
HAL Id: hal-00711273
https://hal.science/hal-00711273

Submitted on 22 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Naive Bayes classifier for automatic correction of
preposition and determiner errors in ESL text

Gerard Lynch, Erwan Moreau, Carl Vogel

To cite this version:
Gerard Lynch, Erwan Moreau, Carl Vogel. A Naive Bayes classifier for automatic correction of prepo-
sition and determiner errors in ESL text. Seventh Workshop on Building Educational Applications
Using NLP, Jun 2012, Montréal, Canada. pp.257–262. �hal-00711273�

https://hal.science/hal-00711273
https://hal.archives-ouvertes.fr


A Naive Bayes classifier for automatic correction of preposition and

determiner errors in ESL text

Gerard Lynch and Erwan Moreau and Carl Vogel

Centre For Next Generation Localisation

Integrated Language Technology Group

School Of Computer Science and Statistics

Trinity College Dublin, Ireland

gplynch,moreaue,vogel@scss.tcd.ie

Abstract

This is the report for the CNGL ILT3

team entry to the HOO shared task. A

Naive-Bayes-based classifier was used in

the task which involved error detection

and correction in ESL exam scripts. Our

system placed 11th out of 14 teams for

the detection and recognition tasks and

11th out of 13 teams for the correction

task on the based on f-score for both

preposition and determiner errors.

1 Introduction

The 2012 HOO shared task seeks to apply com-

putational methods to the correction of cer-

tain types of errors in non-native English texts.

The previous year’s task, (Dale and Kilgarriff,

2011), focused on a larger scale of errors and

a corpus of academic articles. This year’s task

focuses on six error types in a corpus of non-

native speaker text.

1.1 Error types

The scope of the errors are as follows:1

1 http://clt.mq.edu.au/research/projects/hoo/hoo2012/errortypes.html

last verified, May 4, 2012

Error Code Description Example

RT Replace Preposition When I arrived at London

MT Missing preposition I gave it John

UT Unnecessary preposition I told to John that

RD Replace determiner Have the nice day

MD Missing determiner I have car

UD Unnecessary determiner There was a lot of the traffic

Table 1: Error types for HOO 2012 Shared Task

2 Training data

The training data for this shared task has been

provided by Cambridge University Press and

consists of scripts from students sitting the

Cambridge ESOL First Certificate in English

(FCE) exams. The topics of the texts are com-

parable as they have been drawn from two con-

secutive exam years. The data is provided in

XML format and contains 1000 original exam

scripts, together with a standoff file containing

edits of the type described in Section 1 above,

also in XML format. These edits consist of off-

set information, edit type information and be-

fore and after text for correction. The results for

the shared task were presented in this format.

The test data consists of 100 exam scripts

drawn from a new corpus of exam scripts.

Some extra metadata is present in the source

files, including information about the student’s

mother tongue and the age-range of the student,



however the mother tongue data is not present

in the test set.

3 Approach

The approach we have chosen for this task in-

volves the use of machine-learning algorithms

in a four-part classification task.

The first part of the task involves identifica-

tion of edits in the training data, perhaps the

most challenging given the large imbalance of

edits vs non-edits in the data.

The next step concerns classification of edits

into the six types described above, and the final

task involves correction of edits, replacing or

adding prepositions and determiners, and possi-

bly in some cases removal of same.

There is a fourth step involved which re-

assesses the classification and correction based

on some simple heuristics, using POS tags of

the head word of each instance. If the headword

is not a preposition and the system has marked a

replace preposition error at that position, this er-

ror will be removed from the system. Likewise

when the headword is not a determiner and a re-

place determiner error has been marked. If the

replacement suggested is the same as the orig-

inal text(in some cases this occurs), the edit is

also removed. Another case for removal in this

fashion includes an error type involving a miss-

ing determiner error where the head word is nei-

ther a noun or an adjective. In some cases the

system reported and corrected an error suggest-

ing the same text as was originally there, i.e no

change. These cases are also removed from the

end result.

We utilise the freely available Weka machine

learning toolkit, (Hall et al., 2009) and the al-

gorithm used for classification in each step is

Naive Bayes.

We represent each word in the training data

as a vector of features. There are 39 basic fea-

tures used in the detection process, and 42 in

the classification and training step. The first

7 features contain information which are not

used for classification but are used to create

the edit structures, such as start offset, end off-

set, native language, age group and source file-

name and part information. These features in-

clude the current word plus the four preceed-

ing and following words, POS and spellchecked

versions of each, together with bigrams of the

two following and two preceeding words with

spellchecked and POS versions for these.

