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Abstract

Inter patient shape, size and intensity variations
of the prostate in transrectal ultrasound (TRUS) im-
ages challenge automatic segmentation of the prostate.
In this paper we propose a variational model driven
by Mumford-Shah (MS) functional for segmenting the
prostate. Parametric representation of the implicit
curve is derived from principal component analysis
(PCA) of the signed distance representation of the la-
beled training data to impose shape prior. Posterior
probability of the prostate region determined from ran-
dom forest classification facilitates initialization and
propagation of our model in a MS energy minimization
framework. The proposed method achieves mean Dice
similarity coefficient (DSC) value of 0.97±0.01, with
a mean Hausdorff distance (HD) value of 1.73±0.24
mm when validated with 24 images from 6 datasets in a
leave-one-patient-out validation framework. The model
achieves statistically significantt-testp-value<0.0001
in mean DSC and mean HD values compared to tradi-
tional statistical models of shape and appearance.

1. Introduction

Prostate volume determined from segmented TRUS
images serves as an important parameter in determin-
ing presence of benign or malignant tumor during di-
agnosis of prostate diseases. Segmented 2D axial mid
gland slices in TRUS images are used to estimate
prostate volume using planimetry calculation, prolate
ellipse volume calculation, and ellipsoid volume mea-
surement [6]. However, accurate automatic or semi-
automatic computer aided prostate segmentation from
TRUS images is a challenging task due to low con-
trast of TRUS images, speckle and shadow artifacts,
inter-patient prostate shape, size and deformation varia-
tions and heterogeneous intensity distribution inside the

prostate gland. To deal with these challenges we pro-
pose a MS functional [10] based variational framework
to segment the prostate. Implicit shape prior of the para-
metric curve is derived from PCA of the signed distance
functions (SDFs) of the labeled training images. Poste-
rior probabilities of the prostate region derived in a su-
pervised learning framework of random forest is used
in initialization and evolution of the parametric curve.
The parameters of the evolving curve are determined
from minimization of region and contour based energy
as proposed in [1]. Quantitative comparison of our pro-
posed method with the traditional AAM [4] and also
with [9, 8] shows statistically significant improvement
in overlap and contour accuracies. The key contribu-
tions of this work are; (1) The use of a random forest
framework to obtain a soft classification of the prostate.
(2) The use of shape, contour and probability prior in-
formation for evolution of levelsets. The remaining pa-
per is organized in the following manner. Section 2 pro-
vides a description of the proposed segmentation frame-
work, followed by the results and discussions in Section
3. Finally, the paper concludes in Section 4.

2. Proposed Segmentation Framework

The proposed method is developed on two major
components: 2.1) supervised learning framework of
random forest to determine posterior probability of a
pixel being prostate, and 2.2) adapting implicit shape,
boundary and intensity prior model of [1] to incorpo-
rate the posterior probabilities of the prostate region for
initialization and evolution of the implicit curve.

2.1 Random forest based classification

In TRUS images prostate region have a heteroge-
neous intensity distribution and depending on the ac-
quisition parameters the region based statics (mean and
standard deviation) of the prostate may not significantly



vary from the background. Moreover, shadow arti-
facts and speckle may adversely affect the region based
statistics (determined from intensities) of the prostate
and the background. Significant separation of the in-
tensities of the prostate and the background is essential
for MS energy minimization framework. Moreover, in-
accurate region based statistics of the prostate and the
background adversely affect levelsets propagation and
hence segmentation accuracies. Therefore, to reduce
intensity variations inside the prostate region, and sig-
nificantly separate the intensities of the prostate and the
background we propose to determine the posterior prob-
ability of the image pixels being prostate in a supervised
learning framework of random forest and substitute in-
tensities with probabilities to achieve a better represen-
tation of the prostate and the background. Decision
trees are discriminative classifiers which are known to
suffer from over-fitting. However, a random decision
forest or random forest achieves better generalization
by growing an ensemble of many independent decision
trees on a random subset of the training data and by
randomizing the features made available at each node
during training [2].

