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Abstract

Purpose: Being able to predict the visual appearance of a painted steel sheet, given
its topography before paint application, is of crucial importance for car makers.
Accurate modeling of the industrial painting process is required.

Results: The equations describing the leveling of the paint film are complex and their
numerical simulation requires advanced mathematical tools, which are described in
detail in this paper. Simulations are validated using a large experimental data base
obtained with a wavefront sensor developed by Phasics™.

Conclusions: The conducted simulations are complex and require the development
of advanced numerical tools, like those presented in this paper.

Keywords: thin films; numerical simulation; industrial painting process; roughness;
lubrication approximation.

1 Introduction

The visual appearance of painted steel sheets forming the body of a car is a prominent

factor in appreciating its quality. Being able to predict it is thus of crucial importance to car

makers, while remaining a seriousmathematical challenge requiring accuratemodeling of

the industrial painting process.

The deposition of the successive coating layers on a car body involves complex physi-

cal and chemical processes, with many variants. Here, we consider the sheet in its initial

surface state (galvanized and phosphated) and summarize the painting process as follows:

once assembled, the car body is immersed in an electrophoresis bath, where a layer of

corrosion-protecting paint is deposited. The vehicle body is then baked in an oven. A sec-

ond paint layer, the sealer, is applied and the vehicle baked again. Finally, a layer of lacquer

is applied before a last baking. The steel sheet is thus covered with three layers of coating

as shown in Figure .

The last two paint coatings are mainly designed to provide an aesthetically pleasing ap-

pearance to the car. During the painting process, the final topography of each layer results

from two main processes:

- the leveling of the film (flow and evaporation) which occurs during the flash time, i.e.

the time period just following the end of the deposit,

- baking in an oven, which favors evaporation.

The leveling process has received considerable attention in the literature, although not

in the context of the industrial paints used in the automotive industry. In , Orchard

[] was the first to note that the leveling dynamics is controlled by an interplay between
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Figure 1 Successive paint layers on a steel sheet, with approximate thicknesses as indicated.

surface tension, with capillary forces tending to reduce surface irregularities, and the fluid

viscosity limiting the flow induced by that leveling. Orchard’s model is mainly based on

two assumptions: the paint exhibits a Newtonian behavior and evaporation effects are

negligible. To take into account the effects of evaporation, Overdiep [] considered a fluid

made of a resin and a solvent, where only the solvent can evaporate, demonstrating the

potential importance of the surface tension spatial variations. Surface tension indeed de-

pends on the paint composition, in particular on the respective proportions of resin and

solvent. In the presence of evaporation, thinner regions tend to dry faster, and therefore

to have lower solvent concentrations, which causes surface tension gradients, a physical

phenomenon known as Marangoni effect, hence a shearing effect at the film surface, un-

derstood as the main physical effect involved in the leveling of the paint film by Overdiep.

This approach was taken up and developed in several subsequent articles. Wilson [] and

later Howison et al. [] analyzed and generalized Overdiep’s model, performing numeri-

cal simulations that showed good agreement with experimental data collected for simple

deposit geometries.

The topography of the substrate on which the coating is deposited plays an important

role in the flow dynamics. In , Weidner et al. [] studied the effect of substrate cur-

vature on the film flow in a two-dimensional context. Subsequently Eres et al. [] and

later Schwartz et al. [] generalized the work to the three-dimensional case. In these pa-

pers, numerical models have been implemented for specific topographies, showing good

agreement with experimental measurements. Gaskell et al. [, ] finally considered the

generalization of the different models to the case of inclined substrates, where gravity

plays a significant physical role in the flow dynamics.

Industrial paints used in the context of the automotive industry are complex media that

have not been extensively studied. Their detailed rheology is not well known, though its

effects on the leveling are a key issue. In view of the complexity of the phenomena, exper-

iments aiming at the identification of the physical effects within the film and the evalua-

tion of their relative importance appear to be a prerequisite to film flowmodeling. Using a

wavefront sensor developed by Phasics™ [], we could determine the evolution of rough

surfaces accurately and with a high temporal resolution throughout the whole painting

process []. In Section , we describe the mathematical model used to model the evolu-

tion of the painted film topography and its numerical simulation. Section  is devoted to

http://www.mathematicsinindustry.com/content/2/1/1
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Figure 2 Thin paint film flow.

the presentation of the experimental data obtained with the wavefront sensor. Rheological

parameters extracted from the experimental data are used in Section  to perform a sim-

ulation of the topography evolution during the painting process. Conclusions are drawn

in Section .

