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Université de Lorraine, Green, EA 4366, Vandœuvre-lès-Nancy F-
54506, France

Abstract—This paper presents new semi-analytical expressions to
calculate the self-inductance and the electromagnetic force for a
ferromagnetic cylinder of finite length placed inside a circular coil of
rectangular cross section. The proposed analytical model is based
on boundary value problems with Fourier analysis. Laplace’s and
Poisson’s equations are solved in each region by using the separation
of variables method. The boundary and continuity conditions between
the different regions yield to the global solution. Moreover, the
iron cylinder is assumed to be infinitely permeable. Magnetic field
distribution, self-inductance and electromagnetic force obtained with
the proposed analytical model are compared with those obtained from
finite-element.

1. INTRODUCTION

Circular coils are widely used in many industrial applications such
as tubular actuators, transformers, linear accelerators, magnetic
valves, induction heaters, magnetic resonance imaging. An accurate
knowledge of the magnetic field distribution is necessary for the
computation of useful quantities such as self and mutual inductances,
stored energy and electromagnetic forces. The magnetic field can
be evaluated by analytical methods or by numerical techniques like
finite elements. Finite elements simulations give accurate results
considering the nonlinearity of ferromagnetic materials for iron-cored
coils. However, this method is computer time consuming and poorly
flexible for the first step of design stage. Analytical models can provide
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closed-form solutions giving physical insight for designers. They
are useful tools for design optimization since continuous derivatives
issued from the analytical solution are of great importance in most
optimization methods.

Analytical models have been proposed since a long time for
computing the magnetic field distribution of ironless circular coils [1–
15]. As the coils are in free space (without any ferromagnetic material),
analysis is generally based on the Biot-Savart law. The analytical
expressions of the magnetic field can be expressed in terms of elliptic
integrals of the first and second kind or by integrals with the product
of Bessel functions [9, 11]. Although these methods give very accurate
results, they are not suitable to study circular coils with iron-core
structures.

An alternative analytical method to compute the magnetic field
of circular coils with iron parts is based on boundary value problems
with Fourier analysis. This method consists in solving directly the
Maxwell’s equations in the different regions, e.g., air-gap and coils
by the separation of variables method [16, 17]. The magnetic field
solutions in each region are obtained by using boundary and interface
conditions. The solutions are expressed in terms of infinite series.
Boundary value problem has been used by Rabins [18] to compute the
inductances of a transformer with a simplified geometry consisting of
a core, coils, and yokes of infinite extent. In [19–21], the magnetic field
distribution of circular coils located between two semi-infinite blocks
of iron is given. In these models, the ferromagnetic parts are supposed
to be infinitely permeable and are taken into account by means of the
boundary conditions. In [22, 23], the self and mutual inductances are
computed for filamentary turns placed on infinitely-long ferromagnetic
core of circular cross-section. In [24, 25], eddy-current problems are
solved inside infinitely long conducting rods with coaxial circular coils
driven by alternating current. The coils are considered as filamentary
current sources. The solution is given in the form of integrals of first-
order Bessel functions. In [26, 27], an analytical approach to compute
eddy-currents induced in a conducting/ferromagnetic rod of finite
length by a coaxial coil is developed. The authors use the truncated
region eigenfunction expansion to compute the magnetic field inside
the rod.

In this paper, we propose new semi-analytical expressions to
compute the self inductance and the electromagnetic force in a system
composed of a coil, with rectangular cross-section, and a ferromagnetic
cylinder (Fig. 1). A similar approach to that presented in [16, 24, 26] is
followed to compute the magnetic field. However, compared to [24, 26],
only the magnetostatic case is studied here (i.e., no-eddy current in the
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Figure 1. Axisymmetric system: a circular coil of rectangular cross
section with an iron cylinder of finite length placed on the same axis
at a distance h.

ferromagnetic cylinder). The analytical model is based on the solution
of Laplace’s and Poisson’s equations in the different five regions as
indicated in Fig. 1. The electromagnetic force acting on the iron
core is obtained by using the Maxwell stress tensor method. The
self-inductance is also computed with the analytical model. In order
to validate the proposed model, the results are compared with those
obtained from finite elements simulations.

