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Abstract

We present the approach we took for our par-

ticipation to the WMT12 Quality Estimation

Shared Task: our main goal is to achieve rea-

sonably good results without appeal to super-

vised learning. We have used various simi-

larity measures and also an external resource

(Google N -grams). Details of results clarify

the interest of such an approach.

1 Introduction

Quality Estimation (or Confidence Estimation)

refers here to the task of evaluating the quality of

the output produced by a Machine Translation (MT)

system. More precisely it consists in evaluating the

quality of every individual sentence, in order (for in-

stance) to decide whether a given sentence can be

published as it is, should be post-edited, or is so bad

that it should be manually re-translated.

To our knowledge, most approaches so far (Spe-

cia et al., 2009; Soricut and Echihabi, 2010; He et

al., 2010; Specia et al., 2011) use several features

combined together using supervised learning in or-

der to predict quality scores. These features be-

long to two categories: black box features which

can be extracted given only the input sentence and

its translated version, and glass box features which

rely on various intermediate steps of the internal MT

engine (thus require access to this internal data).

For the features they studied, Specia et al. (2009)

have shown that black box features are informative

enough and glass box features do not significantly

contribute to the accuracy of the predicted scores.

In this study, we use only black box features, and

further, eschew supervised learning except in the

broadest sense. Our method requires some refer-

ence data, all taken to be equally good exemplars

of a positive reference category, against which the

experimental sentences are compared automatically.

This is the extent of broader-sense supervision. The

method does not require a training set of items each

annotated by human experts with quality scores (ex-

cept for the purpose of evaluation of course).

Successful unsupervised learning averts risks of

the alternative: supervised learning necessarily

makes the predicting system dependent on the an-

notated training data, i.e. less generic, and requires

a costly human evalution stage to obtain a reliable

model. Of course, our approach is likely not to per-

form as well as supervised approaches: here the goal

is to find a rather generic robust way to measure

quality, not to achieve the best accuracy. Neverthe-

less, in the context of this Quality Evaluation Shared

task (see (Callison-Burch et al., 2012) for a detailed

description) we have also used supervised learning

as a final stage, in order to submit results which can

be compared to other methods (see §4).

We investigate the use of various similarity mea-

sures for evaluating the quality of machine translated

sentences. These measures compare the sentence

to be evaluated against a reference text, providing

a similarity score result. The reference data is sup-

posed to represent standard (well-formed) language,

so that the score is expected to reflect how complex

(source side) or how fluent (target side) the given

sentence is.

After presenting the similarity measures in sec-



tion 2, we will show in section 3 how they perform

individually on the ranking task; finally we will ex-

plain in section 4 how the results that we submitted

were obtained using supervised learning.

2 Approach

Our method consists in trying to find the best mea-

sure(s) to estimate the quality of machine translated

sentences, i.e. the ones which show the highest cor-

relation with the human annotators scores. The mea-

sures we have tested work always as follows.

Given a sentence to evaluate (source or target),

a score is computed by comparing the sentence

against a reference dataset (usually a big set of sen-

tences). This dataset is assumed to represent stan-

dard and/or well-formed language.1 This score rep-

resents either the quality (similarity measure) or the

faultiness (distance measure) of the sentence. It is

not necessarily normalized, and in general cannot be

interpreted straightforwardly (for example like the 1

to 5 scale used for this Shared Task, in which every

value 1, 2, 3, 4, 5 has a precise meaning). In the con-

text of the Shared task, this means that we focus on

the “ranking” evaluation measures provided rather

than the “scoring” measures. These scores are rather

intended to compare sentences relatively to one an-

other: for instance, they can be used to discard the

N% lowest quality sentences from post-editing.

The main interest in such an approach is in

avoiding dependence on costly-to-annotate training

data—correspondingly costly to obtain and which

risk over-tuning the predicting system to the articu-

lated features of the training items. Our method still

depends on the dataset used as reference, but this

kind of dependency is much less constraining, be-

cause the reference dataset can be any text data. To

obtain the best possible results, the reference data

has to be representative enough of what the eval-

uated sentences should be (if they were of perfect

quality), which implies that:

• a high coverage (common words or n-grams) is

preferable; this also means that the size of this

dataset is important;

1We use this definition of “reference” in this article. Please

notice that this differs from the sense “human translation of a

source sentence”, which is more common in the MT literature.