During training , rigidly alignment of the training
datasets ensures minimization of pose variations. Sim-
ilarly, inter-patient intensity variations are normalized.
The data consists of a collection ofV = (X,F ), each
centered at3 × 3 neighborhood of pixels. Where,
X = (x, y) denotes the pixel position and the feature
vectorF constitutes of the mean and standard deviation
of the 3 × 3 pixel neighborhood. Each treeτi in ran-
dom forest receives the full setV , along with the label
and the root node and selects a test to splitV into two
subsets to maximize the information gain. A test con-
stitutes of a feature (like the mean of a pixel neighbor-
hood) and a feature response threshold. The left and the
right child nodes receive their respective subsets ofV
and the process is repeated at each child node to grow
the next level of the tree. Growth is terminated when
either the information gain is minimum or the tree has
grown to a maximum depth specified. Each decision
tree in the forest is unique as each tree node selects a
random subset of features and threshold. Duringtest-
ing, the test image is rigidly aligned to the same frame
of the training datasets and its intensities are normal-
ized. The pixels are routed to one leaf in each tree by
applying the test (selected during training). Each pixel
of the test dataset is propagated through all the trees by
successive application of the relevant binary test to de-
termine the probability of belonging to classc. When
reaching a leaf nodelτ , whereτ ∈ [1...,Γ], the pos-
terior probabilities (Pτ (c|V )) are gathered in order to
compute the final posterior probability of the pixel de-
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Figure 1. (a) The aligned contours of the training prostate
images. (b) SDFs of the aligned training dataset with black
contour showing the mean shape. (c), (d), (e), and (f) show
the first four primary eigenmodes of variations of the prostate.
(h) Shows the mean shape (black contour)Φ and (g) and (i)
represent the variance in mean shape (black contour) withΦ±
2λ1 given by the magenta contour. From (b) to (i) red signifies
high values and blue signifies low values.

fined byP (c|V ) = 1

Γ

∑

Γ

τ=1
Pτ (c|V ).

2.2 Shape, region and contour based levelsets

The problem of segmenting the prostate using a
shape prior, global and local image information could
be resolved by minimizing,

F = Fshape + Fregion + Fboundary (1)

The process of building the shape model of the prostate
starts with the alignment ofn segmented prostate im-
ages of the training set with intensity based affine reg-
istration to minimize pose differences. The boundaries
of each of then aligned prostates are embedded as the
zero levelset ofn separate SDFsΨ with negative dis-
tances assigned to the inside and positive distance as-
signed to the outside of the prostate boundary. The
mean levelset function of the prostate is computed from
the average of thesen SDFs,Φ = 1/n

∑n

i=1
Ψi. To

extract the shape variations of the prostatesΦ is sub-
tracted from each of then SDFs to createnmean-offset
functionsΨ̃. Each 2D mean-offset̃Ψi is reshaped into
a column vector. Then the shape variability matrix of

n prostates is given byS =
[

ψ̃1, ψ̃2, ...., ψ̃n

]

. PCA of

S yields the sorted matrix of principal componentsWk

(k is 98% of the total shape variations) and a vector of
eigen coefficientsxpca. Hence the shape model is given
asφ̂ = Φ+Wkxpca. The process of building the shape
model is illustrated in Fig. 1. The energy associated



Figure 2. Illustration of shape function̂φ(xpca, C(q)).
The green contour gives the shape model and the red contour
shows the evolving contour. The objective is to minimize the
distance between the evolving contour and the shape model.

with the shape term may be given as,

Fshape =
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whereC is the active contour at pointq, xpca is the
vector of eigen coefficients andhxT

is an element of a
group of geometric transformation parameterized byxT
the geometric transformation matrix. This essentially
evaluates the shape difference between the contourC

and the zero levelset̂C of the shape function̂φ as shown
in Fig. 2. By minimizing this energy we restrict the lev-
elset evolution to follow prostate shape prior. As dis-
cussed in 2.1 intensity of the image is substituted with
posterior probabilities obtained with random forest. Ac-
cording to Chan and Vesse [3] MS functional model the
curve parameters were determined from minimization
of region based energy given by,

Ecv =

∫

Ru

(I − κ)2dA+

∫

Rv

(I − γ)2dA (3)

Evolution of the curve ensured segmentation of the im-
age into two regionu andv with mean intensitiesκ and
γ without any specific shape. In our model, the MS
functional of [3] is modified to incorporate shape prior.
The region based energy term as a function of the shape
φ̂ is given as,

Fregion =

∫

Ω

ΘinH
(

φ̂ (xpca, xT )
)

dΩ (4)

+

∫

Ω

ΘoutH
(

−φ̂ (xpca, xT )
)

dΩ

where H (.) is the Heaviside function andΘr =

|I − µr|
2
+ µ |▽µr|

2 andµ is the meanr = in or out
of the prostate shape prior. Gradient descent minimiza-
tion of the energy term aids in determining the shape
xpca and the pose parametersxT of the evolving curve
to drive the shape model towards a homogeneous in-
tensity region with the shape of interest. However, the
model cannot handle local deformation like irregular
boundaries of the prostate. Hence a new energy term
is introduced asFboundary that aids in capturing the lo-
cal edge variations around the global shape variations.
Local edge information is captured by the energy term
given as,

Fboundary =

∮
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0
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∣
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C
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whereg (·) is the Gaussian kernel applied on the image
gradient (∇I). The energy minimization ofF of Eq. (1)
is performed using the gradient descent optimization.