Information on speaker age and native lan-

guage is also included although native language

information is not present in the test set.

All tokens have been lower-cased and punc-

tuation has been removed. POS information for

each token has been added. The open-source

POS tagger from the OpenNLP tools package

(OpenNLP, 2012) has been used to this end.

Spell correction facility has been provided us-

ing the basic spellchecker in the Lucene infor-

mation retrieval API(Gospodnetic and Hatcher,

2005) and the top match string as provided by

this spell correcting software is used in addition

to each feature. The basic maximum entropy

model for English is used for the POS tagger.

We had also planned to include features

based on the Google Books ngram corpus,

(Michel et al., 2011) which is freely available

on the web, but unfortunately did not get to in-

clude them in the version submitted due to er-

rors which were found in the scripts for gener-

ating the features late in the process.



4 Google N-grams Features

4.1 Motivation

The Google Books N-Grams2 is a collection

of datasets which consist of all the sequences

of words (n-grams) extracted from millions of

books (Michel et al., 2011). The “English Mil-

lion” dataset contains more more than 500 mil-

lions distinct n-grams3, from size 1 to 5. for

every n-gram, its frequency, page frequency

(number of pages containing it) and book fre-

quency are (number of books containing it) are

provided.

In this Shared Task, we aim to use the Google

N-grams as a reference corpus to help detect-

ing the errors in the input. The intuition is

the following: if an error occurs, comparing

the frequency of the input n-grams against the

frequency of other possibilities in the Google

N-grams data might provide useful indication

on the location/type of the error. For exam-

ple, given the input “I had to go in a library”,

The Google N-grams contain only 36,716 oc-

currences of the trigram “go in a”, but 244,098

occurrences of “go to a” , which indicates that

the latter is more likely.

However there are several difficulties in using

such a dataset:

• Technical limitations. Extracting informa-

tion from the dataset can take a lot of time

because of the size of the data, thus the

range of approaches is restricited by eff-

ficiency constraints.

• Quality of the data. The Google N-grams

were extracted automatically using OCR,

which means that the dataset can contain

errors or unexpected data (for example, the

2http://books.google.com/ngrams/

datasets
3The least frequent n-grams were discarded.

English dataset contains a significant num-

ber of non English words).

This is why the Google N-grams must be

used cautiously, and only as an indication

among others.

4.2 Method

Our goal is to add features extracted from the

Google N-grams dataset to the general features

extracted from the input data itself, and feed

the supervised classification process with these.

Before computing the features, a list L of “tar-

get expressions” is extracted from the training

data, which contains all the words or sequences

of words (determiners and prepositions) which

occur in a correction. Then, given an input sen-

tence A1 . . . Am and a position n in this sen-

tence, two types of information are extracted

from the Google data:

• Specific indications of whether an error ex-

ists at this position:

1. No change: the frequency of

the input sequence An−1An and

An−1AnAn+1 ;

2. Unnecessary word(s): the frequency

of the sequence An−1An+1 if A ∈ L;

3. Missing word(s): the frequency of

the sequence XAn (resp. An−1XAn

for trigrams) for any target expression

X ∈ L;

4. Replacement: if A ∈ L, the

frequency of XAn+1 (resp.

An−1XAn+1 for trigrams) for

any target expression X ∈ L;

• Generic indications taking the context into

account: for length N from 1 to 5 in a win-

dow An−4 . . . An+4, 16 combinations are

http://books.google.com/ngrams/datasets
http://books.google.com/ngrams/datasets


computed based only on the fact the N-

grams appear in the Google data; for ex-

ample, one of these combinations is the

normalized sum for the 4 5-grams in this

window of 0 or 1 (the N-gram occurs or

does not).

Additionally, several variants are considered:

• bigrams or trigrams for “specific” features;

• binary values for “specific” features: 1 if

the n-gram appears, 0 otherwise;

• keep only the “generic” features and the

first three features.

5 Some detailed results (detection)

The results reported here were experimented

on the training data only, using 5 folds cross-

validation, and only for the detection task. We

have studied various settings for the parame-

ters; figure 1 shows a global overview of the

performance depending on several parameters

(we show only a few different values in order to

keep the graph readable).