2. PROBLEM FORMULATION AND ASSUMPTIONS

The geometric representation of the studied problem is shown in Fig. 1.
It consists of a circular coil of rectangular cross section with inner
radius R2, outer radius R3, and length L = (z2 − z1). This coil is fed
with a uniform current density J in the θ-direction. An iron cylinder
of radius R1 and length l = (z4−z3) is placed on the same axis as that
of the coil. As shown in Fig. 1, the relative axial position between the
center of the iron cylinder and the center of the coil is noted h.

The whole domain is limited in the axial direction (z = 0 and
z = z5), where homogeneous Dirichlet boundary conditions have been
imposed on the magnetic vector potential (A = 0). It is also possible
to impose homogeneous Neumann boundary conditions but the global
solution will be more complex. These outer boundaries must be chosen
sufficiently far away from the area where reliable solutions are needed
so that they do not affect the results (z1 ≫ 0 and z5 ≫ z4).

The approximation in the modeling of this problem is in assuming
infinite permeability for the iron cylinder, so the tangential component
of the magnetic field is null on its boundaries.
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As can be seen in Fig. 1, the whole domain of the field problem is
divided into five regions: the region of air above the winding (Region
I), the winding region (Region II), the air-gap between the winding
and the iron core (Region III), the air region on the left of the iron
core (Region IV), and the air region on the right of the iron core
(Region V). As indicated previously, the iron cylinder is considered
as infinitely permeable. This implies that the magnetic field is not
calculated inside the iron cylinder but that the material is represented
by a boundary condition at its surface. Therefore, the iron cylinder
splits the surrounding space in two regions (Region IV and Region V
in Fig. 1). This is not the case for the current source coil (Region II
in Fig. 1) which presents the same permeability as the air.

A magnetic vector potential formulation in cylindrical coordinates
is used to solve the problem. The problem being axisymmetric, the
magnetic vector potential presents only one component along the θ-
direction and only depends on the r and z coordinates. From Maxwell’s
equations and considering the Coulomb gauge, the field equations in
terms of magnetic vector potential A are a Poisson equation in the coil
region and a Laplace equation in the other regions

{

∇2AII = −µ0J for Region II (coil)
∇2Ai = 0 for Region i = I, III, IV and V

(1)

where µ0 is the permeability of the vacuum, and J is the current density
in the coil.

3. ANALYTICAL SOLUTION OF THE MAGNETIC
FIELD

The solution of any partial differential equation (PDE) depends on the
domain in which the solution is to be valid as well as the boundary
conditions that this solution must satisfy. By using the separation
of variables method, we now consider the general solution of (1) in
Regions I to V.

3.1. General Solution of Laplace’s Equation in Region I

In Region I, we have to solve the Laplace equation in a cylinder of inner
radius R3 and infinite outer radius, delimited in the axial direction by
z = 0 and z = z5

∂2AI

∂r2
+

1

r

∂AI

∂r
−

AI

r2
+

∂2AI

∂z2
= 0 for

{

R3 ≤ r ≤ ∞
0 ≤ z ≤ z5

(2)
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As indicated previously, homogeneous Dirichlet boundary condi-
tions have been imposed at z = 0 and z = z5

AI(r, z = 0) = 0 and AI(r, z = z5) = 0 (3)

Moreover, the vector potential tends to zero when r → ∞

AI(r → ∞, z) → 0 (4)

Considering the boundary conditions (3) and (4), the general
solution of (2) can be expressed as

AI(r, z) =
∞

∑

n=1

bI
nK1 (αnr) sin (αnz) (5)

where n is a positive integer, αn = nπ/z5 are the eigenvalues, and K1

is the modified Bessel function of the second kind and order 1 [28].
The integration constant bI

n will be determinate in Section 4 from
the interface conditions between Region I and Region II.

3.2. General Solution of Poisson’s Equation in Region II

In Region II, we have to solve the Poisson equation in a cylinder of
inner radius R2 and outer radius R3, delimited by z = 0 and z = z5

∂2AII

∂r2
+

1

r

∂AII

∂r
−

AII

r2
+

∂2AII

∂z2
= −µ0J (r, z) for

{

R2 ≤ r ≤ R3

0 ≤ z ≤ z5
(6)

where J(r, z) is the current density distribution in Region II.
As the current density in the coil is homogeneous, the current

density distribution is independent of the r-coordinate and depends
only on the z-coordinate as shown in Fig. 2

J(z) =

{

J ∀z ∈ [z1, z2]
0 elsewhere

(7)

Figure 2. Current density distribution along the axial coordinate z
in Region II.
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As for Region I,