2 Themathematical model and its implementation

Following the accepted practice, we study the leveling process within the framework of a

lubrication approximation, butmore elaborate theories can be developed from theNavier-

Stokes equations [–]. The lubrication approximation builds on two observations:

firstly, the thin film flow is very slow, so that it becomes possible to neglect the inertia

terms in the Navier-Stokes equation; secondly, the thickness of the film is much smaller

than the wavelength of themodulations along the surface, which also implies that the fluid

velocity is essentially directed parallel the surface. All this allows a substantial simplifica-

tion of the equations describing the flow of the thin paint film.

2.1 Physical model

Here, we consider the leveling of a thin incompressible film deposited on an horizontal

steel sheet, as represented on Figure . The topography of the bare sheet is denoted as

Sa(x, y), the film thickness as e(x, y, t), and the height of film free surface as h(x, y, t). The

paint film is deposited at t = , and evolves until solidification due to polymer curing,

which happens at tret during the baking. The final film height is then Sa(x) + e(x, tret). The

film thickness at the beginning of the leveling is approximatelyH =  μm. A typical value

of the paint velocity is U =  μm/s. The Reynolds number Re = ρUH/η is approximately

Re ∼= . × – ≪ . It is also of interest to compute the Ohnesorge number of the film

flow, which relates the viscous forces to inertial and surface tension forces:

Oh =
η

ργL
,

where L denotes a characteristic length in the horizontal direction. With η = . Pa.s, ρ =

 kg/m , γ = . × – N/m and L =  μm, we find Oh ∼= , which indicates a

preponderant influence of the viscosity in the leveling phenomenon.

.. Lubrication approximation

Withoutmaking any assumption about the paint rheology, neglecting gravity, themechan-

ical equilibrium equation reads

–∇p +∇ · ¯̄σ = , ()

http://www.mathematicsinindustry.com/content/2/1/1
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where ¯̄σ denotes the deviator stress tensor and p the local pressure within the film. Letting

u and v be the velocity components along x and y, the z-component being neglected in the

lubrication approximation, the strain rate tensor reads:




(∇u + T

∇u) =

⎛
⎜⎜⎝

∂u
∂x



( ∂u

∂y
+ ∂v

∂x
) 


∂u
∂z



( ∂u

∂y
+ ∂v

∂x
) ∂v

∂y



∂v
∂z




∂u
∂z




∂v
∂z



⎞
⎟⎟⎠ . ()

Within the lubrication approximation, the gradients of u and v along x and y can be ne-

glected. The strain rate tensor is then reduced to:




(∇u + T

∇u) =

⎛
⎜⎝

  


∂u
∂z

  


∂v
∂z




∂u
∂z




∂v
∂z



⎞
⎟⎠ . ()

One can expect the deviator stress tensor to be parallel to the strain rate tensor. Tensor ¯̄σ
then reads

¯̄σ =

⎛
⎜⎝

  σxz

  σyz

σxz σyz 

⎞
⎟⎠ ()

so that Equation  becomes:

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

–
∂p

∂x
+

∂σxz

∂z
= ,

–
∂p

∂y
+

∂σyz

∂z
= ,

–
∂p

∂z
= .

()

Boundary conditions are given by a no slip kinematic condition at the substrate surface,

u(z = ) = v(z = ) = , and by a mechanical condition expressing that the constraint is

zero at the free surface, σxz(z = h) = σyz(z = h) = . In what follows, we will set the origin

of the altitudes at the mean substrate level. Equation  can consequently be integrated to

yield:

⎧
⎪⎨
⎪⎩

σxz = –
∂p

∂x
(h – z),

σyz = –
∂p

∂y
(h – z).

()

The pressure is given as the product of the surface tension and the free surface curvature

C which at lowest order reads:

C = –
∂h

∂x
–

∂h

∂y
, ()

where h(x, y, t) = e(x, y, t) + Sa(x, y) is the altitude of the fluid surface. Finally, the local alti-

tude is linked to the evaporation rate E and the local flow rate q by the mass conservation

http://www.mathematicsinindustry.com/content/2/1/1
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equation

∂h

∂t
(x, y, t) = –∇h · q(x, y, t) – E(x, y, t), ()

where ∇h is the gradient along the plane (x, y).

