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Abstract

This paper deals with the problem of additional sensor placement in order to recover the discrete mode observability of switching
structured linear systems with unknown inputs. Such property is quite important for designing control laws, observers, fault detection
and isolation schemes (when the fault occurrence implies a commutation between two modes) and so on. The proposed method, based
on a graph-theoretic approach, assumes only the knowledge of the system’s structure. We express, in graphical terms new necessary and
sufficient conditions for the discrete mode generic observability. When these conditions are not satisfied, we propose a sensor placement
procedure which allows us to recover the mode observability. Our approach can be implemented by classical and quite simple graph-theory
algorithms.
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1 IntroductionA subclass of hybrid systems, called switching systems, is
suitable to represent systems that can switch between differ-
ent behaviours according to a discrete mode variable value.
Many engineering systems are designed to be switching
systems in order to simplify their functional description and
maintain the flexibility in operation. Thus, switching sys-
tems have become ubiquitous in modern technology and the
subject of significant research activities in automatic con-
trol area. For such systems, estimating the active mode is of
great interest in many control areas and studies presented
in (Babaali and Pappas, 2005; De Santis et al., 2009; Vidal
et al., 2003) are among the most significant works which
deal with this problem. In this context, our study concerns
the discrete mode observability for switching linear sys-
tems (SLS) using only continuous variable measurements.
More precisely two questions are addressed: establish nec-
essary and sufficient conditions to characterise structurally
the discrete mode observability and when this property is
not satisfied, provide additional sensor locations in order to
recover it. One motivation among others to this study lies
in the fact that in many practical cases, the faults, when
they occur in a system, may change completely the system
dynamics. Thus, in these cases, it may be more pertinent
to consider a switching linear system, where the nominal
system corresponds to a specific mode and to each fault
occurrence is associated a discrete mode value. Fault de-
tectability and isolability is in this case equivalent to the
discrete mode observability.
From the point of view of the class of systems under study
our paper is close to (Babaali and Pappas, 2005; De San-
tis et al., 2006; Vidal et al., 2003; De Santis et al., 2009).
Indeed, the presented work deals with the discrete mode
observability of switching continuous time linear systems
with unknown inputs, where the discrete mode signal is
assumed to be exogenous to the continuous part and un-
observed by a discrete measure. However, comparatively
with the previous published results in the field, our pro-
posed method and the obtained results present three main
originalities. Firstly, few works deal with the observation of
hybrid systems with unknown inputs, representing distur-

bances, unmodeled dynamics or faults for example. Some
studies ((Pina and Botto, 2006) and the references therein),
aim at designing unknown input observers for SLS, but
they do not study the mode observability conditions. Oth-
erwise, (Vu and Liberzon, 2006) addresses the problem of
recovering the discrete mode variable and the input but as-
sumes that the initial state is known.
Secondly, most part of observability studies use algebraic
or geometric approaches and so requires the exact knowl-
edge of the state space matrices characterizing the systems’
model. In many modelling problems or during conception
stage, these matrices have a number of fixed zero entries
determined by the physical laws while the remaining en-
tries are not precisely known. In these cases, to study the
structural properties, like observability, the idea is that we
only keep the zero/non-zero entries in the state space ma-
trices. Thus, we consider models where the fixed zeros are
conserved while the non-zero entries are replaced by free
parameters. Many interesting works on these models, called
structured models, are related to the graph-theoretic ap-
proach and aim to analyse properties such as controllability,
observability . . . (Dion et al., 2003). It results from these
works that the graph-theoretic approach provides quite sim-
ple and elegant analysis tool.
Finally, our approach allows us to address the problem of
sensors’ location to recover the discrete mode observabil-
ity. This problem has not been resolved yet and is interest-
ing from a conception point of view.
Comparatively with (Boukhobza and Hamelin, 2011)
where the authors express in graphic terms necessary and
sufficient conditions for the discrete mode observability of
SLS, the novelties, as we highlight this after Proposition
1, lie in the formulation of the simpler and more computa-
tionally efficient conditions. These improvements offer the
possibility to propose a solution to the sensors’ location
problem when the discrete mode is not observable.
All the proposed results are based on classical combina-
torial algorithms with polynomial order complexity. This
is quite important when we deal with large scale systems.
Moreover, since we consider structured systems, our ap-
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proach can be used during a conception stage.
The paper is organised as follows: after Section 2, which
is devoted to the problem formulation, some definitions re-
lated to the graph-theoretic approach are given in Section
3. The main results are stated in Section 4 before a brief
conclusion.
2 Problem statement

Consider the following SLS

Σ :

{
ẋ = A(q)x+B(q)u

y = C(q)x+D(q)u
(1)

where x ∈ Rn, u ∈ Rm and y ∈ Rp are respectively the
state vector, the unknown input vector and the output (mea-
surement) vector and where A(·), B(·), C(·) and D(·) are
real matrices of compatible dimensions. For the exogenous
and unobserved discrete mode variable (or switching sig-

nal) taking its values in Q
def
= {1, . . . , N}, we assume,

as in (Babaali and Pappas, 2005), that only a finite number
of jumps can occur in any finite time interval. This im-
plies that all the system trajectories are well defined and in-
finitely right-differentiable. Therefore, Zeno behaviour can
not occur. Without loss of generality and for the sake of
homogeneity, all the inputs are assumed to be unknown.
In fact, the control input signals, whose values are known,
are considered to be measured i.e. we associate a virtual
output equation of the form yk′ = uk to these inputs.
Our aim is to address, in the same framework discrete mode
observability of autonomous SLS and SLS with known or
unknown inputs. In (De Santis et al., 2009), discrete mode
observability is defined as the ability to reconstruct the
mode starting from the knowledge of the input and the out-
put, for any non-zero input value and for all initial condi-
tions. It results that, the discrete mode observability as it is
defined in (De Santis et al., 2009), cannot be used in our
context, since it can never be satisfied for SLS with un-
known inputs or autonomous SLS. Thus, we choose here
to have a more general framework by imposing mode dis-
tinguishability not for all but for generic initial conditions
x0 and unknown inputs u:
Definition 1 (Mode distinguishability) Two modes q ∈ Q
and q′ ∈ Q with (q ̸= q′) are distinguishable if at least
one of the two following conditions holds:
- there exist an integer s ≥ 0 and an expression
Ψq(y, ẏ, . . . , y

(s)) = 0 satisfied for mode q but not for
mode q′ for almost all initial conditions x0 and inputs u.
- there exist an integer s′ ≥ 0 and an expression
Ψq′(y, ẏ, . . . , y

(s′)) = 0 satisfied for mode q′ but not for
mode q for almost all initial conditions x0 and inputs u.
Here, “ for almost all initial conditions x0 and inputs u(t) ”
is to be understood as “ for all (xT

0 , u
T )T ∈ Rn+m except

for the zero set of some polynomials with real coefficients
in the n+m initial state and input components. The zero
set of these polynomial forms a proper algebraic variety of
Rn+m which has Lebesgue measure zero.
The interpretation of Definition 1 is that q is distinguishable
from q′ if, for generic initial states x0 and unknown input
u, we can rule out q or q′ when observing the output over
[0, T ].
Definition 2 (Discrete mode observability) SLS (Σ) is dis-
crete mode observable if its modes are all distinguishable

two-by-two i.e. ∀q ∈ Q, ∀q′ ∈ Q, with q ̸= q′, q and q′ are
distinguishable.
Discrete mode observability analysis can be reduced to the
study of the distinguishability of each pair of modes. Thus,
for the sake of simplicity, there is no loss of generality in
considering that we have only two modes.
Since we study a structural property as the observability,
it is pertinent to deal with structured systems, for which
we assume that only the sparsity pattern of matrices A(q),
B(q), C(q) and D(q) is known for q ∈ {1, 2}. So, to each
entry of these matrices, we only know whether its value is
fixed to zero, or that it has an unknown value represented
by a real parameter λi. We denote by Aλ(q), Bλ(q), Cλ(q)
and Dλ(q) respectively the matrices obtained by replacing
the non-zeros in A(q), B(q), C(q) and D(q), for q ∈ {1, 2}
by the corresponding parameters λi and the studied systems
have the form

ΣΛ :

{
ẋ(t) = Aλ(q)x(t) +Bλ(q)u(t)

y(t) = Cλ(q)x(t) +Dλ(q)u(t)
(2)

If all parameters λi are numerically fixed, we obtain a so-
called admissible realization of structured switching linear
systems (SSLS) (ΣΛ). We say that a property is true gener-
ically for SSLS (ΣΛ) if it is true for almost all parameters
λi.
Discrete mode observability analysis is based on the distin-
guishability of the structured models associated to the two
discrete modes. So, it is pertinent and necessary to high-
light the similarities and the differences between the mod-
els associated to these modes. Thus, we decompose each
structured matrix into two parts: the first one is common
to the two modes and the second one is specific to each
mode i.e. for q ∈ {1, 2}, Aλ(q) = Aλ

