate the complete family of Rayleigh wave solutions with dispersion relations

ωs,j(K), where j is the mode number, we need to examine the nature of these singularities.
We re-write the determinant of the system as,

det(M) =
2ilρsρw cos(lh)

(ω2
s − 2K2β2)

{(
4β2k2

) (
mn+ ω2

s − β2K2
)
− ω4

s (1 + tan(lh)ρwm/ρsl)
}
.

(4.27)
For most frequencies, the singularities are simple, allowing a Taylor expansion of G in

this form

G(K,ωs) ≃
G′(Kj(ωs))

ω2
s − ω2

s,j(K)
. (4.28)
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However, for each mode j, there is a critical frequency

ω0
s,j =

1

h

[
arctan(− l

m
ρsρw) + jπ

]
(4.29)

for which both tan(lh)ρwm/ρsl = 1, and ω2
s − K2β2 = 0. These critical frequencies

ω0
s,j exist for modes j > 0. These frequencies are those for which new Rayleigh modes

appear, in a way similar to the Love waves discussed by Aki & Richards (2002, figure
7.3). The singularities at (K,ωs) = (ω0

s,j/β, ω
0
s,j) are not simple and for these we have

G(ωs, k) ≃ G′(Kj(ωs))/
√
K2 −K2

j (ωs).

Solutions for the vertical displacement at the top of the crust have a spectral amplitude
which is linearly related to the equivalent surface pressure amplitude,

δ(Kx,Ky, ωs) = G(Kx,Ky, ωs)p̂2,surf(Kx,Ky, ωs). (4.30)

For the simple singularities of G, we may write G(K,ωs) = G′(K,ωs,j)/(ω
2
s − ω2

s,j) +
O(ωs −ωs,j). Taking initial conditions δ(t = 0) = 0 and ∂δ/∂t = 0 gives the full solution
(Hasselmann 1962, eq. 3.2) of the jth Rayleigh mode response

δ(Kx,Ky, ωs) = G′(K,ωs,j)e
iKx

[
1

ω2
s,j − ω2

s

e−iωst − 1

2ωs,j

(
eiωs,jt

ωs,j − ωs
+

eiωs,jt

ωs,j + ωs

)]
,

(4.31)
as a function of K, where ωs,j(K) is frequency of the jth Rayleigh mode. For a forcing
that varies slowly on the scale of the seismic period 2π/ωs, and provided that the forcing
spectrum is continuous in spectral space, this gives the rate of change of the ground
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displacement spectrum given by Hasselmann (1963),

∂Fδ(Kx,Ky)

∂t
= SDF (Kx,Ky) =

π |G′|2
2ω2

s,j

Fp2,surf(Kx,Ky, ωs). (4.32)

The other discrete singularities, at (K,ωs) = (ω0
s,j/β, ω

0
s,j), are associated with ’con-

ical’ or ’head’ waves (Aki & Richards 2002), for which the vertical wavenumber n = 0,
and that propagate along the ocean-crust interface. These horizontally propagating shear
waves are generated with an evanescent compression wave. The singularity is integrable
over the two spectral dimensions ωs and K.
Although it looks like only the resonant forcing contributes to the solution, it is in

fact the near-resonant forcing (ωs ≃ ωs,j) that builds up the seismic noise, because the
exact resonant terms have a zero measure in spectral space. Indeed, a purely resonant
forcing would give an amplitude that increases linearly with time, and an energy that
increases like t2. The linear growth of energy in time can be interpreted as an effect of the
narrowing with time of the frequency bandwidth in which the interaction is significant.
This is a general property of wave-wave interactions (see also Hasselmann 1966).
We express the source of seismic noise with the rate of increase of the variance of δ

per unit of propagation distance. It is

SDF (ωs) =
K(s)SDF (Kx,Ky)

U2
=

4π2fsc
2
j

β5ρ2s
Fp2,surf(Kx,Ky, ωs) (4.33)

where U is the group speed of the seismic waves, and cj is a dimensionless coefficient
that depends on ωsh/αw and the seismic mode index j, shown in figure 10,

c2j =
β5ρ2sKj

U2
j 2πωs

π
∣∣G′

j

∣∣2

2ω2
s

. (4.34)

We note that a missing 2π in eq. (5) of Ardhuin et al. (2011) has been corrected here.
A very rough simplification can be obtained by taking U and K independent of j and

h. Then SDF (fs) can be taken as a sum of all Rayleigh modes in the form

SDF (fs) =
4π2fs
β5ρ2s

(
∞∑

i=0

c2j

)
Fp(K ≃ 0, fs).