• the quality (grammaticality, language register,

etc.) must be very good: errors in the reference

data will infect the predicted scores.

It is rather easy to use different reference datasets

with our approach (as opposed to obtain new human

scores and training a new model on this data), since

nowadays numerous textual resources are available

(at least for the most common languages).

2.1 Similarity measures

All the measures we have used compare (in different

ways) the n-grams of the tested sentence against the

reference data (represented as a big bag of n-grams).

There is a variety of parameters for each measure;

here are the parameters which are common to all:

Length of n-grams: from unigrams to 6-grams;

Punctuation: with or without punctuation marks;

Case sensitivity: binary;

Sentence boundaries: binary signal of whether

special tokens should be added to mark the start

and the end of sentences.2 This permits:

• that there is the same number of n-grams

containing a token w, for every w in the

sentence;

• to match n-grams starting/ending a

sentence only against n-grams which

start/end a sentence.

Most configurations of parameters presented in this

paper are empirical (i.e. only the parameter set-

tings which performed better during our tests were

retained). Below are the main measures explored.3

2.1.1 Okapi BM25 similarity (TF-IDF)

Term Frequency-Inverse Document Frequency

(TF-IDF) is a widely used similarity measure in

Information Retrieval(IR). It has also been shown

to perform significantly better than only term fre-

quency in tasks like matching coreferent named

entities (see e.g. Cohen et al. (2003)), which is

2With trigrams, “Hello World !” (1 trigram) becomes

“# # Hello World ! # #” (5 trigrams).
3One of the measures is not addressed in this paper for IP

reasons (this measure obtained good results but was not best).



technically not very different from comparing sen-

tences. The general idea is to compare two docu-

ments4 using their bags of n-grams representations,

but weighting the frequency of every n-gram with

the IDF weight, which represents “how meaning-

ful” the n-gram is over all documents based on its

inverse frequency (because the n-grams which are

very common are not very meaningful in general).

There are several variants of TF-IDF compari-

son measures. The most recent “Okapi BM25” ver-

sion was shown to perform better in general than the

original (more basic) definition (Jones et al., 2000).

Moreover, there are different ways to actually com-

bine the vectors together (e.g. L1 or L2 distance). In

these experiments we have only used the Cosine dis-

tance, with Okapi BM25 weights. The weights are

computed as usual (using the number of sentences

containing X for any n-gram X), but are based only

on the reference data.

2.1.2 Multi-level matching

For a given length N, “simple matching” is de-

fined as follows: for every N -gram in the sentence,

the score is incremented if this N -gram appears at

least once in the reference data. The score is then

relativized to the sentence N -gram length.

“Multi-level matching” (MLM) is similar but with

different lengths of n-grams. For (maximum) length

N , the algorithm is as follows (for every n-gram):

if the n-gram appears in the reference data the score

is incremented; otherwise, for all n-grams of length

N − 1 in this n-gram, apply recursively the same

method, but apply a penalty factor p (p < 1) to

the result.5 This is intended to overcome the bi-

nary behaviour of the “simple matching”. This way

short sentences can always be assigned a score, and

more importantly the score is smoothed according

to the similarity of shorter n-grams (which is the be-

haviour one wants to obtain intuitively).

4In this case every sentence is compared against the refer-

ence data; from an IR viewpoint, one can see the reference data

as the request and each sentence as one of the possible docu-

ments.
5This method is equivalent to computing the “simple match-

ing” for different lengths N of N -grams, and then combine the

scores sN in the following way: if sN < sN−1, then add

p × (sN−1 − sN ) to the score, and so on. However this “ex-

ternal” combination of scores can not take into account some of

the extensions (e.g. weights).