Table 1. Prostate segmentation quantitative comparison
(HD, and MAD in mm.) Statistically significant values are
italicized

Method DSC HD MAD
AAM [4] 0.94±0.03 4.92±0.96 2.15±0.94
Ghose [8] 0.95±0.02 3.82±0.88 1.26±0.51
Ghose [9] 0.96±0.01 2.80±0.86 0.80±0.24
Our Method 0.97±0.01 1.73±0.24 0.42±0.09

3. Experimental Results and Discussions

We have validated the accuracy and robustness of
our method with 24 axial mid-gland TRUS images of
the prostate with a resolution of 354×304 pixels from
6 prostate datasets in a leave-one-patient-out evaluation
strategy. Manual segmentations performed by an ex-
pert radiologist were validated by an experienced urol-
ogist to prepare the ground truth. Both doctors have
over 15 years of experience in dealing with prostate
anatomy, prostate segmentation, and ultrasound guided
biopsies. For the random forest based classification, we
have fixed the number of trees to 100, the tree depth to
30 and the lower bound of information gain to10−7.
These parameters were chosen empirically as they pro-
duced promising results with the test images. We have
used most of the popular prostate segmentation evalua-
tion metrics like DSC, 95% Hausdorff Distance (HD),
and MAD, to evaluate our method. Furthermore, the re-
sults are compared with the traditional AAM [4], and to
statistical shape and texture model of [8] and probability
prior model of [9]. It is observed from Table 1 that a im-
plicit representation of the evolving contour propagat-
ing on the probabilistic representation of the prostate re-
gions in TRUS images significantly improves segmen-
tation accuracy when compared to [4, 8, 9]. As opposed
to the manual initialization of [4, 8], we use the poste-
rior probability information for automatic initialization.
We achieved a statistically significant improvement in
t-testp-value<0.0001 in mean DSC, HD, and MAD
compared to [4, 8, 9]. As observed in Table 1 better
segmentation acuracies is achieved with texture features
[8] and posterior probabilites [9] compared to the use of
image intensities for curve evolution. However, use of
posterior probability and implicit curve representation
in our work provides better results when compared to
[8, 9]. Working of our model and performance of differ-
ent levelsets are illustrated in Fig. 3. To provide qualita-
tive results of our method we present a subset of results
in Fig. 4. The first row shows the results achieved with
AAM [4] and the second row shows the results achieved
with our method. A quantitative comparison of differ-
ent prostate segmentation methodologies is difficult in
absence of a public dataset and standardized evaluation
metrics. Nevertheless, to have an overall qualitative es-
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Figure 3. Illustration of working of our model and quali-
tative results of different levelsets. (a) is the image to be seg-
mented, (b) random forest classification, (c) contour energy,
(d) region based energy, (e) shows the initial levelsets (red
contour) with SDFs and (f) segmentation with our model, (g)
segmentation with levelsets [3], (h) segmentation with levelset
[3] on posteriors, (i) segmentation with levelsets [1] on inten-
sity. In (f), (g), (h), and (i) green contour is the ground truth
and red contour is the obtained segmentation.

timate of the functioning of our method we have com-
pared with some of the existing works in Table 2. Ana-
lyzing the results we observe that our mean DSC value
is better compared to area overlap accuracy values of
[11] and very similar to DSC value of [7]. However, it
is to be noted that our MAD value is better compared to
[11], [12], [5] and [7]. From these observations we may
conclude that qualitatively our method performs well in
overlap and contour accuracy measures.

4. Conclusions

A novel variational framework for curve evolution
based on MS functional based on posterior probabil-
ity information of the prostate region with the goal of
segmenting the prostate in 2D TRUS images has been
proposed. Our approach is accurate, and robust to sig-
nificant shape, size and contrast variations in TRUS im-
ages when compared to traditional AAM and some of
the works in literature.
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