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In a general counting process setting, we consider the problem of obtaining a prognostic on the survival time adjusted on covariates in high-dimension. Towards this end, we construct an estimator of the whole conditional intensity. We estimate it by the best Cox proportional hazards model given two dictionaries of functions. The first dictionary is used to construct an approximation of the logarithm of the baseline hazard function and the second to approximate the relative risk. We introduce a new data-driven weighted Lasso procedure to estimate the unknown parameters of the best Cox model approximating the intensity. We provide non-asymptotic oracle inequalities for our procedure in terms of an appropriate empirical Kullback divergence. Our results rely on an empirical Bernstein's inequality for martingales with jumps and properties of modified self-concordant functions.

Introduction

We consider one of the statistical challenges brought by the recent advances in biomedical technology to clinical applications. For example, in Dave et al. [START_REF] Dave | Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells[END_REF], the considered data relate 191 patients with follicular lymphoma. The observed variables are the survival time, that can be right-censored, clinical variables, as the age or the disease stage, and 44 929 levels of gene expression. In this high-dimensional right-censored setting, there are two clinical questions. One is to determine prognostic biomarkers, the second is to predict the survival from follicular lymphoma adjusted on covariates. We focus our interest on the second (see Gourlay [START_REF] Gourlay | Bone-density testing interval and transition to osteoporosis in older women[END_REF] and Steyerberg [START_REF] Steyerberg | Stent placement or brachytherapy for palliation of dysphagia from esophageal cancer: a prognostic model to guide treatment selection[END_REF]). As a consequence, we consider the statistical question of estimating the whole conditional intensity. To adjust on covariates, the most popular semi-parametric regression model is the Cox proportional hazards model (see Cox [START_REF] Cox | Regression models and life-tables[END_REF]) : the conditional hazard rate function of the survival time T given the vector of covariates Z = (Z 1 , ..., Z p ) T is defined by λ 0 (t, Z) = α 0 (t) exp(β T 0 Z), [START_REF] Aalen | A model for nonparametric regression analysis of counting processes[END_REF] where β 0 = (β 0 1 , ..., β 0p ) T is the vector of regression coefficients and α 0 is the baseline hazard function. The unknown parameters of the model are β 0 ∈ R p and the function α 0 . To construct an estimator of λ 0 , one usually considers the partial likelihood introduced by Cox [START_REF] Cox | Regression models and life-tables[END_REF] to derive an estimator of β 0 and then plug this estimator to obtain the well-known Breslow estimator of α 0 . We propose in this paper an alternative one-step strategy.

Framework

Before describing our strategy, let us clarify our framework. We consider the general setting of counting processes. For i = 1, ..., n, let N i be a marked counting process and Y i a predictable random process with values in [0, 1]. Let (Ω, F, P) be a probability space and (F t ) t≥0 be the filtration defined by

F t = σ{N i (s), Y i (s), 0 ≤ s ≤ t, Z i , i = 1, ..., n},
where Z i = (Z i,1 , ..., Z i,p ) T ∈ R p is the F 0 -measurable random vector of covariates of individual i. Let Λ i (t) be the compensator of the process N i (t) with respect to (F t ) t≥0 , so that M i (t) = N i (t) -Λ i (t) is a (F t ) t≥0 -martingale.

The process N i satisfies the Aalen multiplicative intensity model : for all t ≥ 0,

Λ i (t) = t 0 λ 0 (s, Z i )Y i (s)ds, ( A 1 ) 
where λ 0 is an unknown nonnegative function called intensity.

This general setting, introduced by Aalen [START_REF] Aalen | A model for nonparametric regression analysis of counting processes[END_REF], embeds several particular examples as censored data, marked Poisson processes and Markov processes (see Andersen et al. [START_REF] Andersen | Statistical models based on counting processes[END_REF] for further details).

Remark 1.1. In the specific case of right censoring, let (T i ) i=1,...,n be i.i.d. survival times of n individuals and (C i ) i=1,...,n their i.i.d. censoring times. We observe {(X i , Z i , δ i )} i=1,...,n where X i = min(T i , C i ) is the event time, Z i = (Z i,1 , ..., Z i,p ) T is the vector of covariates and δ i = 1 {T i ≤C i } is the censoring indicator. The survival times T i are supposed to be conditionally independent of the censoring times C i given some vector of covariates Z i = (Z i,1 , ..., Z i,p ) T ∈ R p for i = 1, ..., n. With these notations, the (F t )-adapted processes Y i and N i are respectively defined as the at-risk process Y i (t) = 1 {X i ≥t} and the counting process N i (t) = 1 {X i ≤t,δ i =1} which jumps when the ith individual dies.