(4.35)

Values of cj are obtained from eq. (4.35), and shown in figure 10.
We may propagate these sources of seismic waves in a vertically symmetric earth model,

neglecting all three-dimensional propagation effects, and parameterizing seismic wave
scattering and dissipation with a uniform quality factor Q. Under these assumptions, the
spectral density of the vertical ground displacement at z = −h and at the longitude λO
and latitude φO

Fδ(λO, φO, fs) =

∫ π/2

−π/2

∫ 2π

0

SDF (fs)

RE sin∆
e−2πfs∆RE/(UQ)(R2

E sinφ′Odλ
′
Odφ

′
O) (4.36)

with RE the Earth radius, and U the seismic group velocity. The term (R2
E sinφ′Odλ

′
Odφ

′
O)

is the Earth surface area element. The denominator (RE sin∆) is the geometrical spread-
ing factor for wave energy that follows geodesics on the sphere (e.g. Kanamori & Given
1981), replacing the distance (RE∆) used in flat Earth models (e.g. Hasselmann 1963).
The Rayleigh waves thus generated propagate away like free modes, those that exist
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Figure 10. Dimensionless coefficients cj that amplify the wave-induced pressure into ground
displacement. The maxima of cj correspond to quarter-wavelength resonance typical of organ
pipes, except that here the sound waves propagate obliquely in the water column, which is why
the maxima are at values of fsh/αw which are not exactly at 1/4, 3/4..., but shifted to higher

frequencies by a factor l/
√

(K2+l2). The amplitudes of the peaks depend on the impedance ratio
of the sea water and crust. Hence the peak amplitude increases with ρsβ/(ρwαw). For example,
β = 2800 m s−1, gives a maximum of 0.88 for c0 instead of 1.03 here with β = 3000 m s−1.

without the local forcing. For these free modes with a monochromatic ground displace-
ment δ(x, y, t) the surface pressure is constant so that C = −D and the velocity potential
and pressure in the water take the form,

φ2(z) =
ωs

l cos(lh)
sin(lz)δ(x, y, t) (4.37a,b)

p2(z) = iρw
ω2
s

l cos(lh)
sin(lz)δ(x, y, t). (4.37a,b)

For varying water depths, and on land, one may assume that the seismic energy is
propagated along a ray and apply the refraction coefficient given by Hasselmann (1963).

4.4. Seismic P and S waves

Unlike the Rayleigh waves that grow resonantly in time owing to the trapping in the
ocean/crust waveguide, the P and S waves, for which the vertical wavenumbers m or
n are complex, radiate into the earth’s interior, and their energy level is given directly
by its value at the source. In particular, for K < ωs/αc we have propagating P waves
with a velocity potential amplitude A given by eq. (4.19). In the particular case K = 0,
which correspond to exactly standing waves, we have only have P waves, no S waves
or Rayleigh waves, and these propagate exactly along the vertical axis. The frequency
spectrum of vertical ground displacements at (z = −h) can be evaluated directly with
(4.30) because G has no singularity in this range of wavenumbers,

Fδ,P (fs) = fsE
2(f)I(f)

ρ2wg
2

ρ2sβ
4
s

c2P (4.38)
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Figure 11. Non-dimensionless coefficients cP and cS that amplify the wave-induced pressure
into ground displacement associated with P and S waves.

with a non-dimensional coefficient cP ,

c2P = 2π

∫ ωs/αc

0

4l2m2ρ2sβ
4
s

ω2
s det

2(M)
KdK. (4.39)

A similar expression can be written for S waves, and both are illustrated in figure 11,

Fδ,S(fs) = fsE
2(f)I(f)

ρ2wg
2

ρ2sβ
4
s

c2S . (4.40)

