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Recognizing actions from a monocular video is a very hot topic in computer vision recently.
In this paper, we propose a new representation of actions, the co-occurrence matrices de-
scriptor, on the intrinsic shape manifold learned by graph embedding. The co-occurrence
matrices descriptor captures more temporal information than the bag of words (histogram)
descriptor which only considers the spatial information, thus boosts the classification accu-
racy. In addition, we compare the performance of the co-occurrence matrices descriptor on
different manifolds learned by various graph embedding methods. Graph embedding methods
preserve as much of the significant structure of the high-dimensional data as possible in the
low-dimensional map. The results show that nonlinear algorithms are more robust than linear
ones. Furthermore, we conclude that the label information plays a critical role in learning
more discriminating manifolds.

Keywords: Action recognition, graph embedding, co-occurrence matrices, human
silhouette, bag of words.

AMS Subject Classification: 68Txx; 68Uxx Machine vision and scene
understanding, Learning and adaptive systems, Knowledge representation;
Image processing

1. Introduction

Action recognition is an important area in computer vision, which has many funda-
mental applications in video surveillance, behavior understanding and human com-
puter interaction. Although the applications all have their own special demands,
they should always cope with spatial and temporal differences in performing ac-
tions as well as handle variations in the observed data due to difficult environment
conditions [6]. Because of these difficulties, action recognition on real-world data
is always a challenging task.

Many action recognition algorithms rely on partial representations, i.e. spatio-
temporal interest points based. Those methods are usually more robust to occlu-
sions and viewpoint changes but lack global information of the actions performed.
In this paper, we focus on the global representation of human actions. Generally,
there are two major groups of approaches to deal with spatial and temporal dif-
ferences in global action representations. The first common method is to build
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templates of activities, including two dimensional images: Motion Energy Images
(MEI) and Motion History Images (MHI) [4], and three dimensional space time vol-
umes: Motion History Volumes (MHV) [18, 29] and Spatiotemporal Volume (STV)
[3, 31]. These methods use the energy of images or interest points and the geometry
of volume to describe different actions.

The other branch of significant and useful methods consider a video sequence as
a set of raw data vectors and adopt a graph embedding method to learn the dy-
namic shape manifolds. The silhouette (binary) images of an action performed by
some persons undergoing a smooth motion can be represented as a manifold in the
image space. Manifold learning transforms dimensionality of objective data from
high to low by mapping similar input data to nearby points on a manifold, preserv-
ing as much of the significant structure of the high-dimensional data as possible
in the low-dimensional map. Among the linear algorithms, i.e. the subspace learn-
ing algorithms, principal component analysis (PCA) [16] and linear discriminant
analysis (LDA) [8] are the two most popular ones and both were proposed with
Gaussian assumptions on data distributions. Another popular linear algorithm is
locality preserving projections (LPP) [14]. In [25], the geometric mean for subspace
selection was studied to overcome a drawback of LDA: those classes being close
in the original feature space tend to merge together. A method [2]: max-min dis-
tance analysis (MMDA), which separateed all class pairs and could be achieved
by maximizing the minimum pairwise distance in the selected subspace, had been
proposed for discriminative dimension reduction algorithm and also been extended
into its kernel version.

Unfortunately, they have a common inherent limitation: they are all linear meth-
ods while the distributions of most real data are nonlinear. As for nonlinear di-
mensionality reduction algorithms, the representative methods include isometric
feature mapping (Isomap) [27], locally linear embedding (LLE) [21], Laplacian
Eigenmaps (LE) [1], diffusion maps [7] and semi-supervised diffusion maps (SSDM)
[35]. These algorithms are generally named as manifold learning which is an emerg-
ing and promising approach in nonlinear dimensionality reduction. A manifold is
a topological space that is locally Euclidean. LLE [21] and LE [1] focus on the
preservation of local neighbor structure. Isomap [27] seeks the subspace that best
preserves the geodesic distances between any two data sets. Diffusion maps [7] re-
lates the spectral properties of Markov processes to their geometric counterparts
and preserve the diffusion distance in intrinsic space. Furthermore, some methods
preserving the manifold structure were proposed for some special tasks. SSDM
[35] is a semi-supervised method which preserves the local manifold structure in
addition to separating samples in different classes, thus facilitates the classifica-
tion. In [11], a supervised Gaussian process latent variable model (GP-LVM) was
developed for supervised learning tasks, and the maximum a posteriori algorithm
was introduced to estimate positions of all samples in the latent variable space.
Zhou [36] proposed the manifold elastic net to incorporate the merits of both the
manifold learning based dimensionality reduction and the sparse learning based
dimensionality reduction. In [12], the authors introduce the manifold regulariza-
tion and the margin maximization to non-negative matrix factorization and obtain
the manifold regularized discriminative non-negative matrix factorization. In [32],
Zhang et. al proposed a framework, named “patch alignment”, which consists of
two stages: part optimization and whole alignment to provide a systematic frame-
work for understanding the common properties and intrinsic difference in different
algorithms.