The results show that the Google features

contribute positively to the performance, but

only slightly: the F1 score is 0.0055 better in

average. This overview also hides the fact that

some combinations of values work better to-

gether; for instance, contrary to the fact that not

filtering the POS trigrams performs better in av-

erage, the best performances are obtained when

filtering, as shown on figure 2.

• Minimum frequency4 (preprocessing, see

REF). As shown on figure 2, using a high

4Remark: the values used as “minimum frequencies”

reported in this paper can seem unusually high. This is due

to the fact that, for technical reasons, the thresholds were

applied globally to the data after it has been formatted as

individual instances, each instance containing 9 words. As

a consequence a threshold of N means that a given word

must occur at least N/9 times in the original input data.

Figure 1: Average F1 score depending on several

parameters.

10
11

12
13

14
15

16

m
ea

n 
of

 f1

20

50

100

500

1000

POS−trigrams.0

POS−trigrams.1

POS−trigrams.10

POS−trigrams.3 2−3−binary

2−binary3−binary

none

window0

window2

window4

factor(minFreq) filter googleFeatures attributes

Figure 2: F1 score (%) w.r.t POS trigrams filter

threshold. Parameters: window 2, Google features

with bigrams and trigrams.

0 2 4 6 8 10

0
5

10
15

20

filter threshold

f1
 s

co
re

min. frequency 20
min. frequency 50
min. frequency 100
min. frequency 500
min. frequency 1000



threshold helps the classifier building a

better model.

• POS trigrams filter (see REF). Even if not

filtering at all performs better on average,

the best cases are obtained with a low

threshold. Additionally, this parameter can

be used to balance between recall an pre-

cision (when one wants to favor one or the

other).

• Size of the context window. Results can

show important differences depending on

the size of the window, but no best config-

uration was found in general for this pa-

rameter.

• Google features (see REF). The Google

features slightly help in general, and are

used in the best cases that we have ob-

tained. However there is no significantly

better approach between using the origi-

nal frequencies, simplfying these to binary

values, or even not using the list of target

expressions.

6 Breakdown of run configurations

Ten runs were submitted to the organisers based

on different configurations. Modification of the

data was carried out using both instance reduc-

tion and feature selection techniques. The sys-

tem facilitated the use of different training data

for each of the three main classification steps.

Before classification, the data is preprocessed

by replacing all the least frequent words with a

default value (actually treated as missing values

by the classifier). This is intended to help the

classifier focus on the most relevant indications

and to prevent over-specification of the classifi-

cation model.

6.1 Instance reduction filters

6.1.1 POSTrigrams filter

The POS trigrams filter works as follows:

during the training stage, the sequences of POS

tags for the words current-1.current.current+1

are extracted for each instance, together with its

corresponding class. Every POS trigram is then

associated with the following ratio:

Frequency of true instances

Frequency of false instances

Then, when predicting the class, the filter is

applied before running the classifier: the se-

quences of trigrams are extracted for each in-

stance, and are compared against the corre-

sponding ratio observed during the training

stage; the instance is filtered out if the ratio is

lower than some threshold N%. In Table 2, the

label RN refers to the percentage (N) used as

cut-off in the experiments.

This filter is intended to reduce the impact of

the fact that the classes are strongly unbalanced.

It permits discarding a high number of false in-

stances, while removing only a small number of

true instances. However, as a side effect, it can

cause the classifier to miss some clues which

were in the discarded instances.

6.1.2 CurrentPlusOrMinusOne filter

The current plusorminus one filter works as

follows: A list of all current.current+1 word bi-

grams is made from the error instances in the

training data, along with all current-1.current

bigrams. The non-error instances in the train-

ing data are then filtered based on whether an

instance contains an occurrence of any cur-

rent.current+1 or current-1.current bigram in

the list.



Run Detection Classification Correction

0 R1 Normal Normal

1 R20 Normal Normal

2 Full F12 Normal

3 R10 Normal Normal

4 R30 Normal Normal

5 F12 F12 Normal

6 R4new Normal Normal

7 R4 + F12 F12 Normal

8 R4 Normal Normal

9 R2 Normal Normal

Table 2: Run configurations

6.2 Feature selection filters

6.2.1 F12

During preliminary experiments, selecting a

subset of 12 features produced classification ac-

curacy gains in the detection and classification

steps of the process using ten-fold cross valida-

tion on the training set. These twelve features

were: current, current+1.current+2, current-

1.current-2,currentSC,currentPOS, current-

1,current-2,current+1,current+2,current+1SC,

and current-1SC. The SC appendix refers to the

spell-corrected token, with POS referring to the

part-of-speech tag. The F12 configuration filter

removes all other features except these.