Two main variants have been tested. The first one

consists in using skip-grams.6 Different sizes and

configurations were tested (combining skip-grams

and standard sequential n-grams), but none gave

better results than using only sequential n-grams.

The second variant consists in assigning a more fine-

grained value, based on different parameters, instead

of always assigning 1 to the score when n-gram oc-

curs in the reference data. An optimal solution is not

obvious, so we tried different strategies, as follows.

Firstly, using the global frequency of the ngram

in the reference data: intuitively, this could be in-

terpreted as “the more an n-gram appears (in the

reference data), the more likely it is well-formed”.

However there are obviously n-grams which appear

a lot more than others (especially for short n-grams).

This is why we also tried using the logarithm of the

frequency, in order to smooth discrepancies.

Secondly, using the inverse frequency: this is

the opposite idea, thinking that the common n-

grams are easy to translate, whereas the rare n-

grams are harder. Consequently, the critical parts

of the sentence are the rare n-grams: assigning them

more weight focuses on these. This works in both

cases (if the n-gram is actually translated correctly

or not), because the weight assigned to the n-gram

is taken into account in the normalization factor.

Finally, using the Inverse Document Frequency

(IDF): this is a similar idea as the previous one, ex-

cept that instead of considering the global frequency

the number of sentences containing the n-gram is

taken into account. In most cases (and in all cases

for long n-grams), this is very similar to the previ-

ous option because the cases where an n-gram (at

least with n > 1) appears several times in the same

sentence are not common.

2.2 Resources used as reference data

The reference data against which the sentences

are compared is crucial to the success of our ap-

proach. As the simplest option, we have used the

Europarl data on which the MT model was trained

(source/target side for source/target sentences). Sep-

arately we tested a very different kind of data,

namely the Google Books N -grams (Michel et al.,

6The true-false-true skip-grams in “There is

no such thing”: There no, is such and no thing.



2011): it is no obstacle that the reference sentences

themselves are unavailable, since our measures only

need the set of n-grams and possibly their frequency

(Google Books N -gram data contains both).

3 Individual measures only

In this section we study how our similarity measures

and the baseline features (when used individually)

perform on the ranking task. This evaluation can

only be done by means of DeltaAvg and Spearman

correlation, since the values assigned to sentences

are not comparable to quality scores. We have tested

numerous combinations of parameters, but show be-

low only the best ones (for every case).

3.1 General observations

Method Ref. data DeltaAvg Spearman

MLM,1-4 Google, eng 0.26 0.22

Baseline feature 1 0.29 0.29

Baseline feature 2 0.29 0.29

MLM,1-3,lf Google, spa 0.32 0.28

Okapi,3,b EP, spa 0.33 0.27

Baseline feature 8 0.33 0.32

Okapi,2,b EP, eng 0.34 0.30

Baseline feature 12 0.34 0.32

Baseline feature 5 0.39 0.39

MLM,1-5,b EP, spa 0.39 0.39

MLM,1-5,b EP, eng 0.39 0.40

Baseline feature 4 0.40 0.40

Table 1: Best results by method and by resource on train-

ing data. b = sentence boundaries ; lf = log frequency

(Google) ; EP = Europarl.

Table 1 shows the best results that every method

achieved on the whole training data with different

resources, as well as the results of the best base-

line features.7 Firstly, one can observe that the lan-

guage model probability (baseline features 4 and 5)

performs as good or slightly better than our best

measure. Then the best measure is the one which

combines different lengths of n-grams (multi-level

matching, combining unigrams to 5-grams), fol-

lowed by baseline feature 12 (percentage of bigrams

7 Baseline 1,2: length of the source/target sentence;

Baseline features 4,5: LM probability of source/target sentence;

Baseline feature 8: average number of translations per source

word with threshold 0.01, weighted by inverse frequency;

Baseline feature 12: percentage of bigrams in quartile 4 of fre-

quency of source words in a corpus of the source language.

in quartile 4 of frequency), and then Okapi BM25

applied to bigrams. It is worth noticing that compar-

ing either the source sentence or the target sentence

(against the source/target training data) gives very

similar results. However, using Google Ngrams as

reference data shows a significantly lower correla-

tion. Also using skip-grams or any of our “fined-

grained” scoring techniques (see §2.1.2) did not im-

prove the correlation, even if in most cases these

were as good as the standard version.