Many interesting methods for learning a compact action representation using
manifold leaning algorithms have been proposed. Elgammal and Lee [10] adopted
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Figure 1. The flow diagram of the proposed method. The square frames
denote the co-occurrence matrices. The two dimensional manifold is learned
by diffusion maps.

an LLE framework to embed activity manifolds nonlinearly into a low dimen-
sional space for inferring 3D body pose from silhouettes. Dimension reduction of
the image silhouette and pose information had also been investigated using kernel
principle component analysis (KPCA) in [28]. Jia and Yeung [15] presented their
Local Spatio-Temporal Discriminant Embedding (LSTDE) algorithm specially de-
signed for human action recognition. Chin et al. [6] investigated and compared
methods for the extrapolation of learned manifolds within the context of activity
recognition. In [19], a neighborhood preserving embedding (NPE) algorithm was
exploited to embed silhouette images into an intrinsic manifold. Souvenir et al. [23]
presented a framework for learning a compact representation of primitive actions
that can be used for simultaneous action recognition and viewpoint estimation.
Shao and Chen [22] explored Spectral Regression Discriminant Analysis (SRDA)
on silhouette based human action recognition. The recognition algorithm adopted
the Bag of Words (BoW) model combined with the action representation based on
histogram of body poses sampled from silhouettes in the video sequence. Zheng
et al. [33] used the semi-supervised diffusion maps (SSDM) to learn the intrinsic
shape manifold. And the action was represented by bag of words (histogram) on
the learned shape manifold. Tao et al. [26] develop a general tensor discriminant
analysis (GTDA) as a preprocessing step for LDA and used human gait recognition
to validate the proposed GTDA.

After learning the intrinsic manifold of human silhouettes, how to represent the
actions on the intrinsic manifold becomes an important issue. The representation
of actions or the framework of recognition must capture the spatial and temporal
relations between poses simultaneously. Take actions “sitting down” and “getting
up” for example, they are both composed of similar poses. One is performed in a
downward direction and another upward, another just the reverse. Only the order
of poses is different. If we only consider the spatial information in the learned
manifold, such as key frames or bag of words, the two will be classified as one action.
In this paper, we present a framework that combines manifold learning and the co-
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Figure 2. The flow diagram of the low dimensional graph embedding.

occurrence matrices descriptor for action recognition. Firstly, we learn a compact
representation using manifold leaning for human silhouettes. Such a representation
reflects the intrinsic relationship of points, such as local structure, geodesic distance
and diffusion distance. We consider an action manifold as a trajectory with smooth
variation on the learned manifold. Then, a set of co-occurrence matrices is used to
describe an action sequence. Assuming that the sampling rate of the camera is fixed,
the temporal difference of same actions is mainly caused by the speed variation in
the actions performed by different subjects. The dimensionality of co-occurrence
matrices of each action sequence can be reduced by PCA. Finally, we use the K
Nearest Neighbors (KNN) classifier to label the test actions. The flow diagram of
the proposed method is shown in Figure 1. We can see that poses of the same
action performed by different subjects lie close to each other in the learned low
dimensional manifold. The initial results of the co-occurrence matrices descriptor
were presented in [34].

In general, our paper has two main contributions as follows:

(i) We propose a new action representation using co-occurrence matrices of
human pose silhouettes, which can characterize the spatial-temporal prop-
erties of actions. The experimental results demonstrate that co-occurrence
matrices outperform the bag of words descriptor. And we give a detail ex-
planation why the co-occurrence matrices descriptor is supervisor to the
bag of words descriptor.

(ii) We compare different graph embedding algorithms for learning the intrinsic
manifold of silhouettes. The results show that the nonlinear graph embed-
ding is more suitable for human action recognition. In addition, we conclude
that the label information is useful for classification.

The rest of this paper is organized as follows. We introduce the silhouette rep-
resentation and graph embedding methods for learning the intrinsic manifold of
human silhouettes in Section 2. In Section 3, we present a set of co-occurrence
matrices for action representation. The experimental results and comparison are
given in Section 4. Finally, Section 5 draws the conclusion.

2. Learning the Intrinsic Manifold of Human Silhouettes

In this section, we introduce a silhouette representation and graph embedding
methods to learn the shape manifolds. The flow diagram of the low dimensional
graph embedding is shown in Figure 2. To begin with, in order to avoid the loss of
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information, each silhouette Iij contained in video Vi is described as a vector vij

based on combining the block-based features and the Radon transform descriptor.
Then a graph G is constructed using the local geometric and label information,
and a weight W is set to each edge on the graph. In addition, to avoid the “curse
of dimensionality”, we use a framework of graph based methods to embed high
dimensional descriptors into the low dimensional space represented as uij . Finally,
each action sequence is represented as a set of points on the intrinsic shape manifold
Ai = {ui1, · · · , uiNi

}, where Ni denotes the number of silhouettes contained in video
Vi.

2.1 Silhouette Representation

The block-based features are always used in object recognition, such as character
or pose [28]. The Radon transform descriptor [24] is a region-based descriptor
calculating on a shape as a whole taking into account all the pixels within the shape.
Assume that there are action videos in the data set. For each action video with Ni

images, i.e. Vi, we assume that the associated sequence of moving silhouettes Vi =
{Ii1, Ii1, · · · , IiNi

}, which are discrete binary image data, can be obtained from the
original video. With a static background, silhouettes can be easily extracted from
the video using existing algorithms. We firstly center and normalize all silhouette
frames into the same dimension and keep the aspect ratio property of the silhouette,
so that the resulting images contain as much information as possible and have no
distortions. We assume that the block-based features of each silhouette image Iij

are given by: vb
ij = (bij(1), bij(2), · · · , bij(nb)), where nb is the number of sub-blocks