.. Paint rheology

Equations - have been derived without making any assumptions about the paint rheol-

ogy. To close these equations, we have to prescribe how the mass flux q depends on the

local pressure gradient.

In [], q was computed from the data obtained with the wavefront sensor by solving

the following problem:

–∇h

(
∂h

∂t
(x, y, t) + E(x, y, t)

)
= �hq(x, y, t), ()

which comes after noting that within the lubrication approximation:

curl curl(q) = . ()

Estimating the left hand side of Equation  indeed allows the access to the local values of

themass flux by solving the Poisson equation, and hence permits us to test the rheological

model. The so-obtained data showed that for the space and time scales involved in the

problem, the film can be considered as Newtonian.

Assuming a Newtonian rheology, the deviator stress tensor can then easily be expressed

as a function of the strain rate tensor:

¯̄σ =
η


(∇u + T

∇u), ()

so that Equation  can be rewritten as:

⎧
⎪⎪⎨
⎪⎪⎩

–
∂p

∂x
(x, y, t) + η

∂u

∂z
(x, y, t) = ,

–
∂p

∂y
(x, y, t) + η

∂v

∂z
(x, y, t) = .

()

.. Newtonian model equation

Since the pressure p is independent of z, Equations  can easily be integrated. Boundary

conditions were indeed given by a no slip kinematic condition at the substrate surface,

u(z = Sa) = , v(z = Sa) = , and by a mechanical condition expressing that the constraint

is zero at the free surface, ∂u/∂z(z = h) = , ∂v/∂z(z = h) = .

⎧
⎪⎪⎨
⎪⎪⎩

u(x, y, z, t) =


η

∂p

∂x
(x, y, t)

(



z – h(z – Sa) –




Sa

)
,

v(x, y, z, t) =


η

∂p

∂y
(x, y, t)

(



z – h(z – Sa) –




Sa

)
.

()

http://www.mathematicsinindustry.com/content/2/1/1
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Consequently, the local flow components on the film thickness along the horizontal direc-

tions read

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

qx =

∫ h

Sa

u(x, y, z, t)dz =
γ

η
(h – Sa)



(
∂h

∂x
+

∂h

∂x ∂y

)
,

qy =

∫ h

Sa

v(x, y, z, t)dz =
γ

η
(h – Sa)



(
∂h

∂y
+

∂h

∂y ∂x

)
.

()

Using the mass conservation Equation , the complete model equation is

∂h

∂t
= –

γ

η

∂

∂x

[
(h – Sa)



(
∂h

∂x
+

∂h

∂x ∂y

)]

()

–
γ

η

∂

∂y

[
(h – Sa)



(
∂h

∂y
+

∂h

∂y ∂x

)]
– E.

We will assume that the paint is composed of a resin in concentration – c and a solvent in

concentration c. Only the solvent can evaporate, while the evaporation rate will essentially

depend on the solvent concentration. Accordingly, we shall assume that the largest scales

patterns attenuation is mainly caused by evaporation, for a leveling caused by surface ten-

sion would suppose a huge mass transport which would be unrealistic considering the

geometric characteristics of the painted film. A method based on this idea is presented in

[], which allows a determination of the evaporation rate as a function of c. If we neglect

the local variations of the solvent concentration, the evaporation rate will consequently be

spatially constant, and will only vary with time.

.. Marangoni effect

The local variations in the solvent concentration may generate a surface tension gradient.