AII (r, z = 0) = 0 and AII (r, z = z5) = 0 (8)

Equation (6) is classically solved [29] by finding the eigenvalues
and the eigenfunctions of the homogeneous equation (∇2AII = 0)
which satisfies the boundary conditions (8). The source term J(z)
can then be expanded in terms of the eigenfunctions, i.e., orthogonal
basis, as

J(z) =

∞
∑

n=1

Jn sin (αnz) with Jn =
2

z5

z5
∫

0

J(z) sin (αnz) dz

Jn =
2J

nπ
[cos (αnz1) − cos (αnz2)]

(9)

The general solution of (6), which requires the solution of a non-
homogeneous Bessel’s differential equation on the r-variable, is then
given by

AII (r, z)=
∞

∑

n=1

{

aII
n I1(αnr)+bIIn K1 (αnr)−CnL1 (αnr)

}

sin (αnz) (10)

with
Cn = µ0 (π/2)Jnα−2

n (11)

where n is a positive integer, and I1 and K1 are respectively the
modified Bessel functions of the first and second kind of order 1, and
L1 is the modified Struve function of order 1 [28].

The integration constants aII
n and bIIn in (10) will be determinate

in Section 4 from the interface conditions at r = R2 and r = R3.

3.3. General Solution of Laplace’s Equation in Region III

In Region III, we have to solve the Laplace equation in a cylinder of
inner radius R1 and outer radius R2, delimited by z = 0 and z = z5

∂2AIII

∂r2
+

1

r

∂AIII

∂r
−

AIII

r2
+

∂2AIII

∂z2
= 0 for

{

R1 ≤ r ≤ R2

0 ≤ z ≤ z5
(12)

The boundary conditions for the Region III are

AIII (r, z = 0) = 0 and AIII (r, z = z5) = 0 (13)

Considering (13), the general solution of (12) can be expressed as

AIII (r, z) =
∞

∑

n=1

{

aIII
n I1 (αnr) + bIIIn K1 (αnr)

}

sin (αnz) (14)

where n is a positive integer. The integration coefficients aIII
n and bIIIn

in (14) will be determinate in subsection 4 from the interface conditions
at r = R1 and r = R2.
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3.4. General Solution of Laplace’s Equation in Region IV

As shown in Fig. 1, Region IV is delimited by a cylinder of radius R1,
and by z = 0 and z = z3 in the axial direction. The magnetic vector
potential in Region IV satisfies to the Laplace equation

∂2AIV

∂r2
+

1

r

∂AIV

∂r
−

AIV

r2
+

∂2AIV

∂z2
= 0 for

{

0 ≤ r ≤ R1

0 ≤ z ≤ z3
(15)

The boundary condition at z=0 is

AIV (r, z = 0) = 0 (16)

The radial component of the magnetic field on the side of the iron
cylinder being null, the boundary condition at z = z3 is then given by

∂AIV

∂z

∣

∣

∣

∣

z=z3

= 0 (17)

Moreover, the magnetic vector potential AIV must be finite at
r = 0. Considering the boundary conditions (16) and (17), the general
solution of (15) can be expressed as

AIV (r, z) =
∞

∑

k=1

aIV
k I1 (βkr) sin (βkz) (18)

where k is a positive odd integer, and βk = kπ/(2z3) are the
eigenvalues. The integration constant aIV

k will be determined in
Section 4 from the interface conditions at r = R1.

3.5. General Solution of Laplace’s Equation in Region V

Region V is delimited by a cylinder of radius R1, and by z = z4 and
z = z5. The magnetic vector potential in Region V is governed by the
Laplace equation

∂2AV

∂r2
+

1

r

∂AV

∂r
−

AV

r2
+

∂2AV

∂z2
= 0 for

{

0 ≤ r ≤ R1

z4 ≤ z ≤ z5
(19)

The boundary condition at z = z5 is

AIV (r, z = z5) = 0 (20)

The boundary condition at z = z4 is given as for Region IV by

∂AV

∂z

∣

∣

∣

∣

z=z4

= 0 (21)
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Because the magnetic vector potential AV must be finite at r = 0,
and considering the boundary conditions (20) and (21), the general
solution of (19) can be expressed as

AV (r, z) =
∞

∑

k=1

aV
k I1 (λkr) cos (λk (z − z4)) (22)

where k is a positive odd integer, and λk = kπ/(2(z5 − z4)). The
integration constant aV

k is to be determinate from the interface
conditions at r = R1.