0 + Aλ
q , Bλ(q) =

Bλ
0 + Bλ

q , Cλ(q) = Cλ
0 + Cλ

q and Dλ(q) = Dλ
0 + Dλ

q .
When we write the matrices under this form, we assume
that the entries of all these matrices constituting vector
Λ = (λ1, λ2, . . . , λh)

T ∈ Rh can take any value in Rh

or equivalently that parameters λi are free. Note that there
is no third mode 0 but we use q = 0 as subscript to repre-
sent the common part between the two modes, in order to
exhibit structurally their differences and their similarities.
All the results exposed in the paper lean on the hypothe-
sis that all the entries of matrices Aλ

0 , Aλ
q , Bλ

0 , Bλ
q , Cλ

0 ,
Cλ

q , Dλ
0 and Dλ

q are free. This can be obtained when deal-
ing with a model close to the physical laws governing the
system. On the one hand, for any other decomposition of
Aλ(q),Bλ(q),Cλ(q) andDλ(q)which does not satisfy this
hypothesis, the method presented here is not guaranteed.
On the other hand, when applying a coordinate change, if
we break the parameter independence or in other terms if
we obtain matrices having entries linked by fixed algebraic
relations, then the results of the paper are not guaranteed.
Note that by not guaranteed, we mean that the results may
be correct may be not. It depends if the relation between
the parameters introduce a singularity in the different struc-
tural properties used in the proposed method (observability
subspace dimensions for example).
To summarize, our aim is to provide necessary and suffi-
cient conditions to check if a SSLS is generically discrete
mode observable i.e. is discrete mode observable for almost
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all its realizations or equivalently for almost all parame-
ters λi. Next, when these conditions are not satisfied, we
provide a procedure for adding sensors in order to recover
one of them and so the discrete mode observability prop-
erty. Note that we do not address, as in (Boukhobza and
Hamelin, 2011), the problem of state estimation of SLS in
the presence of unknown inputs.
3 Graphical representation and definitions

The digraph associated to (ΣΛ) is noted G(ΣΛ). It is
constituted by a vertex set V and an edge set E i.e.
G(ΣΛ) = (V, E). The vertices are associated to the
continuous state, the input and the output components
of (ΣΛ) and the directed edges represent links between
these variables. More precisely, V = X ∪ U ∪ Y,
where X = {x1, . . . ,xn}, U = {u1, . . . ,um} and
Y = {y1, . . . ,yp} are respectively the set of state, in-
put and output vertices. For q ∈ {0, 1, 2}, we define
Eq = Aq-edges∪Bq-edges∪Cq-edges∪Dq-edges, where,
for q ∈ {0, 1, 2}, Aq-edges = {(xj,xi) | Aq(i, j) ̸= 0},
Bq-edges = {(uj,xi) | Bq(i, j) ̸= 0}, Cq-edges =
{(xj,yi) | Cq(i, j) ̸= 0} and Dq-edges =
{(uj,yi) | Dq(i, j) ̸= 0}. Finally the edge set is

E =

2∪
q=0

Eq . Here, M(i, j) is the (i, j)th element of ma-

trix M and (v1,v2) denotes a directed edge from vertex
v1 ∈ V to vertex v2 ∈ V . The edges included in E0 repre-
sent the common part of the two modes’ models, while Eq ,
for q ∈ {1, 2} is related to the specific part of each mode’s
model. For the sake of clarity, the vertices are written in
bold fonts to differentiate them from the corresponding
variables. Each edge is associated to a free non-zero pa-
rameter of the system’s model called the weight of the
edge. Note that number q is written under each Eq-edge
and represents its index. An edge belonging to Eq , q ̸= 0,
is said specific to mode q. Note that even if it is conceptu-
ally feasible to have an edge with index 0 having the same
end vertices than an edge with index q ̸= 0, we will, for
a sake of coherence and readability, avoid this case and
prefer two edges with indices 1 and 2. The index 0 will,
then be reserved to the common part of the two modes.
Example 1 To the system defined by the matrices below,
we associate the digraph in Figure 1.

Aλ
0 =



0 0 0 0 0 0 0 0

0 0 λ1 0 0 0 0 0

0 λ2 0 0 0 0 0 0

0 0 0 0 0 0 0 λ3

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 λ4 0 0 0

0 0 0 0 0 0 λ5 0



, Bλ
0 =



0

0

0

0

0

λ6

0

0



, Bλ
1 = Bλ

2 =

0, Cλ
0 =


λ7 0 0 0 0 0 0 0

0 0 0 0 λ8 0 0 0

0 0 0 λ9 0 0 0 0

0 0 0 0 0 0 0 λ10

,all the entries of Aλ
1 are

zero except Aλ
1 (1, 2) = λ11, Aλ

1 (4, 4) = λ12, Aλ
1 (4, 5) =

λ13, Aλ
1 (5, 2) = λ14 and Aλ

1 (7, 6) = λ15 all the entries of

Aλ
2 are zero except Aλ

2 (4, 5) = λ16, Aλ
2 (5, 2) = λ17 and

Aλ
2 (7, 6) = λ18, the elements of matrices Cλ

1 , Cλ
2 , Dλ

0 , Dλ
1

and Dλ
2 are equal to zero.

!

y1 

y2 

1 

0,2 u1 y3 

y4 

x2 x3 

x4 

x5 

x8 

x6 
x7 

0 

0,2 

0 

0 

0 

0 

0 

0,2 

0 

0
 0 

0
 

1 

Figure 1. Digraph associated to system of Example 1
A realisation of this system could be the numerical speci-
fied system having the following dynamics:

Mode 1 :



ẋ1 = x2

ẋ2 = −x3

ẋ3 = 2x2

ẋ4 = −3x4 + x5 − x8

ẋ5 = 2x2

ẋ6 = u1

ẋ7 = −2x5 + x6

ẋ8 = 2x7

y1 = x1

y2 = x5

y3 = x4

y4 = x8

Mode 2 :



ẋ1 = 0

ẋ2 = −x3

ẋ3 = 2x2

ẋ4 = 2x5 − x8

ẋ5 = −x2

ẋ6 = u1

ẋ7 = −2x5 + 3x6

ẋ8 = 2x7

y1 = x1

y2 = x5

y3 = x4

y4 = x8

(3)
The digraph representing the SSLS is built from the super-
position of the digraphs related to each mode. In order to
study the properties of the system associated to a specific
mode q, we have to restrict the edge set to E0 ∪ Eq . In this
context, many of the functions and specific vertex subsets,
defined below, present an index q related to the considered
mode.
Let us now give some useful definitions and notations.
• A path is simple when every vertex occurs only once in
this path.
• A cycle is a path of the form vs0 → vs1 → . . . →
vsi → vs0 , where vs0 , vs1 , . . . , vsi are distinct.
• For q ∈ {1, 2}, we say that path P is included in E0∪Eq
if all its edges are included in E0 ∪ Eq .
• A path is a Y-topped path if its end vertex belongs to Y.
In the sequel, V1 and V2 represent two subsets of V . We
denote by card(·) the cardinality function and V1 \ V2 is
the set of elements in V1 which are not in V2.
• Denote by Predq(V1) the set of all the predecessors of
vertices included in V1 in mode q.
• A path P = vs0 → vs1 → . . . → vsi is said a V1 → V2

path if vs0 ∈ V1 and vsi ∈ V2. Moreover, if the only ver-
tex of P which belongs to V1 is vs0 and the only vertex of
P which belongs to V2 is vsi , P is called a direct V1 → V2

3



path.
• For q = {1, 2}, ρq

[
V1,V2

]
is the maximal number of

disjoint V1 → V2 paths included in E0∪Eq . Moreover, a set
of ρq

[
V1,V2

]
disjoint V1 → V2 paths included in E0 ∪ Eq

is called maximum V1 → V2 linking in E0 ∪ Eq .
• For q ∈ {1, 2}, µq

[
V1,V2

]
denotes the minimal num-

ber of vertices of U ∪ X ∪ Y belonging to a maximum
V1 → V2 linking included in E0 ∪ Eq .
• For q ∈ {1, 2}, Vess,q

[
V1,V2

]
is the vertex subset in-

cluding the vertices present in all the maximum V1 → V2

linkings included in E0 ∪ Eq .
• For q ∈ {1, 2}, there exists a unique vertex subset noted
So
q

[
V1,V2

]
and called minimum output separator which is

the set of begin vertices of all direct Vess,q

[
V1,V2

]
→ V2

paths included in E0 ∪ Eq .
• For q ∈ {1, 2}, there exists a unique vertex subset noted
Si
q

[
V1,V2

]
and called minimum input separator which is

the set of end vertices of all direct V1 → Vess,q

[
V1,V2

]
paths included in E0 ∪ Eq .
In Example 1, ρ1

[
U,Y

]
= ρ2

[
U,Y

]
= 1

and ρ1
[
{x1, x2, x3},Y

]
= ρ2

[
{x1, x2, x3},Y

]
=

2. Moreover, Vess,2

[
{x3},Y

]
= {x3, x2, x5} but

Vess,1

[
{x3},Y

]
= {x3, x2} because there exists in E0 ∪

E1 a x3 → Y path which does not cover x5: x3 → x2 →
x1 → y1. Finally, So

1

[
U,Y

]
= {x8}, So

2

[
{x3},Y

]
=

{x5}, So
1

[
{x2, x3},Y

]
= {x2}, So

2

[
{x2, x3},Y

]
=

{x5}, Si
1

[
{x2, x3},Y

]
= {x2} = Si

2

[
{x2, x3},Y

]
.