We observe the independent and identically distributed (i.i.d.) data (Z i , N i (t), Y i (t), i = 1, ..., n, 0 ≤ t ≤ τ ), where [0, τ ] is the time interval between the beginning and the end of the study.

On [0, τ ], we assume that A 0 = sup

1≤i≤n τ 0 λ 0 (s, Z i )ds < ∞. (A 2 )
This is the standard assumption in statistical estimation of intensities of counting processes, see Andersen et al. [START_REF] Andersen | Statistical models based on counting processes[END_REF] for instance. We also precise that, in the following, we work conditionally to the covariates and from now on, all probabilities P and expectations E are conditional to the covariates. Our goal is to estimate λ 0 non-parametrically in a high-dimensional setting, i.e. when the number of covariates p is larger than the sample size n (p ≫ n).

Previous results

In high-dimensional regression, the benchmarks for results are the ones obtained in the additive regression model. In this setting, Tibshirani [START_REF] Tibshirani | Regression shrinkage and selection via the Lasso[END_REF] has introduced the Lasso procedure, which consists in minimizing an ℓ 1 -penalized criterion. The Lasso estimator has been widely studied for this model, with consistency results (see Meinshausen and Bühlmann [START_REF] Meinshausen | High-dimensional graphs and variable selection with the Lasso[END_REF]) and variable selection results (see Zhao and Yu [START_REF] Zhao | On model selection consistency of Lasso[END_REF], Zhang and Huang [START_REF] Zhang | The sparsity and bias of the Lasso selection in high-dimensional linear regression[END_REF]). Recently, attention has been directed on establishing non-asymptotic oracle inequalities for the Lasso (see Bunea et al. [START_REF] Bunea | Sparsity oracle inequalities for the Lasso[END_REF][START_REF] Bunea | Aggregation and sparsity via l1 penalized least squares[END_REF], Bickel et al. [START_REF] Bickel | Simultaneous analysis of Lasso and Dantzig selector[END_REF], Massart and Meynet [START_REF] Massart | The Lasso as an l1-ball model selection procedure[END_REF], Bartlett [5] and Koltchinskii [START_REF] Koltchinskii | Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery Problems: Ecole d'Eté[END_REF] among others).

In the setting of survival analysis, the Lasso procedure has been first considered by Tibshirani [START_REF] Tibshirani | The Lasso method for variable selection in the Cox model[END_REF] and applied to the partial log-likelihood. More generally, other procedures have been introduced for the parametric part of the Cox model : the adaptive Lasso, the smooth clipped absolute deviation penalizations and the Danzig selector are respectively considered in Zou [START_REF] Zou | A note on path-based variable selection in the penalized proportional hazards model[END_REF], Zhang and Lu [START_REF] Zhang | Adaptive Lasso for Cox's proportional hazards model[END_REF], Fan and Li [START_REF] Fan | Variable selection for Cox's proportional hazards model and frailty model[END_REF] and Antoniadis et al. [START_REF] Antoniadis | The Dantzig selector in Cox's proportional hazards model[END_REF]. Non parametric approaches are considered in Letué [START_REF] Letué | Modèle de Cox : Estimation par sélection de modele et modèle de chocs bivarié[END_REF], Hansen et al. [START_REF] Hansen | Lasso and probabilistic inequalities for multivariate point processes[END_REF] and Comte et al. [START_REF] Gaïffas | Adaptive estimation of the conditional intensity of markerdependent counting processes[END_REF]. Lasso procedures for the alternative Aalen additive model have been introduced in Martinussen and Scheike [START_REF] Martinussen | Covariate selection for the semiparametric additive risk model[END_REF] and Gaïffas and Guilloux [START_REF] Gaïffas | High-dimensional additive hazard models and the Lasso[END_REF].