The radial and axial flux density distribution in the different
regions (i = I to V ) can be deduced from the magnetic vector potential
by

Bir = −
∂Ai

∂z
and Biz =

1

r

∂(rAi)

∂r
(23)

4. INTERFACE CONDITIONS BETWEEN THE
REGIONS

The relations between the integration constants bI
n, aII

n , bIIn , aIII
n ,

bIIIn , aIV
k , and aV

k are determined by applying the interface conditions
between the different regions. The interface conditions must satisfy
the continuity of the radial component of the flux density and the
continuity of the axial component of the magnetic field. The first
condition could be replaced by the continuity of the magnetic vector
potential.

4.1. Interface Conditions at r = R3

In terms of magnetic vector potential, the interface conditions between
Region I and Region II at r = R3 lead to:

AI(r = R3, z) = AII (r = R3, z)

∂ (rAI)

∂r

∣

∣

∣

∣

r=R3

=
∂ (rAII )

∂r

∣

∣

∣

∣

r=R3

(24)

From (24), (5), and (10), we obtain two relations between the
coefficients of Region I and Region II

aII
n =αnR3Cn (L0 (αnR3)K1 (αnR3)+L1 (αnR3)K0 (αnR3)) (25)

bIIn =bI
n + αnR3Cn (L1 (αnR3) I0 (αnR3)−L0 (αnR3) I1 (αnR3)) (26)

where I0 and K0 are respectively the modified Bessel functions of the
first and second kind of order 0, and L0 is the modified Struve function
of order 0.
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4.2. Interface Conditions at r = R2

The interface conditions between Region II and Region III at r = R2

are given by

AII (r = R2, z) = AIII (r = R2, z)

∂ (rAII )

∂r

∣

∣

∣

∣

r=R2

=
∂ (rAIII )

∂r

∣

∣

∣

∣

r=R2

(27)

Using (27), (10), and (14), we obtain two relations between the
coefficients of Region II and Region III

aIII
n =aII

n −αnR2Cn (L1 (αnR2)K0 (αnR2)+L0 (αnR2)K1 (αnR2)) (28)

bIIIn =bIIn + αnR2Cn (L0 (αnR2)I1 (αnR2)−L1 (αnR2) I0 (αnR2)) (29)

4.3. Interface Conditions at r = R1

Due to the presence of the iron cylinder (see Fig. 1), the interface
condition concerning the axial component of the magnetic field at
r = R1 is more complex than the ones at r = R2 and r = R3 and must
be divided in three parts. A first part corresponds to the iron cylinder
surface (z3 ≤ z ≤ z4) where the axial component of the magnetic field
is null. The other parts corresponds to the continuity of the axial
component of the magnetic field between Region III and Region IV
and between Region III and Region V. Therefore, we can write

∂(rAIII )

∂r

∣

∣

∣

∣

R1

=















∂(rAIV )
∂r

∣

∣

∣

R1

∀ z ∈ [0, z3]

0 ∀ z ∈ [z3, z4]
∂(rAV )

∂r

∣

∣

∣

R1

∀ z ∈ [z4, z5]

(30)

The continuity of the radial component of the flux density yields
to

AIV (r = R1, z) = AIII (r = R1, z) ∀ z ∈ [0, z3] (31)

AV (r = R1, z) = AIII (r = R1, z) ∀ z ∈ [z4, z5] (32)

From (30), (31), (32) and using the Fourier series method, we
obtain three equations between the coefficients of Regions III, IV, and
V

aIII
n − bIIIn

K0 (αnR1)

I0(αnR1)

=

∞
∑

k=1

(

aIV
k

k

nz3

I0(βkR1)

I0(αnR1)
f(n, k)+aV

k

k

n(z5−z4)

I0(λkR1)

I0(αnR1)
g(n, k)

)

(33)
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aIV
k =

2

z3

∞
∑

n=1

(

aIII
n

I1 (αnR1)

I1 (βkR1)
+ bIIIn

K1 (αnR1)

I1 (βkR1)

)

× f(n, k) (34)

aV
k =

2

z5 − z4

∞
∑

n=1

(

aIII
n

I1 (αnR1)

I1 (λkR1)
+ bIIIn

K1 (αnR1)

I1 (λkR1)

)

× g(n, k) (35)

where

f(n, k) =

{

−
αn sin(kπ/2) cos(αnz3)