4 Main result

4.1 Preliminaries

Let VY ⊆ Y denotes a vertex subset playing the role of
the output vertex subset instead of Y. Our aim is to charac-
terize the generic dimension of the observability subspace
when only measurements related to VY are available. To
do so, we subdivide first the system into two parts from the
observability point of view: the maximal over-determined
part and the rest related to the square part and the under-
determined part. The discrete mode observability can be
achieved only in the over-determined part. This subdivision
is provided in (van der Woude, 2000) and is equivalent to
the Dulmage-Mendelsohn decomposition when represent-
ing the system by a bipartite graph.
Definition 3 (Boukhobza et al., 2007) In digraph
G(ΣΛ), for each vertex subset VY ⊆ Y and

q ∈ {1, 2}, we define: • X1,q(VY)
def
={

xi | ρq
[
U ∪ {xi},VY

]
> ρq

[
U,VY

]}
;

• Y0,q(VY)
def
= VY ∩ Vess,q

[
U,VY

]
;

• Y1,q(VY)
def
= VY \Y0,q(VY);

• U0,q(VY)
def
= {ui | there is no edge from ui to

X1,q(VY) ∪Y1,q(VY)};

• U1,q(VY)
def
= U \U0,q(VY);

• Xs,q(VY)
def
= So

q

[
U0,q(VY),VY

]
∩X;

• X0,q(VY)
def
= X \

(
X1,q(VY) ∪Xs,q(VY)

)
.

We can uniquely decompose for each mode the system
into two subsystems:
- (Σ1,q), representing, from the observability point of

view, the over-determined part of the system. Indeed, it is
proven in (Boukhobza et al., 2007; van der Woude, 2000)
that this part remains left invertible even if we remove any
one of its measurements. This is due to the fact that, in
this part, by definition no output vertex is essential in an
input-output linking and all the state vertices constituting
this subsystem can reach an output vertex independently
from the input-output paths. It has necessarily more out-
puts (measurements) than inputs and is defined by input
U1,q(VY) and Xs,q(VY), state X1,q(VY) and output
Y1,q(VY).
- (Σ0,q) defined by input U0,q(VY), state X0,q(VY) and
output Xs,q(VY)∪Y0,q(VY). This subsystem represents
the square and under-determined parts of the system.

 U1,q(VY)

Xs,q(VY)

Y0,q(VY)

X1(VY)

Y1,q(VY)X0,q(VY) Xs,q(VY)

ΣΣΣΣ0,q(VY)

ΣΣΣΣ1,q(VY)

VY
U0,q(VY)

Figure 2. System subdivision

In Example 1,X1,1(Y) =
{x1, x2, x3, x4, x5},Y1,1(Y) = Y,Y0,1(Y) =
∅ = U1,1(Y), U0,1(Y) = {u1}, Xs,1(Y) = {x8},
X0,1(Y) = {x6, x7}. The decomposition is the same for
q = 2.
For VY = Y and for each q ∈ {1, 2}, X0,q, Xs,q , X1,q ,
U0,q , U1,q, Y0,q and Y1,q denote the state, the unknown
input and the output associated to vertex subsets X0,q(Y),
Xs,q(Y), X1,q(Y), U0,q(Y), U1,q(Y), Y0,q(Y) and
Y1,q(Y) vectors respectively.

Remark 1 When all the inputs are known, or equivalently
measured, then subsystem Σ0,q, q ∈ 1, 2 contains only the
state vertices which are not connected to the measurements.

Important remarks are summarized in the following lem-
mas:
Lemma 1 There cannot exist a relation linking only the
output components of square subsystem Σ0,q, Y0,q and
Xs,q .

Proof: Using results shown in (van der Woude, 2000) (The-
orem 5.1) concerning the case of square systems, we have
that the generic number of invariant zeros of the pencil ma-
trix of system Σ0,q is equal to card(X0,q) + card(Xs,q) +
card(U0,q) −

(
µq

[
U0,q(Y),Xs,q(Y) ∪Y0,q(Y)

]
−

ρq
[
U0,q(Y),Xs,q(Y) ∪Y0,q(Y)

]
+ card(Xs,q)

)
.

Thus, the dimension of the strongly observable subspace
and so the number of possible independent observa-
tion equations is equal to µq

[
U0,q(Y),Xs,q(Y) ∪

Y0,q(Y)
]
− ρq

[
U0,q(Y),Xs,q(Y) ∪ Y0,q(Y)

]
. More-

over, the cardinality of U0,q(Y) ∪ X0,q(Y) repre-
senting the unknown variables for this system, is at
least equal to µq

[
U0,q(Y),Xs,q(Y) ∪ Y0,q(Y)

]
−

ρq
[
U0,q(Y),Xs,q(Y) ∪ Y0,q(Y)

]
because all the link-

ings between U0,q(Y) and Xs,q(Y) ∪ Y0,q(Y) cover
vertices included in U0,q(Y) ∪ X0,q(Y). Since, in the
best case, the number of independent observation equa-
tions is equal to the number of unknown variables, we
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cannot eliminate unknown variables from some equations
to obtain a relation linking only Y0,q and Xs,q and their
derivatives. △
Lemma 2 For subsystem (Σ1,q), for each Yu =
{yi1,q , yi2 , . . . , yik} ⊂ Y1,q(Y) such that ρq

[
U1,q(Y)∪

Xs,q(Y),Yu

]
= card(U1,q(Y) ∪ Xs,q(Y)), there exist

generically a matrix G, a function φ and an integer ν ≤
n1,q such that

(
XT

s,q, U
T
1,q

)T
= φ(Yu, Ẏu, . . . , Y

(ν)
u ) +

GX1,q, where Yu
(ν) = (y

(ν)
i1,q

, y
(ν)
i2

, . . . , y
(ν)
ik

)T .
Proof: According to (Dion et al., 2003) (Theorem
4), for subsystem (Σ1,q), the existence of Yu =
{yi1,q , yi2 , . . . , yik} ⊂ Y1,q(Y) such that ρq

[
U1,q(Y)∪

Xs,q(Y),Yu

]
= card(U1,q(Y) ∪Xs,q(Y)), implies the

invertibility of (Σ1,q) using only Yu. Thus, using the in-
version algorithm of (Silverman, 1969), we can express
the input of such system i.e. U1,q and Xs,q in func-
tion of its state X1,q and its output components Yu and
their derivatives. Thus, there exist a matrix generically
G, a function φ and an integer ν ≤ n1,q such that(
XT

s,q, U
T
1,q,

)T
= φ(Yu, Ẏu, . . . , Y

(ν)
u ) + GX1,q , where

Yu
(ν) = (y

(ν)
i1,q

, y
(ν)
i2

, . . . , y
(ν)
ik

)T . △
As a corollary of this lemma, we have that:
Lemma 3 For each yi ∈ Y1,q(Y), there exists an out-
put algebraic relation linking it to other measurements of
Y1,q(Y).
Proof: yi /∈ Vess,q

[
U1,q(Y) ∪ Xs,q(Y),Y1,q(Y)

]
im-

plies that there exists necessarily a subset Yu ⊂ Y1,q(Y)
such that ρq

[
U1,q(Y)∪Xs,q(Y),Yu

]
= card(U1,q(Y)∪

Xs,q(Y)). Using the previous lemma, there exist a func-
tion φ and an integer ν ≥ 0 such that for mode q,(
XT

s,q, U
T
1,q

)T
= φ(Yu, Ẏu, . . . , Y

(ν)
u ) + GX1,q. Substi-

tuting this in subsystem (Σ1,q), we have:
Ẋ1,q =

(
A1,1 + (A1,s, B1,1)G

)
X1,q + φx(Yu, Ẏu, . . . , Y

(ν)
u )

def
= ÃX1,q + φx(Yu, Ẏu, . . . , Y

(ν)
u )

Y1,q =
(
C1,1 + (C1,s, D1,1)G

)
X1,q + φy(Yu, Ẏu, . . . , Y

(ν)
u )

def
= C̃X1,q + φy(Yu, Ẏu, . . . , Y

(ν)
u )

(4)
Consider then that the characteristic equation of matrix Ã
has the form Ãn1 + . . . + akÃ

k + . . . + a0Ã = 0, where
n1 = card(X1,q(Y)). Multiplying this equation by C̃i,
where C̃i is the line of matrix C̃ related to output yi in
mode q in (6), we obtain an equation on the form:(

C̃iÃ
n1 + . . .+ akC̃iÃ

k + . . .+ a0C̃iÃ
)
X1,q = 0 (5)

Since, yi is an output of Σ1,q, at least a term C̃iÃ
k of

the latter equation is not zero and depends on yi. Then,
(7) leads to an output algebraic equation where some
derivatives of yi intervene. △

Definition 4 Consider SSLS (ΣΛ) associated to di-
graph G(ΣΛ). To each vertex subset VY ⊆ Y
and q ∈ {1, 2}, we associate the integer βq(VY)
defined as µq

[
U0,q(VY),Xs,q(VY) ∪ Y0,q(VY)

]
−

ρq
[
U0,q(VY),Xs,q(VY)∪Y0,q(VY)

]
plus the maximal

number of vertices of X1,q(VY)∪U1,q(VY)∪Xs,q(VY)
covered by a disjoint union of

- a
(
U1,q(VY) ∪ Xs,q(VY)

)
→ Y1,q(VY) linking of

maximal size;
- Y1,q(VY)-topped paths ;
- cycles covering only elements of X1,q(VY).