(for more details refer to [28]).
The Radon transform descriptor is invariant to common geometrical transforma-

tions and converts a silhouette image to a compact signal through the use of the
two-dimensional Radon transform. By definition, the Radon transform of an image
is determined by a set of projections of the image along lines taken at different
angles. The transform extends the Radon transform by calculating the sum of the
squared Radon transform values for all of the lines of the same angle in an image.
Assume that the Radon transform descriptor of each silhouette image is given by:
vr
ij = (rij(1), rij(2), · · · , rij(nr)), where nr is the number of sub-blocks. By com-

bining the block-based features and the Radon transform descriptor together, we
can denote the silhouette image as:

vij = (vb
ij , v

r
ij) = (bij(1), bij(2), · · · , bij(nb), rij(1), rij(2), · · · , rij(nr)) (1)

2.2 Graph Embedding Methods to Learn the Dynamic Shape Manifolds

For learning the intrinsic shape manifold, we put all silhouette images sampled from
different action videos together. For simplicity, by using the silhouette representa-
tion introduced in foresection 2.1, assume that X = {x1, x2, · · · , xN : xi ∈ RD} is
the training-set of poses drawn from video sequences containing different actions,
where N =

∑
i Ni and D = nb + nr. Then our goal is to find a mapping function

F : X → Y, Y = {yi : yi ∈ Rd, yi = F (xi)} from an original space to the desired
low-dimensional representation in Rd, where d ¿ D. The function may be explicit
or implicit, linear, or nonlinear in different cases. In [30], a general framework of
graph embedding is first introduced which aims at embedding the high dimensional
data points on a graph to a low dimensional intrinsic manifold. In this section, we
use the graph embedding to exploit the shape manifold.
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2.2.1 Constructing a Graph

Given the data set of silhouettes, we can construct a non-directional graph in G =
(X, W ) with the point on this graph corresponding to a feature vector of silhouette
in the data set. The edges between nodes reflect the neighborhood relations along
the shape manifold. For each edge (xi, xj), we set a weight between the two points
xi and xj at the end of the edge. Each element of the real symmetric matrix W
measures, for a pair of vertices, its similarity. The matrix can be formed using
various similarity criteria, such as Gaussian similarity from Euclidean distance,
local neighborhood relationship, and prior class information in supervised learning
algorithms [30].

2.2.2 Objective Function and Eigenmaps

Although the silhouette image can be represented as a vector, because of the
quite high dimension of such a representation, the following tasks will face many
difficulties. Furthermore, the perceptually meaningful structure of these images has
significantly fewer independent degrees of freedom. We desire a new representation
for each image with a low dimension preserving as much information as possible.
To the best of our knowledge, there are two methods to define how to preserve the
information. In fact, two different objective functions are corresponding to the two
different ways to define the weight of graph G = (X, W ).

One is to find an embedding of the data points that best preserves the inter-point
distances. The quantity distance can de defined by various ways, such as Euclidean
distance [5], geodesic distance [27] and diffusion distance [7]. If the distance between
data points xi and xj in the high original space is denoted by WD(xi, xj), and
the distance in the learned low dimensional space is denoted by W d(yi, yj) where
yi = F (xi), then the objective function can be defined by:

Y ∗ = arg min ‖ τ(WD)− τ(W d) ‖L2 , (2)

where ‖ · ‖L2 is the L2 matrix norm, and the τ operator converts distances to inner
products or nothing operation. Then the weight matrix of graph G is defined by
W = WD. To preserve different distances, there are different tricks to solve this
optimization problem. For multi-dimensional scaling (MDS) [5] and ISOMAP, let
λk be the kth eigenvalue (in decreasing order) of the matrix τ(WD), and φk(i)
be the ith component of the kth eigenvector. Then set the kth component of the
d−dimensional coordinate vector yi(k) equal to

√
λkυk(i). For DM and SSDM,

if Pt(xi, xj) represents the probability of going from xi to xj in the time t steps
on the graph G, the distance WD(xi, xj) in the high original space is defined
by quantity Pt. Let column vectors φ0, φ2, · · · , φN−1 be the eigenvectors of the tth
steps probability matrix Pt, ordered according to their eigenvalues λ0 ≥ λ1 ≥ · · · ≥
λN−1. Thus, the embedding is as follows: yi = (λt

1φ1(i), λt
2φ2(i), · · · , λt

dφd(i))T .
Another method hopes that the points which are close in the high dimensional

space are also close in the learned manifold. The important thing is to define the
similarity to describe how “close” each pair of data points. The quantity “simi-
larity” is related to “distance” introduced in the first method. They can convert
between each other. If WS is a similarity matrix, then the objective function is
given by:

Y ∗ = arg min
Y T BY =%

∑

i6=j

‖ yi − yj ‖2 WS(xi, xj) = arg min
Y T BY =%

tr(Y T LY ), (3)

where L is a Laplacian matrix of graph G, B is the constrain matrix and % is a
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constant. If E is a diagonal matrix, Eii =
∑

j WS
ij , then L = E −WS . Then the

weight matrix of graph G is defined by W = WS . This problem can be converted
into a generalized eigenvalue problem. Let column vectors φ0, φ2, · · · , φN−1 be the
eigenvectors of the generalized eigenvalue problem E−1L, ordered according to
their eigenvalues λ0 ≤ λ1 ≤ · · · ≤ λN−1. Thus, the embedding is as follows: yi =
(λ1φ1(i), λ2φ2(i), · · · , λdφd(i))T .