(α2
n−β2

k)
for αn 6= βk

0.5 × z3 for αn = βk

(36)

g(n, k) =

{

−
αn cos(αnz4)

(α2
n−λ2

k)
for αn 6= λk

0.5 × (z5 − z4) sin(αnz4) for αn = λk

(37)

Because aII
n and aIII

n are directly linked to the source term (25) and
(28), we have only to solve a system of five linear equations with five
unknowns. By rewriting the above equations in matrix and vectors
format, a numerical solution can be found by using mathematical
software (Matlab, Mathematica, etc.). It should be noted here that
a numerical matrix inversion is required for the calculation of the
unknown coefficients but using symbolic packages, this matrix needs
to be inverted only once even in parametric studies.

5. SELF-INDUCTANCE AND ELECTROMAGNETIC
FORCE EXPRESSION

5.1. Electromagnetic Force Expression

The electromagnetic force acting on the iron core is obtained using the
Maxwell stress tensor method. A line of radius Re and length [0, z5] in
Region III is taken as the integration path (it is also possible to choice
an integration path directly around the iron core but we obtain a more
complex analytical expression). The electromagnetic force in the axial
direction can be expressed as follows

Fz =
2πRe

µ0

z5
∫

0

BIIIr (Re, z)BIIIz (Re, z)dz (38)

where BIIIr and BIIIz are respectively the radial and the axial
components of the flux density in Region III. Their expressions can
be obtained from (14) and (23)

BIIIr (r, z) =
∞

∑

n=1

−αn

{

aIII
n I1 (αnr) + bIIIn K1 (αnr)

}

cos (αnz) (39)
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BIIIz (r, z) =
∞

∑

n=1

αn

{

aIII
n I0 (αnr) − bIIIn K0 (αnr)

}

sin (αnz) (40)

Substituting (39) and (40) into (38), we obtain the following
analytical expression for the electromagnetic force

Fz =
4z5Re

µ0

∞
∑

n=1

∞
∑

m=1

m

m2 − n2
XnYm with m 6= n (41)

and

Xn = −αn

{

aIII
n I1 (αnRe) + bIIIn K1 (αnRe)

}

Ym = αm

{

aIII
m I0 (αmRe) − bIIIm K0 (αmRe)

} (42)

where m and n are positive integers.

5.2. Self-inductance Expression

The self-inductance L11 of the iron-core solenoid is related to the total
stored magnetic energy as

1

2
L11I

2 =
1

2

∫

V

A · Jdv (43)

The integral in (43) is restricted to the volume of the conductor,
since the current density elsewhere is zero. We have supposed that the
current density is uniformly distributed over the whole cross section of
the winding, this leads to

I =
J(R3 − R2)L

N
(44)

where N and I are the number of turns in the winding and the electrical
current in the wire, respectively. L is the axial length of the coil.

The magnetic vector potential in the winding is given by (10).
Substituting (10) and (44) into (43) and integrating first in respect to
the z variable, we obtained

L11 =
2πN2

(R3 − R2)2L2J

∞
∑

n=1

{

cos(αnz1)−cos(αnz2)

αn

×

R3
∫

R2

(

aII
n I1 (αnr)+bIIn K1 (αnr)−CnL1 (αnr)

)

rdr

}

(45)

The radial integration in (45) leads to integral of the form:
∫

rI1(αnr)dr=
πr

2αn

(I1(αnr)L0(αnr)−I0(αnr)L1(αnr))=
πr

2αn

U(r) (46)
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∫

rK1(αnr)dr=
πr

2αn

(K1(αnr)L0(αnr)+K0(αnr)L1(αnr))=
πr

2αn

V(r)(47)

∫

rL1(αnr)dr=
α2

nr4

6π
F

(

1, 2;
3

2
,
5

2
, 3;

α2
nr2

4

)

=
α2

nr4

6π
W(r) (48)

where F in (48) is the hypergeometric function [28]. The functions
U(r), V (r) and W (r) in (46) to (48) have been introduced here to
simplify the mathematical expressions. Substituting (46), (47) and
(48) into (45), the semi-analytical expression of the self-inductance is
given by:

L11 =
2πN2

(R3 − R2)2L2J

∞
∑

n=1











cos(αnz1)−cos(αnz2)

2
×







aII
n

π
α2

n

(R3U(R3)−R2U(R2))