However, in the range of wavenumbers where S waves exist, k < ωs/β, there can also
be evanescent P waves, and the system can approach the singularity for ωs = ωs,j and
k = ωs/β. We evaluated numerically the coefficient

c2S = 2π

∫ ωs/β

0

4l2m2k2ρ2sβ
4
s

ω2
s(n

2 + k2) det2(M)
KdK. (4.41)

Due to the typically three times stronger attenuation of S waves compared to P waves in
the Earth mantle (e.g. Anderson & Hart 1978; Pasyanos et al. 2009), we will now focus
on P waves only, which should dominate in the far field of the noise source.
For the estimation of the spectrum recorded outside of a source area, it is more con-

venient to express the local seismic source as a function of the horizontal propagation
angle θ, and the vertical take-off angle ϕ. For P waves, this gives,

Fδ,P (fs, θ, ϕ) = fsE
2(f)I(f)

1

ρ2sβ
4
s

c2P,ϕ sinϕ (4.42)

with the non-dimensional coefficient cP,ϕ defined by

c2P,ϕ =
4l2m2ρ2sβ

4
s

ωsαc det
2(M)

∂K

∂ϕ
, (4.43)

which is the normalized source per unit solid angle Ω, so that the average over the half
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Figure 12. Dimensionless coefficients cP,ϕ that amplify the wave-induced pressure into ground
displacement. The maximum for a zero take-off angle corresponds to vertically propagating
compression waves, and the compression waves that propagate along the crust have a vanishing
amplitude.

space of down-going directions Ω− is

c2P =

∫ 2π

0

∫ π/2

0

c2P,ϕ sinϕdϕdθ =

∫

Ω−

c2P,ϕdΩ (4.44)

as defined by eq. (4.39).
It is noteworthy that the distribution of the P -wave energy with the take-off angle is

very close to the one given by a small disk pushing at the top of a uniform half space, as
given by Miller & Pursey (1955) and used by Vinnik (1973), although it also varies with
the non-dimensional water depth fsh/αw. The only missing item in the work by Vinnik
(1973) is the very strong amplification of the motion for resonant frequencies associated
with the water layer. Due to the large impedance contrast at the water-crust interface the
relative amplification of P waves is one order of magnitude stronger than for Rayleigh
waves. We thus expect a much tighter correspondence of the strong seismic noise sources
with the water depths that correspond to a maximum amplification.

4.5. Observable P wave spectra

We will now finish our analysis of these body waves by estimating the ground motion due
to P and Rayleigh waves as a function of the distance from the source, an application of
practical interest. For a seismic station or hydrophone in the ocean, the incoming energy
at the receiver will be strongly reflected at z = −h but again amplified by multiple
bottom and surface reflections in the water column. However, this P -wave signal from
remote sources is likely to be dwarfed by locally generated noise.
For a land-based station, we may consider that incoming P waves arriving directly

from the the source area. There are many other seismic wave phases that have undergone
multiple reflections at the surface, these are called PP , PPP ..., or at any inner boundary
of the Earth, like PkP phases that have reflected off the mantle-core interface (Aki &
Richards 2002). These can be treated exactly like the direct P phase.
On arrival at the receiver, these waves are totally reflected at the Earth surface at
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Figure 13. Schematic of rays for seismic P waves radiated from a point source (red dashed
lines) with a directional distribution cP,ϕ (solid red line), and ensemble of rays received at a
given station from an extended noise source (yellow half-banana).

z = 0, which doubles the ground motion, so that the ground displacement is given by the
integral of four times the incoming spectral densities over the directions θ and ϕ, which
can be replaced by an integral over the source positions (λS , φS). The transformation from
the ray parameters (θ, ϕ) to the geographical coordinate can be obtained approximately
for any type of seismic wave using travel time tables (e.g. Snoke 2009), which also provide
the travel time τ .
We may now express the ground displacement due to P waves at the observing station

of coordinates (λO, φO), as a function of the same quantity at the location of sources, as
given by eq. (4.42)