Lemma 4 Consider SSLS (ΣΛ) represented by digraph
G(ΣΛ,lin), βq(VY) is equal to the generic dimension of
the observable subspace in the extended state and input
space (xT (t), uT (t))T for mode q and restricting the mea-
surements to the output components associated to VY.

Proof: Using results proved in (van der Woude, 2000) (The-
orems 5.1 and 5.2 ) and in (van der Woude et al., 2003)
(Theorem 3.6) and considering that the measurements of
the system are reduced to the components associated to the
elements of VY, for each mode q, number βq(VY) is equal
to n + m − g_nq,inv,z(Pq(s)), where g_nq,inv,z(Pq(s))
denotes the generic number of invariant zeros of the pen-
cil matrix Pq(s) associated to mode q. Moreover, from
(Trentelman et al., 2001) (Lemma 7.7), we have that
n+m− g_nq,inv,z(Pq(s)) is also equal to the dimension
of the observable subspace, i.e. the number of observable
directions or independent state and input combinations, in
the extended state and input space. △
To achieve the discrete mode observability analysis, it is
necessary to have an output algebraic relation linking some
outputs and their derivatives and specific to only one of
the two modes. When several output components appear
in this equation, that means that for some order ki, y

(ki)
i

can be written as a linear combination of y(k)i , k < ki, and
of other output components with their derivatives. In this
case, the intersection of observability subspace generated
by yi and the other components is not empty. This can be
characterized by the generic dimensions of such subspaces
and so by βq(·).

Definition 5 For each output yi ∈ Y1,q(Y), and each
mode q, we define integer dq(yi) = βq(Y )−βq(Y\{yi}).

Obviously, for all k > dq(yi), in mode q, y
(k)
i can be

written as a linear combination of y
(j)
i , j ≤ dq(yi), and

other output components with their derivatives.

4.2 Discrete mode observability analysis

Using the previous settings and definitions, we analyse,
hereafter, the existence of an output algebraic relation de-
pending on the mode to achieve mode distinguishability.
Proposition 1 SSLS (ΣΛ), with two possible modes q ∈
{1, 2}, associated to digraph G(ΣΛ) is generically discrete
mode observable iff one of the following conditions is sat-
isfied:
1.) For some q ∈ {1, 2}, there exists a cycle C included in
E0 ∪ Eq , covering only elements of X1,q(Y) and contain-
ing at least one edge of Eq;
2.) For some q ∈ {1, 2}, there exists a direct
Xs,q(Y) ∪U1,q(Y) → Y1,q(Y) path included in E0∪Eq
and containing at least one edge of Eq;
3.) For q ̸= q′, Y1,q ̸= Y1,q′;
4.) For some q ∈ {1, 2}, there exist a vertex subset
VY ⊆ Y1,q(Y) such that VY ⊆ Y1,q(VY) and either
VY * Y1,q′(VY) or βq(VY) > βq′(VY);
5.) For some q ∈ {1, 2}, ∃ an edge eκ ∈ Eq ending by
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xℓ ∈ X1,q(Y), there exists a vP → yi path of length
strictly greater than dq(yi) which covers eκ and such that
xℓ belongs to a direct So

q [{vP},Y1,q] → yi path included
in E0 ∪ Eq .

Proof: Sufficiency: We will prove hereafter that each of the
five conditions of Proposition 1 leads to the existence of
an output algebraic relation which is satisfied in only one
mode and so, according to Definition 1 ensures the mode
distinguishability.
Condition 1: Let us denote by xi one of the vertices of cy-
cle C verifying Condition 1. Since this vertex belongs to
X1,q(Y), there exist a xi → yj path in E0 ∪ Eq , where
yj ∈ Y1,q(Y) and a subset Yu ⊂ Y1,q(Y) \ {yi}
with ρq

[
U1,q(Y) ∪ Xs,q(Y),Yu

]
= card(U1,q(Y) ∪

Xs,q(Y)) < ρq
[
U1,q(Y)∪Xs,q(Y)∪{xi},Yu ∪{yj}

]
.

From Lemma 2, there exist a matrix G, a function φ and
an integer ν ≥ 0 such that for mode q,

(
XT

s,q, U
T
1,q

)T
=

φ(Yu, Ẏu, . . . , Y
(ν)
u )+GX1,q . Substituting this in subsys-

tem (Σ1,q) and using notations of (4):
Ẋ1,q =

(
A1,1 + (A1,s, B1,1)G

)
X1,q + φx(Yu, Ẏu, . . . , Y

(ν)
u )

def
= ÃX1,q + φx(Yu, Ẏu, . . . , Y

(ν)
u )

Y1,q =
(
C1,1 + (C1,s, D1,1)G

)
X1,q + φy(Yu, Ẏu, . . . , Y

(ν)
u )

def
= C̃X1,q + φy(Yu, Ẏu, . . . , Y

(ν)
u )

(6)
Since the elements of G are represented by the edges be-
longing to the Yu-topped paths, they are independent from
the elements of Ã associated to cycle C. Thus, the di-
graph representation of (6) contains also C. Therefore, from
(Reinschke, 1988) (Theorem 21.1), the characteristic equa-
tion of matrix Ã, has the form Ãn1 + . . .+ akÃ

k + . . .+
a0Ã = 0, where n1 = card(X1,q(Y)) and contains a term
an1−k̄Ã

n1−k̄
1,1 , where k̄ is the length of C and an1−k̄ de-

pends on the product of the weights of the edges consti-
tuting C and so, on a specific entry of Aq according to the
existence of an edge belonging to Eq in C. Thus,(

C̃jÃ
n1 + . . .+ akC̃jÃ

k + . . .+ a0C̃jÃ
)
X1,q = 0 (7)

where C̃j is the line of matrix C̃ related to output yj in
mode q in (6) i.e. yj = C̃jX1,q +φy,j(Yu, Ẏu, . . . , Y

(ν)
u ).

On the one hand, since xi belongs to a cycle and as there
exists a xi → yj path if we denote by ℓ > 0 the length
of this path, then ∀k ≥ ℓ − 1, C̃jÃ

k ̸= 0. Furthermore,
since ℓ+ k̄ ≤ n1, then term an1−k̄C̃jÃ

n1−k̄ ̸= 0 and also
term C̃jÃ

k. On the other hand, due to dynamics (6) for all
k ≥ 0 C̃jÃ

k = y
(k)
j + φu(Yu, Ẏu, . . . , Y

(ν+k)
u ). Thus, (7)

leads to an equation in the form:

y
(n1+1)
j +. . .+aky

(k)
j +. . .+a0yj+υ(Yu, . . . , Y

(2n1)
u ) = 0

(8)
Therefore, as an1−k̄ is specific to mode q, equation
(7) leads to an output algebraic relation of the kind
Ψq(Y1,q, Ẏ1,q, . . . , Y

(s)
1,q ) = 0 parametrized by at least an

element of Aq specific to mode q.