Therefore, we can see that various methods are attributed to the distance and
similarity of the different definitions. How to define the distance and similarity will
be discussed in the following subsection.

2.2.3 Various Distance Matrices

MDS is a group of methods that have a wide range of applications. The key idea
is to find a mapping from a high-dimensional space to a low-dimensional space, such
that the pairwise distances between the observed points are preserved the best. In
the framework of MDS [5], the distance matrixes W d(yi, yj) and WD(yi, yj) are
all defined by the Euclidean distance. Isomap [27] was proposed to find the low-
dimensional representations for a data set by approximately preserving the geodesic
distances of the data pairs. Thus, the distance matrixes W d in the learned eigen-
space is defined by the Euclidean distance. The geodesic distance is approximated
by the shortest distance between each pair of points on the graph G.

Diffusion maps were firstly introduced in [7]. It is an unsupervised nonlinear
graph embedding algorithm for dimensionality reduction. It is defined on a graph
of the objective data via Markov random walk. The low-dimensional representation
of the data is achieved by embedding the high dimensional data space to a low
dimensional Euclidean space using a set of eigenvectors corresponding to the largest
eigenvalues of Markov matrices. Semi-supervised diffusion maps first introduced in
[35] is a semi-supervised extension of diffusion maps. The Markov matrices are
adjusted by a distributional similarity learned through Expectation Maximization
(EM). The adjusted matrix not only reflects the geometric structure of the human
action manifold, but also the label information of classification.

For DM and SSDM, the distance WD(xi, xj) is defined by the t step probability
matrix of transition Pt, where tth is a parameter.

WD(xi, xj) = ||Pt(xi, ·)− Pt(xj , ·)||1/π, (4)

where π is a stationary distribution for measuring the density of each points and
Pt(xi, xj) represents the probability of going from xi to xj in the time t steps on the
graph G. The major difference between DM and SSDM is the definition of transition
probability matrix. For SSDM, this quantity reflects the label information of each
point.

2.2.4 Various Similarity Matrices

In this subsection, we briefly introduce the preserved similarities of various di-
mensionality reduction algorithms reformulated within the second framework. The
details of this work can be found in [1]. The difference between various algorithms
lies in the computation of the similarity matrix of the graph and the selection of
the constraint matrix.

Linear algorithms assume that the data points draw from the unknown Gaussian
distribution. PCA [16] seeks projection directions with maximal variances. In other
words, it finds and removes the projection directions with minimal variances. So
the similarities between all pair of points are equal. LDA [8] is a supervised algo-
rithm which searches for the directions that are most effective for discrimination
by minimizing the ratio between the intraclass and interclass scatters. Then the
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Figure 3. The two dimensional visualization of human silhouettes. The data set for LDA contains 8 subjects’
actions which are all labeled. The data set for SSDM contains 9 subjects’ actions with 8 of them labeled.
The parameter of local structure K for LPP, LE, LLE, Isomap, DM, and SSDM is set to 35. The transition
step t in algorithms DM and SSDM is set to 8.

similarity between the two points with the same label is far larger than the points
with different labels. These linear algorithms set the same similarity for all pairs of
points in a subset or universal set of all samples. However, the intrinsic relation may
be local in some cases. Local relationship is applied in the nonlinear algorithms,
which can be defined in terms of two variations: ε-neighborhoods and K nearest
neighbors. LLE [21] maps the input data to a lower dimensional space in a manner
that preserves the relationship between the neighboring points. In LLE, the local
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similarity of the data manifold is constructed by writing the data points as a linear
combination of their nearest neighbors. Laplacian Eigenmaps (LE) preserves the
similarities of the neighboring points which are defined by a Gaussian kernel.

3. Co-occurrence Matrices for Action Recognition

For each silhouette, we get a low dimensional representation yi = M(xi),using the
graph embedding algorithms (refer to Fig. 3). Therefore, each action sequence can
be represented as:

Ai = {ui1, ui2, · · · , uiNi
} = M{vi1, vi2, · · · , viNi

} (5)

For matching action sequences Ai and Aj , we have to compute the similarity be-
tween the two sets of vectors. However, in practice, there exist spatial and temporal
mis-alignments between action sequences. In addition, the action sequences may be
different in length and in frequency, which further complicates the problem. In this
paper, we propose a model-based matching framework for action recognition. We
explore a set of co-occurrence matrices to represent each action. The co-occurrence
matrices can capture the spatial-temporal difference of actions performed by dif-
ferent subjects.

3.1 Related Work for Action Recognition on Learned Manifold

The data point of each test silhouette frame is first projected into the embedding
space using graph embedding algorithms, which results in a low-dimensional repre-
sentation of the data point. For recognizing actions, there are different frameworks
to make use of the temporal shape variation information between different actions.
In [28], Wang and Suter assumed that a set of key poses can represent an action,
then explored factorial conditional random field (FCRF) to label human activity
sequences in the embedded space. FCRF models temporal sequences in multiple
interacting ways. In [19], a hidden conditional random field (HCRF) was exploited
to model and classify actions in a discriminative formulation. Jia and Yeung [15]
designed a two-stage recognition scheme. In the first stage, the test action sequence
was recognized on a frame-by-frame basis. 7-frame local temporal video segments
were used in the second recognition stage. In [6], manifold comparison can be
performed by computing distances between trajectories in the embedding space
while respecting differences in sequence length and temporal shifts. A histogram
representation calculated on probabilities of different poses was proposed in [33].