7 Results

Table 3 displays the results for both preposition

and determiner errors which were obtained by

the system on the preliminary test set before

teams submitted their queries. Table 4 refers

to the results obtained by the system after the

queried errors were removed/edited.

Task Rank Run Precision Recall F-Score

Detection 11 9 5.33 25.61 8.82

Recognition 11 9 4.18 20.09 6.92

Correction 11 9 2.66 12.8 4.41

Table 3: Overall results on original data: TC

Task Rank Run Precision Recall F-Score

Detection 11 8 6.56 26.0 10.48

Recognition 11 8 4.91 19.45 7.84

Correction 11 8 3.09 12.26 4.94

Table 4: Overall results on corrected data: TC

Run3 Recall Precision F

Detection 0.0905 0.0742 0.0815

Correction 0.0419 0.0344 0.0378

Recognition 0.0905 0.0742 0.0815

Run8 Recall Precision F

Detection 0.2251 0.0544 0.0876

Correction 0.1125 0.0272 0.0438

Recognition 0.2251 0.0544 0.0876

Run9 Recall Precision F

Detection 0.2560 0.0532 0.0881

Correction 0.1280 0.0266 0.0441

Recognition 0.2560 0.0532 0.0882

Table 5: Top results on original test data

8 Conclusions

The task of automated error correction is a

highly difficult one, with the best-performing

systems managing a score of approx. 40 for

F-value for the detection, recognition and cor-

rection, (Dale et al., 2012). There are several

areas where our system’s performance might be

improved. The spellcheck dictionary which was

used was a general one and this resulted in many

spelling corrections which were out of context.

A more tailored dictionary employing contex-

tual awareness information could be beneficial

for the preprocessing step.

Multi-word corrections were not supported

by the system due to how the instances were

constructed and these cases were simply ig-

nored, to the detriment of the results.

In the basic feature set, mostly single word

features were used, however more n-gram fea-

tures could be another possibility towards im-

proving results as these were found to perform

well during classification. The Naive Bayes

algorithm was used primarily because of its



lightweight nature and fast and efficient perfor-

mance however other algorithms such as SVM’s

and decision trees might also give good, albeit

slower, performance.

There were many different options to tune the

Google-Ngrams features and it may be the case

that better combinations of features are avail-

able.

Finally, very little time was spent tuning the

datasets for the classification and correction

step as opposed to the detection phase, this is

another part of the system where fine-tuning pa-

rameters could pay dividends.

Acknowledgments

This material is based upon works supported

by the Science Foundation Ireland under Grant

No.[SFI 07/CE/I 1142.].

References

[Dale and Kilgarriff2011] R. Dale and A. Kilgarriff.

2011. Helping our own: The hoo 2011 pilot

shared task. In Proceedings of the 13th European

Workshop on Natural Language Generation.

[Dale et al.2012] Robert Dale, Ilya Anisimoff, and

George Narroway. 2012. Hoo 2012: A report

on the preposition and determiner error correction

shared task.

[Gospodnetic and Hatcher2005] O. Gospodnetic and

E. Hatcher. 2005. Lucene. Manning.

[Hall et al.2009] M. Hall, E. Frank, G. Holmes,

B. Pfahringer, P. Reutemann, and I.H. Witten.

2009. The weka data mining software: an up-

date. ACM SIGKDD Explorations Newsletter,

11(1):10–18.

[Michel et al.2011] J.B. Michel, Y.K. Shen, A.P.

Aiden, A. Veres, M.K. Gray, J.P. Pickett,

D. Hoiberg, D. Clancy, P. Norvig, J. Orwant, et al.

2011. Quantitative analysis of culture using mil-

lions of digitized books. science, 331(6014):176.

[OpenNLP2012] OpenNLP. 2012. Website:

http://opennlp. apache. org.


	Introduction
	Error types

	Training data
	Approach
	Google N-grams Features
	Motivation
	Method

	Some detailed results (detection)
	Breakdown of run configurations
	Instance reduction filters
	POSTrigrams filter
	CurrentPlusOrMinusOne filter

	Feature selection filters
	F12


	Results
	Conclusions