Condition 2: Let denote by vi the vertex of
U1,q(Y) ∪ Xs,q(Y) from which there is a direct

Xs,q(Y) ∪ U1,q(Y) → Y1,q(Y) path P included in
E0 ∪ Eq and containing at least an edge eκ of Eq . Let
us denote also by λκ the non-zero parameter (or weight)
associated to eκ, yj the end of P and ℓ its length. Since
vi belongs to U1,q(Y) ∪ Xs,q(Y), it exists a subset
Yu = {yi1 , yi2 , . . . , yik} ⊂ Y1,q(Y) \ {yi} such
that ρq

[
U1,q(Y) ∪ Xs,q(Y),Yu

]
= card(U1,q(Y) ∪

Xs,q(Y)) without using edges and vertices of P . From
Lemma 2, there exist a matrix G, a function φ and an
integer ν ≤ n1 such that the dynamics equation of sub-
system (Σ1,q) is in the form (6). Since the elements of
G are represented by edges belonging to the Yu-topped
paths, they are independent from the elements of Ã. From
the characteristic equation of matrix Ã, we can write an
equation as (7), where also C̃j is the line of matrix C̃

related to output yj in mode q in (6) i.e. yj = C̃jX1,q +

φy,j(Yu, Ẏu, . . . , Y
(ν)
u ). Using equations of 6), we have

C̃jÃ
kX1,q = y

(k)
j − C̃j

(
φ
(k−1)
x (Yu, Ẏu, . . . , Yu

(ν)) +

Ãφ
(k−2)
x (Yu, Ẏu, . . . , Yu

(ν)) + . . . +

Ãk−2φ̇x(Yu, Ẏu, . . . , Yu
(ν))

)
− φ

(k)
y,j (Yu, Ẏu, . . . , Y

(ν)
u ).

Since there exists a path of length ℓ from vi to yj con-
taining an edge eκ, term CjÃ

ℓ−1, for all k ≥ ℓ, is not
zero and depends on the element of Aq denoted previ-
ously λκ specific to mode q. On the other hand, term
φ
(k−ℓ)
x (Yu, Ẏu, . . . , Yu

(ν)) is not zero for all k ≥ ℓ, be-
cause there exists a path between vi and an element of Yu

as by definition of Yu ρq
[
U1,q(Y) ∪ Xs,q(Y),Yu

]
=

card(U1,q(Y) ∪ Xs,q(Y)). This implies that,
CjÃ

ℓ−1φ
(k−ℓ)
x (Yu, Ẏu, . . . , Yu

(ν)) is not zero for all
k ≥ ℓ and depends on λκ. In particular, this im-
plies that term C̃jÃ

n1 , present in relation (7) is not
zero and depends on λκ. Thus, substituting terms
C̃jÃ

kX1,q by y
(k)
j − C̃j

(
φ
(k−1)
x (Yu, Ẏu, . . . , Yu

(ν)) +

Ãφ
(k−2)
x (Yu, Ẏu, . . . , Yu

(ν)) + . . . +

Ãk−2φ̇x(Yu, Ẏu, . . . , Yu
(ν))

)
− φ

(k)
y,j (Yu, Ẏu, . . . , Y

(ν)
u ),

in equation (7), we obtain an output algebraic relation and
knowing that term CjÃ

ℓ−1φ
(k−ℓ)
x (Yu, Ẏu, . . . , Yu

(ν)) is
specific to mode q, the obtained output algebraic relation
is parametrized by at least a specific element of Aq and so
allows to achieve the distiguishability.

Condition 3: This condition implies that there exists
yi ∈ Y1,q(Y) \ Y1,q′(Y). That means, using Lemma
3, that all the possible output algebraic relations in mode
q′ do not include this yi or its derivatives but there is an
output algebraic relation including yi and other outputs of
Y1,q(Y) and their derivatives in mode q . Therefore, the
latter relation is satisfied only in modeq and so achieves
discrete mode observability.
Condition 4: If VY * Y1,q′(Y), that means from Lemma
3 that there exists a relation linking the components
of VY = {yi1 , yi2 , . . . , yiℓ} and their derivatives in
mode q but not in mode q′. This achieves the discrete
mode observability. Otherwise, if βq(VY) > βq′(VY),
then the generic dimension of the observability subspace
associated to VY is greater in mode q than in mode
q′. In this case, let us denote by ki1 , ki2 , . . . , kiℓ an
ℓ-uple of integers such that the observability subspace
associated to VY by in mode q is generated by Ye =

(yi1 , ẏi1 , . . . , y
(ki1 )
i1

, yi2 , ẏi2 . . . , yiℓ , . . . , y
(kiℓ

)

iℓ
)T where
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ℓ∑
j=1

(kij + 1) = βq(VY). Since, βq′(VY) < βq(VY)

at least one output derivative y
(kij

)

ij
can be expressed in

mode q′ using lower derivatives of yij and other elements
of Ye. This expression is valid in mode q′ but not in mode
q and this achieves discrete mode observability.

Condition 5: The fact that, for some q, yi belongs to
Y1,q(Y) implies that there exists a vertex subset Yu ⊆
Y1,q(Y)\{yi} such that ρq

[
U1,q(Y)∪Xs,q(Y),Yu

]
=

card(U1,q(Y) ∪Xs,q(Y)). This implies, from Lemma 2,
that there exist a matrix G, a function φ and an integer
ν ≤ n1 such that the dynamics equation of subsystem
(Σ1,q) can be put on form (6). Moreover, by definition of
dq(yi), we have that, the dimension of the observability
subspace is equal to integer dq(yi) plus the dimension
of the observability subspace without yi. This means
that, the dthq (yi) derivative of yi can be expressed using
the other output components and the lower derivatives
of yi. Thus, ∀k ≥ dq(yi), there exist a minimal subset
Ỹ ⊆ Y1,q(Y) \ (Yu ∪ {yi}), such that y(k)i is a linear
combination of the first derivatives of y(s)i , s = 0, . . . , k−1
and the all the possible derivatives (until the nth

1 the
dimension of the under-determined part) of components
yl of Ỹ. Thus, there exist some constant real parameters
denoted αi,s and αl,s such that

y
(k)
i =

∑
s<k̃i

αi,sy
(s)
i +

∑
l |yl∈Ỹ

n1∑
s=0

αl,sy
(s)
l + υ(Yu, . . . , Y

(2n1)
u )

(9)
where n1 = card(X1,q). The aim of the rest of the proof

is to show that if Condition 5 is satisfied, some of these
parameters are specific to mode q and this relation allows
to achieve the mode distinguishability.
Using the system’s equations described in (6), we can
deduce that for each s and l, y

(s)
i = C̃iÃ

sX1,q +

fcti,s(Yu, . . . , Y
(n1+s)
u ) and y

(s)
l = C̃lÃ

sX1,q +

fctl,s(Yu, . . . , Y
(n1+s)
u ), where C̃i (resp.C̃l) is the row of

matrix C̃ corresponding to output yi (resp. yl). Substitut-
ing the latter equalities in (9) , all functions of Yu and its
derivatives will simplify as they are independent from the
considered elements of X1,q and (9) can be written as

C̃iÃ
kX1,q =

∑
s<dq(yi)

αi,sC̃iÃ
sX1,q +

∑
yl∈Ỹ

n1∑
s=0

αl,sC̃lÃ
sX1,q

(10)
Since subset Ỹ is minimal i.e. ∀yj ∈ Ỹ, βq

(
Ỹ ∪ {yi} ∪

Yu) \ {yj}
)
− βq(Yu ∪ Ỹ \ {yj}) > k̃i, then in relation

(10), all the components of Ỹ intervene. Let us denote by
vP = xj the begin vertex of the so-called path P satisfying
Condition 5 (i.e. P is a yi-topped path of length k + 1
strictly greater than dq(yi) and covers es) and ej the jth

Euclidean vector. As this relation is valid whatever the state
vector X1,q , we can remove it and by multiplying relation
(10) in the right by ej , we obtain:

C̃iÃ
kej =

( ∑
s<dq(yi)

αi,sC̃iÃ
s +

∑
yl∈Ỹ

n1∑
s=0

αl,sC̃lÃ
s
)
ej (11)

where each non-zero component of C̃lÃ
s is associated to

the paths arriving to yl ∈ Ỹ of length s+ 1. Since all the
{xj} → Ỹ ∪ {yi} paths starting from xj cover, by defini-

tion, So
q

[
{xj}, Ỹ∪{yi}

] def
= {xr}, then there exist kr and

k′ such that kr + k′ = k and C̃iÃ
kej = C̃iA

kr∆rÃ
k′
ej

where ∆r is a diagonal matrix having only one non-
zero element ∆r(r, r) = 1. We can do the same reason-
ing for each term C̃lÃ

sej and so there exist sr and s′

such that s′r + s′ = s and C̃lÃ
sej = C̃lÃ

sr∆rÃ
s′ej .