3.2 Co-occurrence Matrices Descriptor

A co-occurrence matrix is a matrix that is defined over an image to be the dis-
tribution of co-occurring values at a given offset. The co-occurrence matrix can
measure the texture of the image. Haralick et al. proposed the algorithm of gray-
level co-occurrence matrix (GLCM) in 1970s [13]. GLCM counts a co-appearance
probability of p(i, j, δ), when the distance between gray-level for the i pixel (p, q)
and gray-level for the j pixel (p + ∆p, q + ∆q) is δ. Moreover, it can counts the
co-appearance probability in some special situation with a fixed direction.

Inspired by GLCM used in the image texture classification, we use a set of co-
occurrence matrices to represent the shape manifold in the low dimensional space.
If dividing the low dimensional space into subsets, we can consider each subset as
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a grid in an image. Then we can use the GLCM method to describe each action
reflecting the spacial and temporal information. Suppose a codebook is learned by
running k-means clustering on the eigen-space for all silhouettes in the training set.
C = |c1, c2, · · · , cN0 | represents a codebook, where N0 is the number of codevectors.
Each codevector is a d dimensional vector. ci can be regarded as the centre of each
subset in the learned low space. Let S1, · · · , SN0 denote this partition of the space,
where Sl is the encoding region associated with codevector cl.

We count the co-appearance probability of p(cl, cm,∇t|Ai), when the first pose
uij belongs to partition Sl, and the second pose ui(j+∇t) after ∇t frames belongs
to Sm in the same action video Ai. The probability of points uij belonging to Sl

can be defined as:

wi,j(l) =
{

exp(−‖uij − cl‖2/2σ2), if uij ∈ Sl;
0, otherwise, (6)

Histograms are built by allowing low dimensional vectors to vote softly into the
few centers nearest to them, with Gaussian weights.

αi(l) =
1
Ni

Ni∑

j=1

wi,j(l) (7)

Therefore, using the histogram, an action can be denoted as a vector:

Aα
i = αi = {αi(1), αi(2), · · · , αi(N0)} (8)

Action comparison is thus finally reduced to the comparison of N0 dimensional
histograms. The bag of words (histogram) descriptors only build the distribution
of poses in the eigen-space. However, there are spatial and temporal differences in
actions. For example, some poses of human walking is very similar to the poses
of human running, but these poses are performed with different speed. So using
the co-occurrence matrices, we can design a descriptor for actions capturing the
temporal mutual information. The co-occurrence matrix can be defined as:

βi(l, m,∇t) =
∑

j,j+∇t

wi,j(l)wi,j+∇t(m) (9)

Then, each action can be denoted by a set of co-occurrence matrices modeled from
the training set by varying the parameter ∇t.

Aβ
i = βi = {βi(1, 1), βi(2, 1), · · · , βi(N0, 1), · · · , βi(N0, N0)} (10)

As the matrix set for each action is in high dimension and is redundant, we use
PCA to reduce the dimensionality retaining 95% information. During testing, each
action sequence can be represented in the same way as training. In the procedure
of recognition, we can directly match each test action video to the train templates.
Also, we can first learn a classifier for training templates, then test action videos
online using such a classifier.
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(a)

(b)

Figure 4. (a) Normalized frames and silhouettes of different actions. (b) Example frames and silhouettes of
walking sequences for robustness test.
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Figure 5. (a) The three dimensional visualization of action “bend” performed by Daria, Eli and Ido.
(b) The three dimensional visualization of action “run” performed by Daria, Eli and Ido. (c) Up: co-
occurrence matrices of “bend” corresponding to the trajectories in Panel (a) with ∇t = 2, 10. Bottom:
co-occurrence matrices of “run” corresponding to the trajectories in Panel (b) with ∇t = 2, 10.

4. Experiments

The proposed algorithm is experimented on a number of public data sets to test
its performance, such as the Weizmann dataset [3] and IXMAS [29]. In the experi-
ments, we compare our algorithm with classical algorithms, including PCA, LDA,
LPP, LE, LLE, Isomap, DM and SSDM.
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Table 1. Accuracy Comparison Between the Bag of Words and the Co-occurrence Matrices on the Learned Manifold

by Various Algorithms

Methods PCA LDA LPP LE LLE Isomap DM SSDM

Bag of Words 92.11% 92.22% 93.11% 94.67% 94.56% 96.67% 97.00% 98.60%
Co-occurrence matrices 94.33% 95.33% 96.00% 96.56% 98.22% 96.56% 98.89% 99.44%

4.1 Weizmann dataset

The experiments presented in this section are carried out on a widely used dataset
[3]. Specifically, the dataset contains 93 video sequences with ten different ac-
tions performed by nine different subjects. The action types include bending
(bend), jumping jack (jack), jumping-forward-on-two-legs (jump), jumping-in-place
(pjump), running (run), galloping sideway (side), skipping (skip), walking (walk),
waving-one-hand (wave1), waving-two-hand (wave2). The example frames and sil-
houettes are shown in Fig. 4.

