Graph Cut Energy Minimization in a Probabilistic Learning Framework for 3D Prostate Segmentation in MRI - Archive ouverte HAL
Communication Dans Un Congrès Année : 2012

Graph Cut Energy Minimization in a Probabilistic Learning Framework for 3D Prostate Segmentation in MRI

Résumé

Variations in inter-patient prostate shape, and size and imaging artifacts in magnetic resonance images (MRI) hinders automatic accurate prostate segmentation. In this paper we propose a graph cut based energy minimization of the posterior probabilities obtained in a supervised learning schema for automatic 3D segmentation of the prostate in MRI. A probabilistic classification of the prostate voxels is achieved with a probabilistic atlas and a random forest based learning framework. The posterior probabilities are combined to obtain the likelihood of a voxel being prostate. Finally, 3D graph cut based energy minimization in the stochastic space provides segmentation of the prostate. The proposed method achieves a mean Dice similarity coefficient (DSC) value of 0.91±0.04 and 95% mean Hausdorff distance (HD) of 4.69±2.62 voxels when validated with 15 prostate volumes of a public dataset in a leave-one-patient-out validation framework. The model achieves statistically significant t-test p-value<0.0001 in mean DSC and mean HD values compared to some of the works in literature.
Fichier principal
Vignette du fichier
ICPR2012_MRI_Soumya2.pdf (410.8 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00710964 , version 1 (22-06-2012)

Identifiants

  • HAL Id : hal-00710964 , version 1

Citer

Soumya Ghose, Jhimli Mitra, Arnau Oliver, Robert Marti, Xavier Llado, et al.. Graph Cut Energy Minimization in a Probabilistic Learning Framework for 3D Prostate Segmentation in MRI. IAPR International Conference on Pattern Recognition, Nov 2012, Tsukba, Japan. ⟨hal-00710964⟩
153 Consultations
224 Téléchargements

Partager

More