The fact that end vertex of eκ, xℓ belongs to a direct
So
q [{xj},Y1,q] → yi path implies that specific edge

eκ ∈ Eq belongs to a So
q

[
vP, Ỹ ∪ {yi}

]
→ Ỹ ∪ {yi}

path. This means that edge eκ appears in only some of
So
q

[
vP, Ỹ ∪ {yi}

]
→ Ỹ ∪ {yi} paths. Thus, some, but

not all, terms C̃iA
kr and C̃lÃ

sr contain the non-zero pa-
rameter corresponding to edge eκ, specific to mode q. De-
noting by Cr = eTr , where er is the rth Euclidean vec-
tor, we have that C̃iÃ

kej = C̃iA
kr∆rÃ

k′
ej = α′CrÃ

k′
ej

and C̃lÃ
sej = C̃lÃ

sr∆rÃ
s′ej = α′

l,sCrÃ
s′ej , where

α′
l,s

def
= (C̃lÃ

sr∆r)(CrC
T
r )

−1 = (C̃lÃ
sr∆r). Thus, after

substitution of the previous terms in relation (11),

α′CrÃk′
ej =

( ∑
sr≤s<dq(yi)

α′
i,sαi,sCrÃ

s−sr+

∑
l |yl∈Ỹ

n1∑
s=sr

α′
l,sαl,sCrÃ

s−sr
)
ej

(12)

where some, but not all coefficients α′ and α′
l,s depend

on the weight of eκ. This weight cannot be factorized and
simplified because all the coefficients do not depend on it
(some So

q

[
vP, Ỹ∪{yi}

]
→ Ỹ∪{yi} paths do not contain

edge eκ). Therefore, equality (12) is valid only if some of
the coefficients α, αi,s and αl,s depend also on the weight
λκ of eκ. Thus, by means of equation (9) containing coef-
ficients αi,s and αl,s, we obtain an output algebraic rela-
tion depending on λκ and satisfied only when the discrete
mode variable is equal to q.
Necessity: Firstly, from Lemma 1, there cannot exist an
output algebraic relation linking the output components of
the under-determined subsystem (Σ0,q). So, only the edges
in subsystem (Σ1,q) can lead to an output algebraic rela-
tion (between outputs Y1,q(Y) and their derivatives) use-
ful to deduce the discrete mode. In this case, some out-
puts have to be used to invert (Σ1,q) in order to eliminate
from the output equation all the unknown inputs and so
to use all the possible derivatives of the other outputs in
an output algebraic equation. It is necessary then to con-
sider a subset Yu ⊆ Y1,q(Y) such that ρq

[
U1,q(Y) ∪

Xs,q(Y),Yu

]
= card(U1,q(Y)∪Xs,q(Y)). Indeed, from

Lemma 2 and Theorem 4 of (Dion et al., 2003), only in
such a case the system is left-invertible and so there ex-
ist integer ν ≥ 0, matrix G and function φ such that(
XT

s,q, U
T
1,q

)T
= φ(Yu, Ẏu, . . . , Yu

(ν)) + GX1,q . This
quantity can then be substituted in subsystem (Σ1,q) for
mode q, to obtain an equation of form (6).
When Conditions 1 and 2 are not satisfied, it is not possi-
ble to obtain an output algebraic relation achieving mode
distinguishability from the characteristic equation of any
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matrix Ã of (6) related to any choice of Yu, when this
equation has the same degree for the two modes. It is the
case when Condition 4 is not satisfied. Moreover, when
Condition 2 is not satisfied, for any possible choice of
Yu, φy(Yu, Ẏu, . . . , Y

(ν)
u ) and φx(Yu, Ẏu, . . . , Y

(ν)
u ) do

not depend on any specific element of Aq , Bq , Cq or Dq ,
q ∈ {1, 2}. Furthermore, any output relation can be put on
the form (9), for some integer k, output component yi and
some set of output components Ỹ which do not include yi

and are disjoint from Yu. Moreover, when Conditions 3
and 4 are not satisfied, the output components implicated
in any of these expressions and their derivatives degrees
are the same for modes 1 and 2. Thus, the only way to
have a difference between the two output algebraic equa-
tions respectively is that there exists at least one coefficient
αi,s or αl,s of Equation (9) characterizing specifically a
parameter specific only to one of the two modes’ model.
Without loss of generality, we can assume that Ỹ is min-
imal i.e. in the output algebraic relations and so all the
components of Ỹ appear. If it is not the case, we remove
them from Ỹ. Relation (9) implies that the observable sub-
space obtained using outputs {yi} ∪Yu and the one gen-
erated by Ỹ ∪ Yu have non zero intersection. Defining
k̃i = βq(Ỹ∪{yi}∪Yu)−βq(Ỹ∪Yu) ≥ dq(yi), relation
(9) cannot be satisfied for some k ≤ k̃i − 1. Thus, in out-
put algebraic relation (9), k ≥ k̃i. Furthermore, since Ỹ is

minimal, we cannot express y
˜(ki)

i using only a part of Ỹ i.e.
∀yj ∈ Ỹ. To guarantee discrete mode observability, there
must exist at least a yi-topped path P , of length greater or
equal to k̃i+1 and so of length strictly greater than dq(yi),
associated to this relation. Let us denote by xj the begin ver-
tex of P (it cannot be a U1,q(Y)∪Xs,q(Y) → Y1,q(Y)
path when Condition 2 is not satisfied) and ej the jth Eu-
clidean vector. When Condition 2 is not satisfied, in Equa-
tion (9), υ(Yu, Ẏu, . . . , Y

(n)
u ) does not depend on any el-

ement specific of Aq , Bq , Cq or Dq (q ∈ {1, 2}). Then,
equation (9), can be written as relation (11), where C̃lÃ

s

is associated yl-topped paths, yl ∈ Ỹ of length s+ 1. All
the {xj} → Ỹ∪{yi} paths cover xr = So

q

[
xj, Ỹ∪{yi}

]
.

So, if for each xℓ end vertex of a specific edge belonging to
P , xℓ does not belong to any direct So

q [{vP},Y1,q] → yi

path, then all the paths starting from xr to Y contain only
edges of E0. Then according to the same arguments as pre-
viously (in the part of the proof devoted to the sufficiency
of Condition 5), we can write an equation similar to (12)
with the same notations, where α′ and α′

l,s′ depend only
on the entries related to the edges of E0 when Condition 5
is not satisfied. Equation (12) implies that there exists an
output algebraic relation with the use of only virtual out-
put C̃rx in addition to Yu. This relation can be due to the
characteristic equation of matrix Ã which includes only
the terms related to cycles in the digraph. When Condi-
tion 1 is not satisfied, there is no edge of Eq , q ∈ {1, 2}
in any cycle. Thus, as all α′ and α′

l,s′ depend only on the
entries related to the edges of E0, it is also the case for
coefficients αi,s and αl,s in equation (9). So, all the exist-
ing relations of the form (9) do not contain terms of Aq ,
Bq , Cq or Dq (q ∈ {1, 2}). We can do the same reasoning

for all Yu ⊆ Y1,q(Y) s.t. ρq
[
U1,q(Y) ∪Xs,q(Y),Yu

]
= card(U1,q(Y) ∪Xs,q(Y)). △
Comments and interpretation: To establish the discrete
mode observability, we first search in the graph the edges
specific to one mode and we interest to their position w.r.t.
the output vertices. If there is a specific edge belonging to
any cycle in (Σ1,q) then the distinguishability is possible
(first condition). If a specific edge belong to any input →
output path in (Σ1,q) then the distinguishability is possi-
ble (second condition). If a specific edge allows to mod-
ify the output subdivision Y0/Y1 (third condition) or to
modify observability subspace of any output measurements
set (fourth condition), then the distinguishability is possi-
ble. Finally, if a specific edge belongs to an output rooted
path including a state vertex which can be linked indepen-
dently to other outputs, then the distinguishability is pos-
sible (fifth condition). If no condition is satisfied, then the
two modes are sufficiently similar or their differences are
not observable from the measurements and so they are not
distinguishable.
An intuitive structural interpretation of the conditions and
what they entail can be also provided, knowing that an out-
put algebraic relation can exist only in the over-determined
part of a system and that any output belonging to this over-
determined part belongs to at least one output algebraic
equation:
• Condition 1 means that there exists an output combina-
tion with a dynamics depending on the discrete mode vari-
able but not from the unknown input.
• Condition 2 means that an observable input-output be-
haviour depends on the discrete mode variable. This de-
pendence is structural when the relative degree of the con-
sidered input changes else it is parametric.
• Condition 3 means that the under-determined part of the
system changes according to the discrete mode variable.
Thus, there exists an output algebraic relation including a
particular output yi in a mode while all the possible output
algebraic equations in the other mode do not include this
output component.
• Condition 4 means that the dimension of the observ-
ability subspace associated to some output components de-
pends on the discrete mode variable. This is equivalent to
say that the observability index of some output components
changes and so the modes are distinguishable from their
observability characteristics. This implies that there exists
an output algebraic relation between several outputs of the
system and whose order depends on the discrete mode.
• Condition 5 means that there exists an output algebraic
relation between several outputs of the system and that this
relation contains some parameters depending on the dis-
crete mode.
To summarize, the conditions provided in Proposition 1
can be classified into two categories. The first one includes
Conditions 3, 4, 2 when the subdivision of the system for
the two modes are different and a part of Condition 1. In this
case, the two modes can be said structurally distinguish-
able. The distinguishability here depends on the structure
of the systems associated to each mode and not on the pa-
rameters’ values. In the case of Condition 1, when the cy-
cle exists in a mode and not in the other one, there is then
at least an additional relation differentiating the two modes
and so the distinguishability is here also structural. When
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only Condition 5, the distinguishability is purely paramet-
ric.
The main differences with the formulation given in
(Boukhobza and Hamelin, 2011) of the discrete mode ob-
servability conditions lie in three points:
• Condition 3 of (Boukhobza and Hamelin, 2011) has been
split in two conditions here Condition 3 and Condition 4.
This is done for computational reasons. Indeed, Condition
3 of (Boukhobza and Hamelin, 2011) is stated as “For some
q ∈ {1, 2}, there exist a vertex yi ∈ Y1,q(Y) and disjoint
vertex subsets Ỹ ⊆ Y1,q(Y) \ {yi} (this subset can be
empty), Yu ⊆ Y1,q(Y) \ {yi} such that:... ” three condi-
tions must be verified. This implies a combinatorial search
to check a property on all the output vertices of Y1,q(Y)