4.1.1 Action Recognition Accuracy on Weizmann dataset

In this work, we do not intend to exploit the foreground segmentation issue, so
the silhouette masks in [3] are directly used in our experiments. We firstly denote
each silhouette as a vector using Radon transform and block-based features, and
then the eigen-space of the silhouettes is learned by the graph embedding algo-
rithms. Figure 3 shows that the 2D illustration of manifold learning by various
different algorithms. For supervised algorithms (LDA), we use eight subjects to
train the projection function. For semi-supervised algorithms (SSDM), we set all
subjects for training with eight subjects labeled and one subject unlabeled. We
can see that nonlinear algorithms learn a more discriminating manifold than lin-
ear algorithms. In Figure 5, we show two sets of co-occurrence matrices of actions
“bend” and “run”. It’s obvious that the two sets of matrices have large difference.
However, the co-occurrence matrices of same actions performed by different sub-
jects are similar. So, we can use these co-occurrence matrices as an effective means
for representing actions. Recognition accuracy comparison between histogram and
co-occurrence matrices on the learned manifold by various algorithms is shown in
Table 1. Since the co-occurrence matrices descriptor captures the temporal rela-
tionship information, its classification accuracy shows to be significantly higher
than that of the histogram descriptor. At the same time, from Table 1, we can see
that linear methods (PCA, LDA and LPP) are not as good as nonlinear methods
(LE, LLE, ISOMAP, DM and SSDM), no matter which descriptor is used. This
result also demonstrates that the relationship of silhouettes of different actions is
not linear in the original space. Furthermore, since the method SSDM is more ad-
vantageous over other methods, it illustrates that the label information plays an
important role in learning a more discriminative representation.

4.1.2 Robustness Test for the Co-occurrence Matrices Descriptor

The recognition of human actions can be further challenged when action se-
quences are captured in front of non-uniform backgrounds, with partial occlusions
and non-rigid deformations, at changing viewpoints, etc. In order to evaluate the
robustness of our method to these high irregularities of real-world actions, we per-
form further experiments using 20 video sequences of people walking in various
difficult scenarios and changing viewpoints [3]. In particular, these videos include
diagonal walking, walking with a dog, walking when swinging a bag, walking in
a skirt, walking with partially occluded legs, sleepwalking, limping, walking with
knees up, walking when carrying a briefcase, normal walking and changing view-
points from 0◦ to 45◦.
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Table 2. Recognition Results of the Robustness Test

Methods PCA LDA LPP LE

Cases 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd
View 0◦ 8 8 8 8 8 8 8 8 8 8 8 8
View 5◦ 8 8 8 8 8 8 8 8 8 8 8 8
View 10◦ 8 8 8 8 8 8 8 8 8 8 8 8
View 15◦ 8 8 8 8 8 8 8 8 8 8 8 8
View 20◦ 8 8 8 8 8 8 8 8 8 8 8 8
View 25◦ 8 8 8 6 6 6 8 8 8 8 8 8
View 30◦ 9 9 9 6 6 6 7 7 8 8 8 8
View 35◦ 9 9 9 6 6 6 9 9 9 4 4 4
View 40◦ 4 9 4 6 6 6 4 4 4 4 4 4
View 45◦ + + + 6 6 6 4 4 4 4 4 4
Swinging bag 1 1 1 8 8 8 8 8 5 8 8 8
Carrying a briefcase 8 8 8 8 8 8 8 8 8 8 8 8
Walking with knee up 6 6 6 8 8 8 6 6 6 6 6 6
Limping man 8 8 8 8 8 8 7 8 7 8 8 8
Sleepwalking 5 5 5 6 6 6 2 2 2 8 6 8
Occluded legs 8 8 8 8 8 8 8 8 8 8 8 8
Normal walk 8 8 8 8 8 8 8 8 8 8 8 8
Diagonal walk 8 8 8 8 8 8 8 8 8 8 8 8
Walking in a skirt 8 8 8 8 8 8 8 8 8 8 8 8
Walking with a dog 5 5 5 5 5 5 7 5 5 5 5 5

Methods LLE Isomap DM SSDM

Cases 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd
View 0◦ 8 8 8 8 8 8 8 8 8 8 8 8
View 5◦ 8 8 8 8 8 8 8 8 8 8 8 8
View 10◦ 8 8 8 8 8 8 8 8 8 8 8 8
View 15◦ 8 8 8 8 8 8 8 8 8 8 8 8
View 20◦ 8 8 8 8 8 8 8 8 8 8 8 8
View 25◦ 8 8 8 8 8 8 8 8 8 8 8 8
View 30◦ 6 8 8 8 8 8 8 8 8 8 8 8
View 35◦ 4 4 4 2 2 4 4 4 4 2 2 2
View 40◦ 4 4 4 4 2 4 4 4 4 5 5 5
View 45◦ 4 4 4 4 4 2 4 4 4 2 2 2
Swinging bag 6 6 8 1 1 5 8 6 6 8 8 2
Carrying a briefcase 8 8 8 8 8 8 8 8 8 8 8 8
Walking with knee up 6 6 6 8 8 8 6 8 6 8 2 8
Limping man 8 8 8 8 8 8 8 8 8 8 8 8
Sleepwalking 8 8 8 2 8 2 2 2 2 2 2 8
Occluded legs 8 8 8 8 8 8 8 8 8 8 8 8
Normal walk 8 8 8 8 8 8 8 8 8 8 8 8
Diagonal walk 8 8 8 8 8 8 8 8 8 8 8 8
Walking in a skirt 8 8 8 8 8 8 8 8 8 8 8 8
Walking with a dog 8 8 8 5 5 8 5 5 5 5 8 8