Fδ,P (λO, φO, fs) =

∫

Ω+

4Fδ,P (λ, φ, fs, θ, ϕ)e
−2πfsτ(λS ,φS)/QdΩ, (4.45)

with dΩ an element of solid angle that corresponds to the ensemble of rays arriving from
an Earth surface element around the sources located at (λS , φS). This sum may also be
transformed as an integral over the ocean surface by properly mapping Ω to (λS , φS).
The elementary solid angle dΩ is zero for the so-called shadow zones, the regions for
which there is no P -wave ray that connects to the observing station. For a single phase
of seismic waves, this ensemble of rays has a half-banana shape, as illustrated on figure
13.
From our calculations, we expect that P waves will dominate the signal at large dis-

tances from the source. The exact location where P -wave levels overtakes Rayleigh-wave
levels depends on the relative attenuation of the two types of waves. With a realistic
Q = 2000 for the P waves, and Q = 400 for the Rayleigh waves, figure 14 shows that it
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Figure 14. Estimates of the rms vertical ground displacement associated with Rayleigh
or P waves, as a function of the epicentric angle ∆, for a source of intensity∫
Fp2,surf(K = 0, f)df = 4.2 × 104 hPa2 m2 over a 330 by 330 km square, assuming an at-

tenuation factor Q = 2000 for the P waves (Pasyanos et al. 2009), with travel times given by
the ak135 reference Earth model (Snoke 2009).

occurs at an epicentric angle of 40◦, which is a distance of 4400 km, consistent with the
observations reported by Vinnik (1973) using Kazakhstan array data.

5. Conclusions

We have shown how the same physical process, the interaction of ocean surface gravity
wave (OSGW) trains, can produce a wide variety of noises, in the atmosphere, ocean
and Earth’s crust, that can be classified according to their horizontal phase speed. The
slowest noises in the ocean are acoustic-gravity waves that dominate pressure records
at depths less than about one tenth of the acoustic wavelength. These acoustic-gravity
waves cannot exist in the absence of OSGWs and are thus confined to the region of active
wave forcing. Intermediate phase speeds correspond to Rayleigh waves that contain most
of the energy of the seismic modes for distances less than about 4000 km from the source.
We corrected previously published asymptotic behaviour for very long period noise

(T > 30 s). In particular we find that the sources of this long period noise are attenuated
on the continental shelves, consistent with previous studies of forced gravity wave motion.
This finding supports a spatial distribution of these sources outside of the continental
shelves, on the shelf breaks, which is consistent with data from Rhie & Romanowicz
(2006) or in deeper water, as reported by Nishida & Fukao (2006).
The common source of all these noises should allow a verification of the source magni-

tude for seismic waves by near-surface measurements of pressure which is dominated by
acoustic-gravity modes. In particular, the direct modelling of the acoustic-gravity modes
can be compared to pressure measurements in depths less than a few hundreds of meters.
Unlike the analysis of seismic noise (e.g. Ardhuin et al. 2011), which suffers from poorly
known seismic propagation and attenuation factors, the acoustic-gravity wave attenua-
tion over the water column can be predicted accurately (Herbers & Guza 1994) and thus
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pressure measurements in the upper ocean may provide a more quantitative verification
of numerically modeled directional surface wave properties. In particular, as proposed by
Cooper & Longuet-Higgins (1951), pressure measurements may provide a precise estimate
of coastal reflection or wave scattering by currents, sea ice or other effects. Noise records
from land-based or bottom-mounted seismometers are more ambiguous because they in-
tegrate sources over a large area. Also, as discussed by Hasselmann (1963), Abramovici
(1968), and Latham & Sutton (1966), the variations in water depths and horizontal
and vertical variations of properties in the Earth’s crust can significantly modify noise
properties in both the water column and the crust.
F.A. is funded by ERC grant #240009 “IOWAGA” with additional support from the

U.S. National Ocean Partnership Program, under grant N00014-10-1-0383. T. H. C. H. is
supported by the U.S. Office of Naval Research Littoral Geosciences & Optics Program
and the U.S. National Oceanographic Partnership Program (NOPP). Discussions with
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Appendix A. Coupling coefficients

Using the coupling coefficient D given by Hasselmann (1962, eq. 4.3) for the velocity
potentials, our coupling coefficient for the elevation amplitudes is