This surface tension gradient modifies the mechanical equilibrium conditions on the free

film surface which become

η
∂u

∂z
=

∂γ

∂x
, η

∂v

∂z
=

∂γ

∂y
. ()

Expressions  become then

⎧
⎪⎪⎨
⎪⎪⎩

qx =


η
(h – Sa)


∂p

∂x
+



η

∂γ

∂x
(h – Sa)

,

qy =


η
(h – Sa)

 ∂p

∂y
+



η

∂γ

∂y
(h – Sa)

.
()

The Laplace pressure is given as a function of the surface derivatives by Equation . Using

the mass conservation equation, one gets:

∂h

∂t
+

∂qx

∂x
+

∂qy

∂y
+ E = . ()

In Equation , as the concentration locally vary, the evaporation rate varies both in time

and in space. The equation governing the concentration c is obtained by using the solvent

http://www.mathematicsinindustry.com/content/2/1/1
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mass conservation equation:

∂(ce)

∂t
= –E –

∂(cqx)

∂x
–

∂(cqy)

∂y
, ()

hence using Equation :

∂c

∂t
= –

(
 – c

e

)
E –

(
∂c

∂x

)
qx

e
–

(
∂c

∂y

)
qy

e
. ()

The combination of Equations  and  completely describes the evolution of the film

topography. The physical parameter γ is related to the solvent concentration by the law

presented later on Figure .

2.2 Numerical implementation

The leveling of the paint layer is described by high order non-linear partial differential

equations. The numerical handling of these equations is therefore a delicate problem. The

model Equations ,  and  can be written in the form:

∂ψ

∂t
= F

(
ψ ,

∂ψ

∂x
,
∂ψ

∂y
, . . . ,

∂nψ

∂xn
,
∂nψ

∂yn
, . . .

)
, ()

where F is a non-linear function of the spatial derivatives. The method of lines [] is

used to solve Equation , in combination with a pseudo-spectral method: Function F is

evaluated in the Fourier space and Equation  is integrated using an adaptative step size

Runge-Kutta scheme.

.. Evaluation of spatial gradients

We assume that Equation  is submitted to periodic spatial boundary conditions. Using

the Fourier transform helps us computing high-order space derivatives present in Equa-

tions , , and  in a simple way. However the Fourier transform of a product of func-

tions in physical space is the convolution of the Fourier transforms of the functions. Nu-

merically, care has to be taken when the Fourier transform of the product is calculated,

since sampling implies aliasing. Let f and g be two functions which are sampled with a

step equal to one. The Fourier series expansion of these functions are

f [n] =

N/∑

k=–N/

f̂ [k]ei
π
N kn, g[n] =

N/∑

k=–N/

ĝ[k]ei
π
N kn. ()

A consequence of the function sampling is that its Fourier transform is artificially peri-

odized. Considering Equation , the Fourier series expansion of the product function fg

is

f̂g[k] =

N∑

n=

fg[n]e–i
π
N kn =

N∑

n=

N/∑

k ,k=–N/

f̂ [k]ĝ[k]e
(–i πN (k–k–k)n). ()

http://www.mathematicsinindustry.com/content/2/1/1
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The quantity
∑N

n= e
(–i πN (k–k–k)n) cancels for all values of k, k and k, except when k =

k + k +mN , with m ∈ Z. Considering the values taken by k, k and k, we verify that

f̂g[k] =

N/∑

k=–N/

f̂ [k]ĝ[k – k] +

N/∑

k=–N/

f̂ [k]ĝ[k +N – k]

()

+

N/∑

k=–N/

f̂ [k]ĝ[k –N – k].

The first term on the right hand side of Equation  corresponds to the convolution prod-

uct of the Fourier transforms of f and g . The two other terms arise from aliasing and

have to be removed. To do this, a simple method is to consider M frequencies instead of

N, with N <M, where all terms whose frequencies belong to the intervals ]–M

, –N


[ and

]N

, M

[, are cancelled []. This method simply consists in oversampling the projection of

our function on the basis constituted by the N initial harmonics, from a spatial sampling

step of size L
N
to a spatial sampling step of size L

M
:

f [n] =

M/∑

k=–M/

f̂ [k]ei
π
M kn, g[n] =

M/∑

k=–M/

ĝ[k]ei
π
M kn. ()

As the frequencies between N/ andM/ are equal to zero, Equation  reads

f̂g[k] =

N/∑

k=–N/

f̂ [k]ĝ[k – k] +

N/∑

k=–N/

f̂ [k]ĝ[k +M – k]

()

+

N/∑

k=–N/

f̂ [k]ĝ[k –M – k].

The most dangerous term considering aliasing is obtained for k = –N/ and k = –N/

(respectively k =N/ and k =N/) in the second (respectively third) sum of Equation .