We use ten-fold cross validation for robustness evaluation. The action sequences
of eight subjects used in the previous section are labeled. Action videos of eight
subjects, including Daria, Denis, Eli, Ido, Ira, Lena, Lyova and Moshe, are used
as the training set. For algorithm LDA, all action sequences of eight subjects are
labeled. For SSDM, we randomly select two subjects’ action sequences as labeled
samples. The results are shown in Table 2. We show the three nearest training
actions from the test action. The similarities are computed using the norm of co-
occurrence matrices. The number in the grid denotes which class the robustness
test action is classified. “1”: bent; “2”: jack; “3”: jump; “4”: pjump; “5”: run;
“6”: side; “7”: skip; “8”: walk; “9”: wave1; “+”: wave2. These robustness test
actions belong to action “walking”, so “8” demonstrates that the test action has
a right classification. Boldface denotes mis-classification. Table 2 shows that most
algorithms cannot handle the changing viewpoints from 35◦ to 45◦ in the video
data. This is because the silhouette in each frame is completely deformed with a
large viewpoint change. In addition, we can conclude that nonlinear algorithms are
more robust than linear algorithms. The actions “sleepwalking”, “walking with a
dog” and “change view” are mis-classified by all linear algorithms. Furthermore,
SSDM has an advantage over other methods. Only “sleepwalking” is misclassified
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0

Figure 6. Some samples of image and silhouette in the IXMAS data set. There are all eleven actions
performed by two subjects (each row is corresponding to a subject). These images are captured by five
cameras with different viewpoints.

Table 3. Comparison with the State-of-the-art Methods

Methods cam0 cam1 cam2 cam3 cam4

Our proposed method 70.79% 65.71% 73.33% 78.41% 53.97%
Weinland et al. [9] 3D 65.4% 70.0% 54.3% 66.0% 33.6%
Weinland et al. [9] 2D 55.2% 63.5% * 60.0% *
Junejo et al. [17] Self-similarities 76.4% 77.6% 73.6% 68.8% 66.1%
Liu et al. [20] ST+Spin-Image 73.46% 72.74% 69.62% 70.94% *

because of the very different poses with hands up. The major reason is that label
information has a critical role in learning the more discriminating manifold.

4.2 IXMAS

IXMAS [29] is a multiview dataset for view-invariant human action recognition.
In this experiment, our recognition model is learned from single views. In essence,
we treat the cameras as independent with each other. There are thirteen daily-
life motions each performed 3 times by 11 actors. These actors in Ithe XMAS
dataset choose freely positions and orientations by themselves. The actions include
checking watch, crossing arms, scratching head, sitting down, getting up, turning
around, walking, waving, punching, kicking, pointing, picking up and throwing.
We choose 11 actions, performed by 10 actors, each 3 times, and viewed by 5
calibrated cameras, the same as in [9]. Some samples are illustrated in Fig. 6. We
use the labels offered in [29], but some of them are not very accurate. As shown
in Fig. 8, some poses of the scratching head action had been labeled as sitting
down. This may decrease the classification accuracy to some degree. We use the
leave-one-out scheme to test our proposed method. Each time, we randomly select
one subject’s actions as test samples, use the others to train our learning model.

4.2.1 The Accuracy of Recognition on IXMAS

In this subsection, we present results on the IXMAS data set using the co-
occurrence matrices descriptor and various embedding methods. Also, we will com-
pare our proposed method to the state-of-the-art action recognition methods used
on this data-set.

In this experiment, we set the neighborhood of graph K = 45, the number of
clusters of learned eigen-space N0 = 100. For LDA, we treat all training videos as
labeled samples. However, for SSDM, videos of one subject in the training set are
randomly selected as labeled samples. All samples including testing samples will be
used to learn eigen-space for unsupervised and semi-supervised manifold learning,
but LDA exclude test videos because it is a supervised method. Fig. 7 shows the
classification accuracy for each camera using different embedding methods and the
co-occurrence matrices descriptor. From this figure, we can draw four conclusions

Page 14 of 19

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

March 15, 2011 9:47 International Journal of Computer Mathematics ZHENGFENG

15

Ch
ec

k
 W

at
ch

Cr
os

s 
A
rm

W
av

e 

Si
t 
D
ow

n

P
ic
k
 U

p

P
un

ch
 

W
al

k
 

T
ur

n 
A
ro

un
d

G
et
 U

p

Sc
ra

tc
h 

H
ea

d
K
ic
k
 

(a) cam0

Ch
ec

k
 W

at
ch

Cr
os

s 
A
rm

W
av

e 

Si
t 
D
ow

n

P
ic
k
 U

p

P
un

ch
 

W
al

k
 

T
ur

n 
A
ro

un
d

G
et

 U
p

Sc
ra

tc
h 

H
ea

d
K
ic
k
 

(b) cam1

Ch
ec

k
 W

at
ch

Cr
os

s 
A
rm

W
av

e 

Si
t 
D
ow

n

P
ic
k
 U

p

P
un

ch
 

W
al

k
 

T
ur

n 
A
ro

un
d

G
et

 U
p

Sc
ra

tc
h 

H
ea

d
K
ic
k
 

(c) cam2

C
he

ck
 W

at
ch

Cr
os

s 
A
rm

W
av

e 

Si
t 
D
ow

n

P
ic
k
 U

p

P
un

ch
 

W
al

k
 

T
ur

n 
A
ro

un
d

G
et

 U
p

Sc
ra

tc
h 

H
ea

d
K
ic
k
 

(d) cam3

Ch
ec

k
 W

at
ch

C
ro

ss
 A

rm

W
av

e 

Si
t 
D
ow

n

P
ic
k
 U

p

P
un

ch
 

W
al

k
 

T
ur

n 
A
ro

un
d

G
et

 U
p

Sc
ra

tc
h 

H
ea

d
K
ic
k
 

(e) cam4

Cam0
Cam4Cam3Cam2Cam1

(f) Average Accuracy

Figure 7. Classification accuracy for each camera using different embedding methods and the co-
occurrence matrices descriptor.