but also on all the possible subsets Ỹ and Yu. In the present
paper, Condition 3 does not necessitate any computation
and for Condition 4, we check a test on only one output
vertex subset VY. On the one hand, this is computation-
ally easier and on the other hand, globally only two con-
ditions must be verified on VY, knowing that one of them
(VY ⊆ Y1,q(VY)) can be expressed easily using a link-
ing condition.
• Condition 4 of (Boukhobza and Hamelin, 2011) is substi-
tuted in Proposition 1 by Condition 5. In (Boukhobza and
Hamelin, 2011), checking Condition 4 implies, as previ-
ously, to test 5 properties, on all possible groups constituted
by an output vertex, a path and two disjoint output vertices.
In the present paper, checking Condition 5 is equivalent to
check a condition on the position of a specific edge w.r.t.
its distance to an output vertex. We do that by working on
a simplified graph where are removed all the edges which
do not belong to a sufficiently long path. Condition 5 ne-
cessitates the computation of, at most, n output separators.
• Due to the changes in the formulation of the discrete
mode conditions, as we will see below, the sensor location
study to recover the discrete mode observability is possible
because it can be centred on the position of specific edges
w.r.t. output vertices in the digraph. With conditions given
in (Boukhobza and Hamelin, 2011), this is not possible,
because the two last ones depend on a group constituted of
at least three parts: a single output vertex and two subsets
of output vertices. Thus, when adding a sensor, we must
consider all the cases where each of these groups changes.
In the conditions given in Proposition 1, we must check a
property for at most one output vertex or one output vertex
subset.
Remark 2 When all the inputs are known, according to
Remark 1, Σ1,q, q ∈ 1, 2 will contain all the input vertices
and all the state vertices which are connected to the outputs.
That means that, the subdivision of the system do not give
an under-determined part. Consequently, the specific edges
belonging to any Y -topped path may be useful to establish
the discrete mode observability. This can be illustrated in
Example 1 where edge (x6,x7) is specific but as it belongs
to Σ0,q part, q ∈ 1, 2, it cannot be used to generate an
output algebraic relation specific to mode 1 or mode 2. But,
if input u2 is known (or measured), this edge will belong
to an input-output path in Σ1,q, q ∈ 1, 2, Condition 2 will
be satisfied and the weight of this edge participates to an
output algebraic relation specific to mode 1 or mode 2.
Note that, when all the input are measured, the Proposition
is applicable, by adding in the system output measurements

on all the inputs i.e. output vertices and edges linking each
known input vertex to its associated measurement vertex.

Example 1 Continued It is easy to see that Condition 1 is
satisfied while Condition 2 is not. Indeed, cycle x4 → x4

contains a specific edge related to mode 1 and x4 ∈ X1,1,
then Condition 1 is satisfied and the system is discrete
mode observable. Moreover, U1,1 = U1,2 = ∅ and
Xs,1 = Xs,2 = {x8} but there is no direct path including
specific edges between Xs,1 or Xs,2 and Y, so Condition
2 cannot be satisfied.
Let us check Condition 5. There is only one edge (x2,x1)
specific to mode 1 and this edge can belong only to y1-
topped paths. So, let us compute d1(y1): β1(Y) = 9 and
β1(Y \ {y1}) = 8. Thus, d1(y1) = 1. Pred1({x1}) =
{x2, x3} and we have So

1(x2,Y1,1) = So
1(x3,Y1,1) =

{x2}. x1 belongs to a direct {x2} → y1 path included
in E0 ∪ E1. Let us search now a y1-topped path P whose
length is greater or equal to d1(y1)+1 = 2 and it includes
edge (x2,x1). We can choose P = x2 → x1 → y1

with vP = x2 and so, Condition 5 is then satisfied. This
graphic condition characterizes output algebraic relation

ẏ1

λ7λ11
− ẏ2

λ8λ14
= 0 depending on λ11 and λ14 and specific

to mode 1 only. This relation is not satisfied for mode 2
because, in this case ẏ1 is identically zero. Relation ẏ1 = 0
is specific to mode 2 even if there is no specific coefficient
to mode 2 appearing because here Condition 4 is satisfied:
or in other terms, β1({y1}) = 3 ̸= β2({y1}) = 1. This
traduces that in mode 2, ẏ1 = 0 while it is not the case in
mode 1.
To handle a ically specified tnumero a specific realization
of the structured system with numerically specified param-
eters, we only apply the previous generic results. In the
case of the specific system given at the end of Example
1, we can conclude to the discrete mode observability for
almost any unknown input and initial state because the
following output relations allow to distinguish the mode:
ẏ1 = 0 which is valid in mode in mode 2, ẏ1− ẏ2

2 = 0 and
ẏ3 = −3y3 + y2 − y4 which are valid only in mode 1.
Note that sometimes (it is not the case for this example), the
generic algebraic relation which allows the distinguisha-
bility, have some singularities w.r.t. the parameter values.
In this case, for the specific realizations presenting these
singularities, the generic result is not applicable.

4.3 Additional sensor location to recover the mode ob-
servability

When none of the conditions of Proposition 1 is satisfied,
we propose hereafter a strategy in order to precise as finely
as possible the additional sensors’ locations allowing to dis-
tinguish the two discrete modes. This problem is more com-
plicated than a classical observability problem (Commault
et al., 2008; Boukhobza and Hamelin, 2009) or fault diag-
nosability one (Commault and Dion, 2007) because of the
objective is not to detect or to observe a state variable or an
input variable but to detect a change in a dynamics. Know-
ing that this information is supported only by the edges, it
is pertinent to concentrate our reasoning particularly on the
ones which are not common to the two modes. Choosing
one of these specific edges, denoted es = (vs,v

′
s) ∈ Eq ,

we will treat all the situations, according to its position in
the digraph. To obtain all the additional sensors’ locations
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ensuring the discrete mode observability, it is then suffi-
cient to roll out the following procedure for all the edges
which are not common to the two modes. In the sequel,
Yadd denotes the set of additional sensors. Obviously, the
added sensors are considered to be common to the two
modes. Indeed, it is not realistic to add sensors only active
during a certain mode, especially when the system is not
discrete mode observable.
1) es = (vs,v

′
s) belongs to a cycle but included Σ0,q: In

this case, to satisfy to Condition 1 it is necessary to
add a sensor in order to make v′

s belonging to Σ1,q . It
does not matter if vs (when different from v′

s) still be-
longs to Σ0,q after the additional sensor placement, be-
cause in this case, vs will belong to Xs,q(Y) and Con-
dition 2 will be satisfied. Thus, the objective is to have
v′
s ∈ X1,q(Y ∪Yadd). Therefore, let us denote bySu,q =

Si
q(U,Y), it is necessary (but not always sufficient) to

place a sensor to measure any vertex covered by any di-
rect Su,q ∪ {vℓ} → Si

q(Su,q ∪ {vℓ},Y) path and strictly
before Si

q(Su,q∪{vℓ},Y), where vℓ is any vertex belong-
ing to the cycle. If, after adding a sensor, the cycle is not
in Σ1,q , we must repeat the placement above considering
the new sensor set until obtaining v′

s ∈ X1,q(Y ∪Yadd).
The maximal number of additional sensors to make this
inclusion true is card(Su,q ∪ {v′

s})− ρq[Su,q ∪ {v′
s},Y].

Example 2 Consider now the SSLS represented by the di-
graph depicted in Figure 3.

!

Figure 3. Digraph associated to the system of Example 2

For this example, the differences between the two modes
lie in two edges: (x5,x6) and (x3,x7). All the state, input
and output vertices belong to Σ0,q for the two modes be-
cause of ρ1[U,Y] = ρ2[U,Y] = 2 = card(Y). Thus, cy-
cle x5 → x6 → x5 containing a specific edge to mode 1 is
included also in Σ0,1. To satisfy Condition 1, we must add a
sensor. Here, Su,1 = {x4, u2} and Si

1(Su,1∪{x6},Y) =
Si
1(Su,1∪{x5},Y) = {y1, y2}. Therefore, an additional

sensor measuring any vertex on any {x4, u2, x5} →
{y1, y2} path or {x4, u2, x6} → {y1, y2} path i.e. any
component in {x1, x2, x3, x4, x5, x6, x7, u2} is neces-
sary and here sufficient to ensure the discrete mode ob-
servability. Note that, we find u2 in the previous subset.
Indeed, as it is highlighted in Remark 2 when input u2 is
known, then the under-determined part of the system in-
cludes more vertices and edges and this makes the discrete
mode-observability possible.