All of the existing results in the Cox model are based on the partial log-likelihood, which does not answer the clinical question associated to a prognosis. Antoniadis et al. [START_REF] Antoniadis | The Dantzig selector in Cox's proportional hazards model[END_REF] have established asymptotic estimation inequalities in the Cox proportional hazard model for the Dantzig estimator (see Bickel et al. [START_REF] Bickel | Simultaneous analysis of Lasso and Dantzig selector[END_REF] for a comparison between these two estimators in an additive regression model). In Bradic et al. [START_REF] Bradic | Regularization for Cox's proportional hazards model with NPdimensionality[END_REF], asymptotic estimation inequalities for the Lasso estimator have also been obtained in the Cox model. More recently, Kong and Nan [START_REF] Kong | Non-asymptotic oracle inequalities for the high-dimensional Cox regression via Lasso[END_REF] and Bradic and Song [START_REF] Bradic | Gaussian oracle inequalities for structured selection in non-parametric cox model[END_REF] have established non-asymptotic oracle inequalities for the Lasso in the generalized Cox model

λ 0 (t, Z) = α 0 (t) exp(f 0 (Z)), (2) 
where α 0 is the baseline hazard function and f 0 a function of the covariates. However, the focus in both papers is on the Cox partial log-likelihood, the obtained results are either on f βL -f 0 or on βLβ 0 for f 0 (Z) = β T 0 Z and the problem of estimating the whole intensity λ 0 is not considered, as needed for the prevision of the survival time.

Our contribution

The first motivation of the present paper is to address the problem of estimating λ 0 defined in (A 1 ) regardless of an underlying model. We use an agnostic learning approach, see Kearns et al. [START_REF] Kearns | Toward efficient agnostic learning[END_REF], to construct an estimator that mimics the performance of the best Cox model, whether this model is true or not. More precisely, we will consider candidates for the estimation of λ 0 of the form

λ β,γ (t, Z) = α γ (t)e f β (Z) for (β, γ) ∈ R M × R N ,
where f β and α γ are respectively linear combinations of functions of two dictionaries F M and G N . The estimator of λ 0 is defined as the candidate which minimizes a weighted ℓ 1 -penalized total log-likelihood as opposed to the Cox partial log-likelihood. The second motivation of the paper is to obtain non-asymptotic oracle inequalities for Lasso estimators of the complete intensity λ 0 . Indeed, in practice, one can not consider that the asymptotic regime has been reached, cf. in Dave et al. [START_REF] Dave | Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells[END_REF] for example. In addition, Comte et al. [START_REF] Gaïffas | Adaptive estimation of the conditional intensity of markerdependent counting processes[END_REF] established non-asymptotic oracle inequalities for the whole intensity but not in a high-dimensional setting and to the best of our knowledge, no non-asymptotic results for the estimation of the whole intensity in high dimension exist in the literature.

Towards this end, we will proceed in two steps. In a first step, we assume that λ 0 verifies Model (2), where α 0 is assumed to be known. In this particular case, the only nonparametric function to estimate is f 0 and we estimate it by a linear combination of functions of the dictionary F M . In this setting, we obtain non-asymptotic oracle inequalities for the Cox model when α 0 is supposed to be known. In a second step, we consider the general problem of estimating the whole intensity λ 0 . We state non-asymptotic oracle inequalities both in terms of empirical Kullback divergence and weighted empirical quadratic norm for our Lasso estimators, thanks to properties of modified self-concordant functions (see Bach [START_REF] Bach | Self-concordant analysis for logistic regression[END_REF]).

These results are obtained via three ingredients : a new Bernstein's inequality, a modified Restricted Eigenvalue condition on the expectation of the weighted Gram matrix and modified self-concordant functions. Let us be more precise. We establish empirical versions of Bernstein's inequality involving the optional variation for martingales with jumps (see Gaïffas and Guilloux [START_REF] Gaïffas | High-dimensional additive hazard models and the Lasso[END_REF] and Hansen et al. [START_REF] Hansen | Lasso and probabilistic inequalities for multivariate point processes[END_REF] for related results). This allows us to define a fully data-driven weighted ℓ 1 -penalization. For the resulting estimator, we work under a modified Restricted Eigenvalue condition according to which the expectation of a weighted Gram matrix fullfilled the Restricted Eigenvalue condition (see Bickel et al. [7]). This new version of the Restricted Eigenvalue condition is both new and weaker than the comparable condition in the Cox model. Finally, we extend the notion of self-concordance (see Bach [START_REF] Bach | Self-concordant analysis for logistic regression[END_REF]) to the problem at hands in order to connect our weighted empirical quadratic norm and our empirical Kullback divergence. In this context, we state the first fast non-asymptotic oracle inequality for the whole intensity.