The corresponding value of ĝ will be equal to zero if

M >
N


. ()

This inequality ensure that the quantities k –M – k and k +M – k fall into the intervals

]–M

, –N


[ and ]N


, M

[. The argument is easily extended to higher degree nonlinearities.

Since Equation  involves fourth-degree monomials, full desaliasing requiresM = N

.

.. Integration of the equation

Equation  is integrated using a Runge-Kutta scheme. This scheme uses evaluations of

the time derivative at intermediate points to achieve the integration, given by the formula:

ψn+ = ψn +�t

s∑

i=

biki, ()

http://www.mathematicsinindustry.com/content/2/1/1
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Table 1 General Butcher table of a Runge-Kutta scheme.

0
c2 a21
c3 a31 a32
...

...
. . .

cs as1 as2 . . . ass–1

b1 b2 . . . bs–1 bs
b*1 b*2 . . . b*s–1 b*s

Table 2 Butcher table of the Heun scheme.

0
1 1

1/2 1/2
1 0

with:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

k = F(tn,ψn),

k = F(tn + c�t,ψn + a�tk),

k = F(tn + c�t,ψn + a�tk + a�tk),

· · ·
kN = F(tn + cs�t,ψn + aN�tk + aN�tk + · · · + aN ,N–�tkN–).

()

To specify a particular method, one simply has to set the coefficients aij, bi and ci which

characterize the discretization of the equation for i = , , . . . ,N and j = , , . . . , i. The se-

lected coefficients can be represented in a table called the Butcher table.

Consistency of the scheme is ensured if
∑i

j= aij = ci. A Runge-Kutta scheme of order

N is accurate at order N in �t. It is possible to control the approximation error at each

step by estimating the difference between approximations at order N –  and N . By wisely

choosing the coefficients aij and ci, intermediate points calculated in the method can be

used to calculate two separate evaluations of the solution:

- A first evaluation ψn+ = ψn +�t
∑N

i= biki accurate at order N .

- A second evaluation ψn+ = ψn +�t
∑N–

i= b *i ki accurate at order N – , which uses

an other ponderation {b*i}, i = , , . . . ,N .

The difference between these two evaluations gives an estimate of the approximation

error of the scheme:

ǫ = �t

N–∑

i=

(bi – b*i)ki. ()

The corresponding Butcher table is given in Table .

The Heun scheme (order ), the Bogacki-Shampine scheme [] (order ) and the Cash-

Karp scheme [] (order ) were implemented. All these methods realize an explicit inte-

gration of Equation , and the schemes are conditionnaly stable. Tables , , and  show

the Butcher tables of the schemes.

The dynamics of the paint levelling varies considerably during the painting process, and

it is then of interest to use an adaptive stepsize integration scheme. A method described

http://www.mathematicsinindustry.com/content/2/1/1
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Table 3 Butcher table of the Bogacki-Shampine scheme.

0
1/2 1/2
3/4 0 3/4
1 2/9 1/3 4/9

2/9 1/3 4/9 0
7/24 1/4 1/3 1/8

Table 4 Butcher table of the Cash-Karp scheme.

0
1/5 1/5
3/10 3/40 9/40
3/5 3/10 –9/10 6/5
1 – 11

54 5/2 – 70
27

35
27

7/8 1631
55296

175
512

44275
110592

253
4096

37
378 0 250

621
125
594 0 512

1771
2825
27648 0 18575

48384
13525
55296

277
14336 1/4

in [] is used to adjust the time step, which uses the error estimate returned by the inte-

gration scheme.

2.3 Validation of the numerical scheme

Assuming that the amplitude of surfacemodulation is small, Equation  can be linearized

by setting h = h + δh, expanding it in powers of δh, and keeping lowest order terms. De-

noting the mean paint thickness as e, Equation  reads:

∂δh

∂t
(x, y, t)

()

= –
γ

η
e

(
∂δh

∂x
(x, y, t) + 

∂δh

∂x ∂y
(x, y, t) +

∂δh

∂y
(x, y, t)

)
,

which can be solved analytically using Fourier transforms. If Equation  has a solution in

L(R), in the Fourier space it fulfills:

∂δ̂h

∂t
= –

γ

η
e(ξ


x + ξ 

x ξ 
y + ξ

y )δ̂h, ()

in which ξ = (ξx, ξy) is the Fourier wavevector. Consequently,

δ̂h(t) = δ̂h() exp

(
–

γ

η
e(ξ


x + ξ 

x ξ 
y + ξ

y )t

)
()

and

δh(t) =


π

∫

R
δ̂h() exp

(
–

γ

η
e(ξ


x + ξ 

x ξ 
y + ξ

y )t

)
exp(i(ξxx + ξyy)) dξ . ()

Figure  compares the results obtained for a cataphoresis layer at t = , from the ini-

tial condition displayed in the top panel, derived from the analytic solution Equation 

(bottom-left) or obtained with the numerical scheme (bottom-right). It can be noticed

that the results are very close, which validates the numerical scheme used to solve Equa-

tion . The parameters chosen for the comparison are given in Table , taken from the

http://www.mathematicsinindustry.com/content/2/1/1
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Figure 3 Validation of the numerical scheme. Top: Initial topography as measured using the Phasics™
interferometric microscope. Bottom: Solution at t = 600, analytical (left) and numerical (right). Each image
corresponds to the same 3.52× 3.52 mm2 domain decomposed into 27.5× 27.5 μm2 subdomains or pixels,
over which the altitude is averaged (color coding).

Table 5 Physical parameters used for the numerical scheme validation.

Parameter Symbol Value Unit

Surface tension γ 3.0× 10–2 N/m
Paint viscosity η 1.0 Pa.s
Initial thickness e0 20.0 μm

relevant literature []. It is also assumed that the surface tension is constant and that the

substrate is perfectly flat (Sa(x, y) =  everywhere).

3 Experimental measurements

We now present the experiments performed with the high resolution wavefront sensor

developed by Phasics™ [], using a technology based on a modified Hartmann test to

measure wavefront distortions: by means of D diffraction grating, a beam is replicated

into four identical waves which are propagated along slightly different directions. The di-

rection differences create interference patterns and the interference fringes are used to

reconstruct the measured surface topography. We use it to map painted steel sheets at

regular time intervals during the whole painting process, for a sealer or a lacquer layer.

The experimental procedure is as follows:

- Paint is deposited over a sample of metal sheet (polished or already covered with an

electrophoresis layer) in a painting cabin using a paint gun.

http://www.mathematicsinindustry.com/content/2/1/1
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- The sheet is then placed on a baking plate. During the first few minutes, complete

samplings of the surface are performed at regular time intervals (typically . Hz), in

order to record the evolution of the painted layer topography at the beginning of the

flash time in detail.

- After two minutes the sampling rate is decreased to . Hz, for the flow dynamic next

slows down considerably.

- The baking cycle starts after  minutes, with the sampling frequency reincreased to

. Hz.

- Chemical bonds begin to form within the paint  minutes after the beginning of the

baking. Cross-linking then stops the evolution so that the sampling frequency can be

decreased to . Hz.

The wavefront sensor collects information over a surface of ×  mm. The topography

is analyzed as a  ×  square image. Each pixel represents the mean altitude over a

×  μm surface. The precision of vertical measurements is up to – μm.

During the flash time, the outside temperature is ◦C. The baking cycle is divided into

two stages: a linear temperature rise during  sec until reaching ◦C, followed by a

 minutes plateau at this temperature.

3.1 Surface evolution

The following figures show the evolution of the topography of a lacquer layer during the

whole painting process. The lacquer is deposited on a smooth substrate. Altitudes are

given in μm. On each surface, during measurements, the minimum is arbitrarily set to

zero since only relative but not absolute altitudes can be obtained from the device.

Figure  displays the beginning of the flash time. A rapid leveling of the paint is observed,

due to the combined effects of the rapid evaporation of the light sealer solvent and the flow

caused by surface tension. The phenomenon is specially important at the beginning of the

flash time when the viscosity of the paint is still relatively low. At the end of the flash time,

the leveling slows down until the topography of the layer stops evolving.

Figure  shows the evolution of the lacquer layer during the baking. The same altitude

scale has been kept, which allows a comparison with the previous sequence. A second

stage of leveling and evaporation takes place during the baking of the lacquer. Temper-

ature increase promotes the evaporation of heavier solvents contained in paint and the

subsequent cross-linking of the molecules.