3.2 Detailed analysis: how measures differ

Even when methods yield strongly correlated re-

sults, differences can be significant. For example,

the correlation between the rankings obtained with

the two best methods (baseline 4 and MLM Eng.) is

0.53. The methods do not make the same errors.8 A

method may tend to make a lot of small errors, or on

the contrary, very few but big errors.
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Figure 1: Percentage of best segments within an error

range. For every measure, the X axis represents the sen-

tences sorted by the difference between the predicted rank

and the actual rank (“rank error”), in such a way that for

any (relative) number of sentences x, the y value repre-

sents the maximum (relative) rank error for all prior sen-

tences: for instance, 80% of the ranks predicted by these

three measures are at most 40% from the actual rank.

Let R and R′ be the actual and predicted ranks9

of sentence, respectively. Compute the difference

8This motivates use of supervised learning (but see §1).
9It is worth noticing that ties are taken into account here: two



D = |R−R′|; then relativize to the total number of

sentences (the upper bound for D): D′
= D/N .

D′ is the relative rank error. On ascending sort

by D′, the predicted ranks for the first sentences

are closest to their actual rank. Taking the relative

rank error D′

j for the sentence at position Mj , one

knows that all “lower” sentences (∀Mi, Mi ≤ Mj)

are more accurately assigned (D′

i ≤ D′

j). Thus, if

the position is also relativized to the total number

sentences: M ′

k = Mk/N , M ′

k is the proportion of

sentences for which the predicted rank is at worst

D′

k% from the real rank. Figure 1 shows the percent-

age of sentences withing a rank error range for three

good methods:10 the error distributions are surpris-

ingly similar. A baseline ranking is also represented,

which shows the same if all sentences are assigned

the same rank (i.e. all sentences are considered of

equal quality)11.

We have also studied effects of some parameters:

• Taking punctuation into account helps a little;

• Ignoring case gives slightly better results;

• Sentences boundaries significantly improve the

performance;

• Most of the refinements of the local score (fre-

quency, IDF, etc.) do not perform better than

the basic binary approach.

4 Individual measures as features

In this section we explain how we obtained the sub-

mitted results using supervised learning.

4.1 Approach

We have tested a wide range of regression algo-

rithms in order to predict the scores, using the

Weka12 toolkit (Hall et al., 2009). All tests were

sentences which are assigned the same score are given the same

rank. The ranking sum is preserved by assigning the average

rank; for instance if s1 > s2 = s3 > s4 the corresponding

ranks are 1, 2.5, 2.5, 4).
10Some are not shown, because the curves were too close.
11Remark: the plateaus are due to the ties in the actual ranks:

there is one plateau for each score level. This is not visible on

the predicted rankings because it is less likely that an impor-

tant number of sentences have both the same actual rank and

the same predicted rank (whereas they all have the same “pre-

dicted” rank in the baseline ranking, by definition).
12www.cs.waikato.ac.nz/ml/weka – l.v., 04/2012.

done using the whole training data in a 10 folds

cross-validation setting. The main methods were:

• Linear regression

• Pace regression (Wang and Witten, 2002)

• SVM for regression (Shevade et al., 2000)

(SMOreg in Weka)

• Decision Trees for regression (Quinlan, 1992)

(M5P in Weka)

We have tested several combinations of features

among the features provided as baseline and our

measures. The measures were primarily selected

on their individual performance (worst measures

were discarded). However we also had to take the

time constraint into account, because some measures

require a fair amount of computing power and/or

memory and some were not finished early enough.

Finally we have also tested several attributes selec-

tion methods before applying the learning method,

but they did not achieve a better performance.

4.2 Results

Table 2 shows the best results among the config-

urations we have tested (expressed using the offi-

cial evaluation measures, see (Callison-Burch et al.,

2012) for details). These results were obtained using

the default Weka parameters.In this table, the differ-

ent features sets are abbreviated as follows:

• B: Baseline (17 features);

• M1: All measures scores (45 features);

• M2: Only scores obtained using the provided

resources (33 features);

• L: Lengths (of source and target sentence, 2

features).