Dz (k, s,k
′, s′) = − g2D (k, s,k′, s′)

isσs′σ′ (sσ + s′σ′)

=
g2

sσs′σ′

{[
k · k′ − σ2σ′2

g2

]
+

0.5

(sσ + s′σ′)

(
sσk′2

cosh2(k′h)
+

s′σ′k2

cosh2(kh)

)}

(A 1)

In the bottom pressure, the additional term arising from the orbital velocity has a
coupling coefficient

Dpb (k, s,k
′, s′, z) =

g2
kk′ sinh[k(z + h)] sinh[k′(z + h)]− k · k′ cosh[k(z + h)] cosh[k′(z + h)]

2sσs′σ′ cosh(kh) cosh(k′h)
.

(A 2)

The relationship with the coupling coefficient C given by Herbers & Guza (1991, their
eq. 4) for the bottom pressure, expressed in meters of water, is given by solving eq. (2.15)
for φ2, and then rewriting Bernoulli’s equation (2.4), as

p2
ρw

=
∂φ2
∂t

− 1

2

[
|∇φ1|2 +

(
∂φ1
∂z

)2
]

(A 3)

This gives, for z = −h,

C = − Dz(sσ + s′σ′)2

g [gK tanh(Kh)− (sσ + s′σ′)2]
+
Dpb(z = −h)

g
. (A 4)
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Symbol meaning where

1 and 2 indices denoting first and second order motions
αw sound speed in water
αc compression wave speed in crust
αa sound speed in atmosphere
β shear wave speed in crust
∆ angular distance
δ vertical ground displacement at the top of the crust, δ = ξz(z = −h)
ζ elevation of the sea surface

λ and µ Lame elastic coefficients for the crust
λO and φO longitude and latitude of the observation location
λS and φS longitude and latitude of a noise source

ρ perturbation of density
ρw mean water density
σ radian frequency of surface gravity waves σ = 2πf
τ stress tensor
Θ phase function of the seismic or acoustic waves

φ, φa, φc velocity potentials in the water, atmosphere, crust
ψ stream function in the crust
ϕ take-off angle for seismic body waves
ξ displacement of particles
ωs radian frequency of noise ωs = 2πfs
ω0

s,j critical values of ωs for which new modes appear when ωs increases

Table 2. Table of arab and greek symbols

Appendix B. Definition of symbols
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Symbol meaning where

A,B amplitudes of φc, ψ eq. (4.2)
C,D amplitudes of up- and downward propagating components of φ2 eq. (3.4)
Cg Group speed of surface gravity waves eq. (2.11)
Dz coupling coefficient for the surface elevations eq. (A 1)

a and a′ amplitude of surface gravity waves
cj non-dimensional amplification factor for Rayleigh mode number j

cP and cS non-dimensional amplification factor for P or S waves
f and f ′ frequency of surface gravity waves

fs acoustic or seismic frequency
Fp2,surf spectral density of p̂2,surf
Fδ spectral density of δ
G surface pressure to bottom vertical displacement transfer function
g apparent gravity acceleration
h water depth
I directional integral of the wave spectrum eq. (2.27)
j Rayleigh wave mode number, counted from 0

k and k′ vector wavenumbers of surface gravity waves
K horizontal vector wavenumbers of acoustic or seismic waves

l, la, m and n vertical wavenumbers for φ2,φ2,a , φc, and ψ
p pressure

p̂2,surf wave-induced forcing at the sea surface eq. (2.16)
p̂2,B Bernoulli head pressure eq. (3.7)
p̂2,bot wave-induced forcing at the bottom, p̂2,bot = p̂2,B(z = −h) eq. (2.31)
M matrix of the linear system of equations
Q seismic quality factor (i.e. damping coefficient)

q and r coefficients eq. (4.14)
RE radius of the Earth
SDF Seismic source of Rayleigh waves

s and s′ sign variables equal to -1 or 1
u and w horizontal and vertical velocity components

V group speed of seismic waves
Zs

1,k complex amplitude of the linear surface elevation component (k, s)

Table 3. Table of roman notations, part 2
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