3.2 Evolution of the roughness

Roughness evolution during the painting process helps us quantifying the paint leveling

capability. Since the physical effects involved develop at different scales, it is of interest to

play with tools able to separate the different roughness scales. The surface is sampled with

a  μm horizontal step, yielding a ×  image S = S[n,n]. An algorithm based on

the wavelet packet transform [] and the reconstruction formula is used, that allows a

decomposition of the roughness into a sum of contributions [–].

A wavelet ψ(t) is a function in L(R) which has zero average, such that ‖ψ‖ =  using

the L norm, and centered around t =  []. We obtain a wavelet family by dilating this

function with a scale parameter s >  and translating it by u ∈R:

ψu,s(t) =
√
s
ψ

(
t – u

s

)
. ()

http://www.mathematicsinindustry.com/content/2/1/1
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Figure 4 Evolution of the topography of the lacquer film during the flash time. The topography of a
7.68× 7.68 mm2 surface is represented in a 128× 128 square image. Color coding at each pixel gives the
mean altitude over a 60× 60 μm2 surface.

Let f be a function in L(R). The continuous wavelet transform of f is the function:

Wf (u, s) =

∫ ∞

–∞
f (t)

√
s
ψ

(
t – u

s

)
dt. ()

The original signal can be reconstructed from its wavelet coefficients:

f (t) =


Cψ

∫ ∞



∫ ∞

–∞
Wf (u, s)

√
s
ψ

(
t – u

s

)
du

ds

s
, ()

where

Cψ =

∫ ∞



|ψ̂(ω)|
ω

dω < +∞. ()

http://www.mathematicsinindustry.com/content/2/1/1
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Figure 5 Lacquer layer topography evolution during the baking. The topography of a 7.68× 7.68 mm2

domain is represented as a square image of 128× 128 pixels. Each pixel accounts for the mean altitude on a
60× 60 μm2 sub-domain.

A wavelet is a function which is well localized both in physical and Fourier spaces. The

projection of the studied surface on a family of wavelets allows us to identify the scale hi-

erarchy present in the pattern. The scale-by-scale reconstruction of the surface can next

isolate the different contributions to the roughness of the given topography. The continu-

ous wavelet transform was adapted to the discrete case, yielding the orthonormal wavelet

and wavelet packet transforms []. The roughness characterization algorithm therefore

decomposes the studied surface S[n,n] onto a family of wavelet packets, and next recon-

structs it by keeping only wavelet coefficients corresponding to successive scale:

S[n,n] =

J∑

j=

Sj[n,n], ()

J denoting the number of scales and Sj the reconstructed surface at the scale j. For each

reconstructed surface, it is possible to define a parameter Mq characterizing the mean

deviation from the average surface at scale j. The resulting curveMq[j] then accounts for

the frequency content of the studied roughness:

Mq[j] =


N

√√√√
N∑

n=

N∑

n=

(Sj[n,n] – E[Sj]). ()

Figures  show how Mq changes from one to another step of the painting process. It is

interesting to note that the small scales are not completely attenuated during the painting

process, due to resurgence of the underlying substrate residual roughness. On the other

hand, the baking has little impact on the paint leveling for the lacquer.

The scale-by-scale study of the surface roughness provides valuable information on the

dynamics of the leveling. The curves in Figure  show little leveling during the baking,

the difference being mainly due to evaporation since the two curves are quite similar. In

the next section we therefore focus only on the simulation of the surface dynamics during

flash time, when both flow and evaporation are involved.

http://www.mathematicsinindustry.com/content/2/1/1
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Figure 6 Evolution ofMq as a function of the scale during the whole painting process.

Figure 7 Variation of
γ
η

as a function of the solvent concentration.

Table 6 Simulation parameters.