For every method, the best results were obtained

using all possible features (baseline and our mea-

sures). The following results can also be observed:

• our measures increase the performance over

use of baseline features only (B+M1 vs. B);

• using an external resource (here Google n-

grams) with some of our measures increases the

performance (B+M1 vs. B+M2);

www.cs.waikato.ac.nz/ml/weka


Features Method DeltaAvg Spearman MAE RMSE

B SVM 0.398 0.445 0.616 0.761

B Pace Reg. 0.399 0.458 0.615 0.757

L + M1 SVM 0.401 0.439 0.615 0.764

L + M1 Lin. Reg 0.408 0.441 0.610 0.757

B Lin. Reg. 0.408 0.461 0.614 0.754

L + M1 M5P 0.409 0.441 0.610 0.757

B + M2 SVM 0.409 0.447 0.605 0.753

B + M2 Pace Reg. 0.417 0.466 0.603 0.744

B + M2 M5P 0.419 0.472 0.601 0.746

L + M1 Pace Reg. 0.426 0.454 0.603 0.751

B + M2 Lin. Reg. 0.428 0.481 0.598 0.740

B M5P 0.434 0.487 0.586 0.729

B + M1 SVM 0.444 0.489 0.585 0.734

B + M1 Pace Reg. 0.453 0.505 0.584 0.724

B + M1 Lin. Reg. 0.456 0.507 0.583 0.724

B + M1 M5P 0.457 0.508 0.583 0.724

Table 2: Best results on 10-folds cross-validation on the

training data (sorted by DeltaAvg score).

• the baseline features contribute positively to the

performance (B+M1 vs. L+M1);

• The M5P (Decision trees) method works best

in almost all cases (3 out of 4).

Based on these training results, the two systems

that we used to submit the test data scores were:

• TCD-M5P-resources-only, where scores were

predicted from a model trained using M5P on

the whole training data, taking only the base-

line features (B) into account;

• TCD-M5P-all, where scores were predicted

from a model trained using M5P on the whole

training data, using all features (B+M1).

The TCD-M5P-resources-only submission

ranked 5th (among 17) in the ranking task, and

5th among 19 (tied with two other systems) in

the scoring task (Callison-Burch et al., 2012).

Unfortunately the TCD-M5P-all submission con-

tained an error.13 Below are the official results

for TCD-M5P-resources-only and the corrected

results for TCD-M5P-all :

13In four cases in which Google n-grams formed the refer-

ence data, the scores were computed using the wrong language

(Spanish instead of English) as the reference. Since this error

occured only for the test data (not the training data used to com-

pute the model), it made the predictions totally meaningless.

Submission DeltaAvg Spearman MAE RMSE

resources-only 0.56 0.58 0.68 0.82

all 0.54 0.54 0.70 0.84

Contrary to previous observations using the train-

ing data, these results show a better performance

without our measures. We think that this is mainly

due to the high variability of the results depending

on the data, and that the first experiments are more

significant because cross-validation was used.

5 Conclusion

In conclusion, we have shown that the robust ap-

proach that we have presented can achieve good re-

sults: the best DeltaAvg score reaches 0.40 on the

training data, when the best supervised approach is

at 0.45. We think that this robust approach com-

plements the more fine-grained approach with su-

pervised learning: the former is useful in the cases

where the cost to use the latter is prohibitive.

Additionally, it is interesting to see that using ex-

ternal data (here the Google N -grams) improves the

performance (when using supervised learning). As

future work, we plan to investigate this question

more precisely: when does the external data help?

What are the differences between using the training

data (used to produce the MT engine) and another

dataset? How to select such an external data in order

to maximize the performance? In our unsupervised

framework, is it possible to combine the score ob-

tained with the external data with the score obtained

from the training data? Similarly, can we combine

scores obtained by comparing the source side and

the target side?
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