+bIIn
π

α2
n

(R3V (R3)−R2V (R2))

−Cn
αn

3π

(

R4
3W (R3)−R4

2W (R2)
)

















(49)

An analytical expression for the self-inductance without the iron
core can be obtained by imposing the coefficients bIIIn , aIV

k , and aV
k to

be null (Regions IV and V disappears without the ferromagnetic rod),
that gives from (25) and (29)

aII
n = αnR3CnV (R3) bIIn = −αnR2CnU(R2) (50)

By substituting (11) and (50) into (49), we obtain an analytical
expression for the self-inductance without the iron-core in term of an
infinite series as:

L′

11 =
4µ0N

2R2
3z

3
5

π(R3 − R2)2L2

∞
∑

n=1,3,5...

1

n4
sin2

(

nπL

2z5

)

×











U(R3)V (R3) − 2R2

R3
U(R2)V (R3)

+
(

R2

R3

)2
U(R2)V (R2)

−
(nR3)2

3z2

5

(

W (R3) −
(

R2

R3

)4
W (R2)

)











(51)

6. ANALYTICAL RESULTS AND COMPARISON WITH
FINITE ELEMENT SIMULATIONS

The geometrical parameters are given in Table 1. The outer boundaries
in the axial direction have been placed at z = 0 cm and z5 = 200 cm.
These boundaries are sufficiently far away from the coil and the iron
core so that they do not affect the results (the length of the domain is
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Figure 3. Equipotential lines around the coil for h = 7.5 cm
(maximum force).

ten times bigger than the length of the coil). Analytical solutions in
Regions I to V have been computed with a finite number of harmonic
terms M and K as indicated in Table 1.

In order to validate the proposed model, the analytical results have
been compared with those obtained by using a finite element (FE)
software FEMM [30]. For the FE solutions, a relative permeability
of µr = 10000 has been used for the iron core. The axial length of
the whole domain in FE simulations is the same as the one of the
analytical model. Homogeneous Dirichlet boundary conditions have
been imposed at z = 0 and z = z5 for FE simulations like for the
analytical model. The mesh in the different regions has been refined
until convergent results are obtained.

Figure 3 shows the equipotential lines around the coil when the
center of the iron core is placed at a distance h = 7.5 cm from the
center of the coil. This position corresponds to the maximum force
acting on the iron core as it can be observed in Fig. 5.

The radial and axial components of the magnetic flux density
distribution along the z-axis in Region III are shown in Fig. 4. The flux
density distribution without the iron core is also plotted in this figure
(when the iron core is not present, the solution is symmetric about the
center of the coil). The results without the iron core are obtained with
the analytical model by imposing the coefficients bIIIn , aIV

k , and aV
k to

be null.
From Fig. 4, the effects of the iron core on the magnetic field

distribution are very clear. One can see the distortion of the flux
density waveforms at the vicinity of the iron cylinder. An excellent
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agreement with the results deduced from FEM is obtained.
Figure 5 compares the electromagnetic axial force acting on the

iron core obtained with the semi-analytical formula (41) and with
FE simulations. For the computation, the center of the iron core is
displaced axially by a distance h relative to the center of the coil. As
expected, the force is null when the iron core is centered inside the
coil and it presents a symmetry around h = 0. The maximum force is
reached for a displacement h = 7.5 cm and its value is equal to 76.8 N
with the analytical model and 77.9 N with FEM. The error is less than
1.5% if we considered 50 harmonic terms. It appears that results from
the proposed analytical method and FE simulations are very close to
each other. To compute the peak value of the force, the computation
time is 1.21 s with the analytical model (50 harmonic terms, Processor
Intel Core2 Duo P8700, 2.53 GHz, Matlab Software) whereas the finite
element simulation takes 5.83 s for a mesh of 97 423 elements [30]. The

(a) (b)

Figure 4. Radial (a) and axial (b) components of the flux density in
Region III for r = 4 cm and h = 7.5 cm.

Figure 5. Electromagnetic force versus iron-core position h.
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Table 1. Geometrical parameters.