Parameter Symbol Value Value in [2] Unit

Resin surface tension γr - 3.0× 10–2 N/m
Solvent surface tension γs - 2.5× 10–2 N/m
Initial paint viscosity η0 - 0.55-1.59 Pa.s
Initial solvent concentration c0 0.58 0.5 -
Viscosity exponent a 18 15 [5] -
Evaporation parameter λ 4.0× 10–9 2.0× 10–9 m/s
Initial rheological parameter γ0/3η0 1.0× 104 1.0× 104 μm/s

4 Direct simulation

We now compare simulation results to experimental data obtained from the wavefront

sensor. In [], the value of the rheological parameter γ /η was determined as a function

of the solvent concentration c from mass fluxes computed by solving an inverse problem

relying on the Newtonian model. The surface tension is assumed to be related to the sol-

vent concentration via:

γ = γr + c(γs – γr) = γr + c�γ , ()

http://www.mathematicsinindustry.com/content/2/1/1
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Figure 8 Evolution of the film topography: Experiments (center) compared to simulation results from

the model (left) without Marangoni effect included. Relative local error ǫ is represented (right). The
vertical scale varies from a topography to the other.

where γr (γs) denotes the resin (solvent) surface tension. On the other hand, viscosity de-

pends upon the solvent concentration according to:

η(c) = ηe
–ac. ()

Using these relations to fit the experimental data during the flash time (Figure ), we find:

γ

η
(c) =

γ

η
ea(c–c), ()
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Figliuzzi et al. Journal of Mathematics in Industry 2012, 2:1 Page 17 of 20

http://www.mathematicsinindustry.com/content/2/1/1

Figure 9 Evolution of theMq curves: Experiments are compared to simulation results.

with γ
η

= . m/s, c = . and a = .. Table  shows that the rheological parameters

close to those reported in [, ].

Using the experimental data obtained with the wavefront analyzer and the evaporation

law deduced from these measurements, simulations were performed with the twomodels

described in Section . These simulations start from the first reconstructed topography

and aim at reproducing the entire evolution of the film during the flash time. Parameters

used are given in Table  obtained as explained above. We consider that the substrate is

completely smooth. The numerical resolution code was described at the end of Section .

The simulations are performed using a . GHz Intel(R) Xeon(TM) processor, and last

about five hours.

The local relative error defined as

ǫ(x, y) =
|hs(x, y) – he(x, y)|

max(x,y) he
, ()

where hs denotes the simulated topography and he the experimental one is displayed in

Figure  (right). The main error is caused by side effects, as the surface is artificially pe-

riodized. The local simulation error remains small, and the model seems to be able to

reproduce the patterns evolution, at least at the millimeter scale. It remains interesting

to compare the Mq curves of the simulated and experimental topographies. The curves

of Figure  show that the simulation model is able to reproduce the leveling dynamics

for the millimetric scales. It was supposed that the substrate of the paint layer was com-

pletely smooth. Nevertheless, the substrate exhibits some roughness at the smallest scales,

and evaporation causes the resurgence of the underlying substrate roughness, which ex-

plains the differences between the simulation and the experimental Mq curves. For the

last represented topography, the resurgence of the underlying topography also introduces

an error.

Figure  compares simulations realized with the model including Marangoni effect

(right) and not (left), showing that the model developed by Orchard [] seems sufficiently

accurate to explain the physics of the leveling of the coating. In fact, the geometric situ-

ation considered here is somewhat different from those studied by Weidner et al. [] or

Gaskell et al. []. For automotive paints, fluctuations in the thickness of the coating are

indeed relatively small (< μm) compared to the thickness itself (∼= μm), so that the

http://www.mathematicsinindustry.com/content/2/1/1
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Figure 10 Comparison between simulation results from the model with (right) or without (left)

Marangoni effect included.

rate of evaporation and consequently the solvent concentration remain rather uniform in

the paint layer.

5 Conclusion

Painting of steel sheets is a complex phenomenon that depends on many physical pro-

cesses. With the wavefront sensor developed by Phasics™, it was possible to perform ex-

periments allowing an accurate monitoring of the topography of a film during its deposi-

tion. The fast response time of the wavefront sensor allowed us to access the rheological

http://www.mathematicsinindustry.com/content/2/1/1
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parameters of the paint in an original way by solving an inverse problem. The obtained

parameters were used to perform a complete simulation of the film evolution during the

painting process, which demonstrated that the Newtonian model was able to reproduce

the leveling of the paint layer accurately and that Marangoni effect could be neglected at

the beginning of the flash time, when significant flow occurs. At the end of the flash time,

the flow rates decreases and it is clear that the film then exhibits a more complex rheology

due to the solvent evaporation, but the leveling dynamic is then considerably attenuated,

and the influence on the surface topography is negligible. The conducted simulations are

however complex and require the development of advanced numerical tools, like those

presented in this paper.
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