2) es = (vs,v
′
s) belongs to an U -rooted simple path but

included Σ0,q: In this case, to satisfy to Condition 2, it is
necessary and sufficient to add a sensor in order to make vs

either in Xs,q(Y ∪Yadd) or in X1,q(Y ∪Yadd). There-
fore, let us denote by Su,q = Si

q(U,Y), it is necessary
and sufficient to place a sensor to measure vs or any vertex
covered by any direct Su,q ∪{v′

s} → Si
q(Su,q ∪{v′

s},Y)

path and strictly before Si
q(Su,q ∪ {v′

s},Y).
Example 3 Consider again the SSLS represented by the
digraph depicted in Figure 3. Specific edge to mode
2 (x3,x7) is included in Σ0,1. To satisfy Condition
2, we must add a sensor in order to make x3 ei-
ther in Xs,2(Y ∪Yadd) or in X1,2(Y ∪Yadd). Since
x3 ∈ Vess,2[U,Y], we can make it included as well in
Xs,2(Y ∪Yadd) or in X1,2(Y ∪Yadd). Here, Su,2 =
{x4, u2} and Si

1(Su,2 ∪ {x7},Y) = {x2, x4}. There-
fore, to satisfy Condition 2, it is necessary and sufficient to
measure {u2, x3, x7}. Note that, we find u2 in the previ-
ous subset. Indeed, as it is highlighted in Remark 2 when
input u2 is known, then the under-determined part of the
system includes more vertices and edges and this makes
the mode-observability possible.
Note that, by this additional sensor location, dedicated to
recovering Condition 2, we can satisfy in the same time
Condition 3 since these conditions are intricately linked.
3) es = (vs,v

′
s) is exclusive to one mode, not covered

neither by a cycle nor by an U -rooted path: In this case,
the predecessors of vs do not include an input vertex.
In addition to this, as the added sensor corresponds to a
vertex and a common edge, it is not possible to satisfy,
with any additional sensor located anywhere, Condition
3. Thus, we interest here only to recovering Condition 4
and this can be possible only if (vs,v

′
s) does not belong

to E0 (is exclusive to one mode). Let us denote by Vq,Obs

the set of all observable input and state components,
which is equal to {v ∈ X ∪U, βq(Y ∪ {v}) = βq(Y)}
(Boukhobza, 2010). To satisfy condition 4, it is necessary
and sufficient to place a sensor to take measures on the
following set {v′

s} ∪
{
xj successor of v′

s such that the
maximal length path arriving to xj covers necessarily es

}
.

This set can be unfortunately empty. If it is not the case,
the new output allows to construct a set of outputs VY,
which has not the same observability subspace dimension
in mode q and in mode q′. Indeed, the added measurement
is sensitive only in mode q to vs representing the most
distant unmeasurable state vertex for the added sensor.

Example 4 Consider the SSLS represented by the digraph
depicted in Figure 4. 

y1

0

0 0

1

000 0

x3 x1

x2x4x5

0

0

x6

Figure 4. Digraph of the system of Example 4

For this example, without unknown inputs, all the state and
output vertices belong obviously to Σ1,q . But there cannot
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exist an output algebraic relation since there is only one
output (Conditions 3 and 5 cannot be satisfied), no cycle
(Condition 1 cannot be satisfied), no input (Condition 2
cannot be satisfied) and Condition 4 is not satisfied . Since
there exists an exclusive edge (x3, x1) related to mode
1, we can satisfy Condition 4 by adding a sensor. The set
of successors of x1 are {x2, x6, y1} and V1,Obs = ∅.
We can place a sensor on x1 or on x6 since the maximal
length path arriving to these vertices covers necessarily
(x3, x1). It is not the case for x2 since there is a maximal
path arriving to x2 and starting in x5 and dos not cover
(x3, x1). Thus, adding a sensor on x1 or on x6 allows
to satisfy Condition 4 and to recover the discrete mode
observability.
4) es = (vs,v

′
s) does not belong neither to a cycle nor to

an U -rooted simple path and the previous
step does not succeed: In this last case, the aim is

to add some sensors in order to recover Condition
5. To do so, we proceed in two steps. The objective
of the first step is to ensure vs belongs to a direct
So
q [Predq({vs}),Y1,q] → Y1,q path included in E0∪Eq .

The objective of the second step is to ensure that, for at
least one output yi successor of v′

s, we have that dq(yi)
is less or equal than the maximal distance from v′

s to yi.

• Step 1 : If vs does not belong to a direct
So
q [Predq({vs}),Y1,q] → yi path included in E0∪Eq ,

then it is necessary and sufficient to place a sensor
to measure vs or any vertex covered by any direct
Predq({vs}) → Si

q(Predq({vs}),Y) path.
• Step 2 : If after Step 1 above, Condition 5. is not satisfied,

then we propose an iterative additional sensor location
procedure:
While Condition 5. is not satisfied
# choose yi one of the output components successors
of v′

s
# place an additional sensor on any predecessor of yi

which is not in Vq,Obs and from which the maximal
distance to yi is less or equal than the one from v′

s
to yi.

The algorithm above leads, when we consider always
the same output component successor of v′

s, yi to the
decrease of dq(yi) until attaining a value less than the
distance from v′

s to yi. In this case, Condition 5. will be
satisfied.

Example 5 Consider the SSLS represented by the digraph
depicted in Figure 5.

!

Figure 5. Digraph of the system of Example 5

We have that ∀q ∈ {1, 2}, X0,q(Y) = U0,q(Y) =
Xs,q(Y) = Y0,q(Y) = ∅, U1,q(Y) = {u1}, X1,q(Y) =
X and Y1,q(Y) = Y. Furthermore, ∀q ∈ {1, 2},
βq(Y) = 6, βq({y2, y3}) = 3, βq({y1, y3}) = 5 and
βq({y1, y2}) = 5.
It is easy to see that the three first conditions of Proposi-
tion 1 are not satisfied. Moreover, since there is no exclu-
sive edge, Condition 4 cannot be satisfied. The only spe-
cific edge is (x4,y1) and has as output successor only y1.
When we take yi = y1 we have for both q = 1 and q = 2,
dq(y1) = 3 and there is no y1-topped path with a length
greater than dq(y1) + 1 = 4. Thus, Condition 5 is also
not satisfied and this system is not discrete mode observ-
able. In order to recover Condition 5, we must add at least
a sensor. First, note that here vP of Proposition 1, can be
only x4. S0

1 [{x4},Y1,1] = {x4} and we have that y1 be-
longs to a direct {x4} → y1] path. Therefore, the first step
is not necessary. We go directly to Step 2: here yi = y1

and V1,Obs = {x2, x3, x6, u1}. Vertices x1 and x4 are
the only ones in te previous list from which there exists a
path having a length less or equal to the ones from x4 to
y1. Thus, we must measure x1 or x4.
Assume that we measure x1. In this case, the system will
not be discrete mode observable since d1(y1) = 1 and as
the path between x4 and y1 is also of length 1. Thus, we
must measure also x4. In this case, d1(y1) = 0, Condition
5 will be satisfied. Note that instead measuring x4, we can
measure also x5 even if this vertex is not related to y1, it
allows also to obtain d1(y1) = 1. In fact, our procedure
leads always to a solution but is not exhaustive for this last
procedure stage.

Note that, when we deal with a specific realization of a
SSLS with numerically specified parameters, we can ob-
viously apply the proposed method above in order to add
sensors for recovering the discrete mode observability. Af-
ter choosing the additional sensors, we must verify, as it
is done for Example 1 that the obtained algebraic relations
useful to establish the distinguishability presents no singu-
larities. If it is the case, then we must eliminate the use-
less sensor(s) and add a new other one using the procedure
above. We do that until we recover the discrete mode ob-
servability of the considered specific realization. If there
exist a difference between the two modes in the system’s
dynamics, after a finite number of iterations the provided
procedure will always allow to recover the discrete mode
observability.

5 Conclusion

In this paper, we propose a graph-theoretic tool to anal-
yse generic mode discrete mode observability for switch-
ing structured linear systems with unknown inputs. More
precisely, we provide new necessary and sufficient condi-
tions to ensure the generic discrete mode observability of
switching structured linear systems. Next, when these ob-
servability conditions are not satisfied, we study the loca-
tion of additional sensors in order to recover the generic
discrete mode observability. Our approach uses classical
programming techniques and is free from numerical dif-
ficulties. This makes our proposed method well-suited to
treat large scale systems.
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