in the following. Firstly, action videos captured by the fourth camera (cam3) are
best classified, and the fifth (cam4) produces the worst result. This is because the
silhouettes from the top view camera are less distinguishable. Secondly, the ac-
tion walking is always well classified regardless of view point and graph embedding
methods. The actions turning around, kicking, sitting down and picking up are
in the second place. The actions checking watch, crossing arms, scratching head,
waving and punching are always confused with each other. Similar conclusion were
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Figure 8. Three dimensionality visualization of actions “sit down” and “get up” both performed by
amel. The eigenspace is learned by DM.

found in [9]. Thirdly, SSDM has higher stability of action recognition over view
changes than other embedding methods, especially for the action checking watch.
Finally, the label samples play an important role on boosting the classification
accuracy for this complex data-set. We can see that LDA can also achieve a rea-
sonable accuracy. Moreover, semi-supervised diffusion maps (SSDM) achieves the
best classification accuracy.

As a result, using SSDM and the co-occurrence matrices descriptor, the average
classification accuracy per camera are illustrate in Table 3. In [9], when learning
in 3D and recognizing in 2D, the highest average accuracy only reached 70.0% for
the second camera (cam1). Junejo et al. [17] explored self-similarities to recognize
actions. However, their method relied on geometric properties and needed to com-
bine them with machine learning for cross-view action recognition. In a single view
setting, our method can achieve 78.41% accuracy for the fourth camera (cam3). It
is difficult to directly compare our results with [29] (93.33%) because of different
experimental settings and their methods used a full 3D model reconstructed from
multiple camera views.

4.2.2 Comparison Between the Bag-of-words and the Co-occurrence Matrices
Descriptor

The actions, “sit down” and “get up” in the IXMAS data set, are performed suc-
cessively. Most silhouettes of the two actions are very similar, only with a different
order. If we use the bag of words descriptor to describe these two actions, they
will be confused because of its non-sensitivity to temporal changes. However, the
co-occurrence matrices descriptor captures the temporal information so that it can
avoid such confusion. Fig. 8 shows a three dimension visualization of actions “sit
down” and “get up” both performed by Amel. We can see that the two sequences
of three dimension pointS in learned eigen-space are very close, but with a reverse
order.

In Fig. 9, the two images correspond to similarity comparisons between actions
“sit down” and “get up”. We calculate the similarities between all 30 “sit down”
videos performed by 10 subjects with 3 times and all 30 “get up” videos also per-
formed by such 10 subjects with 3 times. From Fig. 9, we can draw two conclusions.
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Figure 9. Similarity comparison between the bag of words and the co-occurrence matrices descriptor.
Each image contain 60 × 60 grids which one is corresponding to similarity of two action sequences.
The darker grid denotes the two actions are more similar. The eigenspace is learned by DM.
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Figure 10. Classification accuracy comparison between the co-occurrence matrices descriptor and
the bag of words (histogram) for each camera.

Firstly, the two images have the similar texture. Secondly, it’s obvious that action
“sit down” sequences are more similar with “sit down” sequences than “get up” se-
quences using the co-occurrence matrices descriptor. However, when using the bag
of words descriptor, actions “sit down” and “get up” have very similar behaviors.
That is to say, the co-occurrence matrices descriptor is more discriminative than
the bag of words descriptor.

Fig. 10 depicts the classification accuracy on five cameras. Compared with the
bag of words descriptor, the classification accuracy increases a lot using the co-
occurrence matrices descriptor, no matter which camera and which embedding
method is used.
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5. Conclusion

In this paper, we propose a new representation of actions on the intrinsic shape
manifold learned by various graph embedding algorithms. The co-occurrence ma-
trices descriptor captures more temporal information than the bag of words (his-
togram based) descriptor which only considers the spatial information. In addition,
we compare the performance of the co-occurrence matrices descriptor on different
manifolds learned by various graph embedding methods. The results show that non-
linear algorithms are more robust than linear algorithms. Furthermore, we conclude
that the label information is useful in learning more discriminating manifolds. The
future work will be investigated in the following directions:

• We can use more challenging datasets for testing the performance of the co-
occurrence matrices descriptor and graph embedding methods.

• For multi-view cameras, we can design a combination framework of all views in
the recognition procedure, such as voting.

• In this paper, KNN is used for classification. More advantaged techniques, such
as SVM and Adaboost, can be explored for action recognition.

• Since the nonlinear manifold learning methods including LE, LLE, ISOMAP,
DM and SSDM all don’t offer an explicit mapping function, it will take more
time to compute the low dimensional representation of on-line samples. So the
future work can address the problem of the out-of-sample issue for embedding
unseen samples.
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