Symbol Quantity value

R1 Radius of the iron core 3 cm

R2 Inner radius of the coil 5 cm

R3 Outer radius of the coil 7 cm

z1 Axial position of the coil (left side) 90 cm

z2 Axial position of the coil (right side) 110 cm

L Axial length of the coil (L = z2 − z1) 20 cm

N Number of turns in the winding 1000

h
Axial position of the center of

the iron core from the center of the coil
variable

z3 Axial position of the iron core (left side) 95 + h cm

z4 Axial position of the iron core (right side) 105 + h cm

l Axial length of the iron core (l = z4 − z3) 10 cm

z5 Outer boundary of the domain 200 cm

J Current density in the coil 5 A/mm2

M
Number of harmonic terms used for magnetic

field calculation in Regions I, II and III
50

K
Number of harmonic terms used for magnetic

field calculation in Regions IV and V
50

analytical computation being much faster, the presented model can
advantageously be used in a preliminary design stage.

Figure 6 gives the self-inductance variation versus iron rod
position obtained with the semi-analytical formula (49) and with FE
simulations. As for the magnetic force, the iron core is displaced axially
by a distance h relative to the center of the coil. As expected, the self-
inductance is maximal for h = 0 cm and presents a symmetry around
h = 0 cm. The maximal value of the self-inductance is L11 = 85.8 mH
with the analytical model (50 harmonic terms) and L11 = 87 mH with
finite element simulations (97 423 elements). The error is less than
1.4%. The value of the self-inductance without the iron core (51)
is L′

11 = 48.8mH by using the analytical model (50 harmonics) and
L′

11 = 49mH with finite element simulations. Without the iron
cylinder (51), the error on the self-inductance computation is less
than 0.4% and the computational time is much faster (0.11 s for 50
harmonic terms). The analytical expressions for the self-inductance
with or without iron core are well verified by comparison with finite
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Figure 6. Self-inductance versus iron-core position h.

(a) (b)

Figure 7. Performances of the analytical model versus the number of
harmonic terms; (a) Error; (b) Computer time.

element simulations.
The error (axial force and self-inductance values) and computer

time variations with respect to the number of harmonic terms
considered in evaluating the analytical solutions are given in Table 2
and are shown in Fig. 7(a) and Fig. 7(b). The same number of
harmonic terms is considered for the five regions (M = K). For
the definition of the error, we assumed that results obtained with
finite element simulations are correct (F = 77.9 N and L11 = 87 mH).
Only the peak values of the force (h = 7.5 cm) and self-inductance
(h = 0 cm) are considered here. As shown in Fig. 7, the error increases
and the computer time decreases when the number of harmonic terms
decreases. We can observe from Fig. 7(a) that the error is smaller for
the self-inductance than for the force. From Table 2, we can say that
a number of 40 harmonic terms in the analytical model seems to be
a good compromise in terms of precision and computer time for the
studied example.
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Table 2. Error and computer time variations with respect to the
number of harmonic terms.

Number of harmonic terms 50 40 30 20 10

Force

Value (N) 76.8 76.1 73.6 60.3 15.7

Error: ε (%) 1.4 2.3 5.5 22.5 79.8

Computer time: T (s) 1.21 0.83 0.52 0.24 0.1

Figure of merit: ε · T 1.69 1.9 2.86 5.4 7.98

Self-

inductance

Value (mH) 85.8 85.2 83.9 72.6 51.9

Error: ε (%) 1.3 2.1 3.6 16.5 40.3

Computer time: T (s) 1.51 1.02 0.63 0.29 0.17

Figure of merit: ε · T 1.96 2.14 2.26 4.78 6.85

We can define the figure of merit of the proposed analytical model
as the product of the error by the computer time. Figure of merit (for
the force and self-inductance evaluation) is investigated with varying
number of harmonics. The results are given in Table 2. More the
figure of merit is low, better is the performance of the analytical model.
From Table 2, we can observe that the figure of merit is better for large
value of harmonic terms. The figure of merit for the self-inductance
computation is practically constant (around a value of 2) for a number
of harmonic terms upper than 30.

7. CONCLUSION

In this paper, we have developed new semi-analytical expressions to
compute the self-inductance and electromagnetic force for iron-core
solenoid of finite length. The analytical model is based on boundary
value problems with Fourier analysis. The Laplace and the Poisson
equations have been solved in the different regions by the separation
of variable methods. The solutions in each region are given in terms
of infinite series.

The only approximation in the modeling of this problem is
in assuming infinite permeability for the iron cylinder. The
accuracy of the analytical expressions for the self-inductance and
the electromagnetic force has been verified through comparisons with
numerical results from FE simulations. The proposed model can be
extended easily to multi-layers circular coils systems with or without
iron-core.
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