The paper is organized as follows. In Section 2, we describe the framework and the Lasso procedure for estimating the intensity. The estimation risk that we consider and its associated loss function are presented. In Section 3, prediction and estimation oracle inequalities in the particular Cox model with known baseline hazard function are stated. In Section 4, non-asymptotic oracle inequalities with different convergence rates are given for a general intensity. Section 5 is devoted to statement of empirical Bernstein's inequalities associated to our processes. Proofs are gathered in section 6.

Estimation procedure

The estimation criterion and the loss function

To estimate the intensity λ 0 , we consider the total empirical log-likelihood. By Jacod's Formula (see Andersen et al. [START_REF] Andersen | Statistical models based on counting processes[END_REF]), the log-likelihood based on the data (Z i , N i (t), Y i (t), i = 1, ..., n, 0 ≤ t ≤ τ ) is given by

C n (λ) = - 1 n n i=1 τ 0 log λ(t, Z i )dN i (t) - τ 0 λ(t, Z i )Y i (t)dt .
Our estimation procedure is based on the minimization of this empirical risk. To this empirical risk, we associate the empirical Kullback divergence defined by

K n (λ 0 , λ) = 1 n n i=1 τ 0 (log λ 0 (t, Z i ) -log λ(t, Z i )) λ 0 (t, Z i )Y i (t)dt - 1 n n i=1 τ 0 (λ 0 (t, Z i ) -λ(t, Z i )) Y i (t)dt. (3) 
We refer to van de Geer [START_REF] Van De Geer | Exponential inequalities for martingales, with application to maximum likelihood estimation for counting processes[END_REF] and Senoussi [START_REF] Senoussi | Problème d'identification dans le modèle de Cox[END_REF] for close definitions. Notice in addition, that this loss function is closed to the Kullback-Leibler information considered in the density framework (see Stone [START_REF] Stone | The use of polynomial splines and their tensor products in multivariate function estimation[END_REF] and Cohen and Le Pennec [START_REF] Le Pennec | Partition-based conditional density estimation[END_REF]). The following proposition justify the choice of this criterion. X i ]) is large. See Gill [START_REF] Gill | Large sample behaviour of the product-limit estimator on the whole line[END_REF] for a discussion on the role of τ .

In the following, we consider that we estimate λ 0 (t) for t in [0, τ ∧ sup{t : ∃i ∈ {1, ..., n}, Y i (t) = 0}]. Let introduce the weighted empirical quadratic norm defined for all function h on [0, τ ] × R p by

||h|| n,Λ = 1 n n i=1 τ 0 (h(t, Z i )) 2 dΛ i (t), (4) 
where Λ i is defined in (A 1 ). Notice that, in this definition, the higher the intensity of the process N i is, the higher the contribution of individual i to the empirical norm is. This norm is connected to the empirical Kullback divergence, as it will be shown in Proposition 6.3. Finally, for a vector b in R M , we define,

||b|| 1 = M j=1 |b j | and ||b|| 2 2 = M j=1 b 2 j .

Weighted Lasso estimation procedure

The estimation procedure is based on the choice of two finite sets of functions, called dictionaries. Let F M = {f 1 , ..., f M } where f j : R p → R for j = 1, ..., M , and G N = {θ 1 , ..., θ N } where θ k : R + → R for k = 1, ..., N , be two dictionaries. Typically the size of the dictionary F M used to estimate the function of the covariates in a high-dimensional setting is large, i.e. M ≫ n, whereas to estimate a function on R + , we consider a dictionary G N with size N of the order of n. The sets F M and G N can be collections of functions such as wavelets, splines, step functions, coordinate functions etc. They can also be collections of several estimators computed using different tuning parameters. To make sure that no identification problems appear by using two dictionaries, it is assumed that only the dictionary G N = {θ 1 , ..., θ N } can contain the constant function, not F M = {f 1 , ..., f M }. The candidates for the estimator of λ 0 are of the form

λ β,γ (t, Z i ) = α γ (t)e f β (Z i ) with log α γ = N k=1 γ k θ k and f β = M j=1 β j f j .
The dictionaries F M and G N are chosen such that the two following assumptions are fullfiled.

For all j in {1, ..., M },

||f j || n,∞ = max 1≤i≤n |f j (Z i )| < ∞. (A 3 ) For all k in {1, ..., N }, ||θ k || ∞ = max t∈[0,τ ] |θ k (t)| < ∞. (A 4 )
We consider a weighted Lasso procedure for estimating λ 0 .

Estimation procedure 2.3. The Lasso estimator of λ 0 is defined by λ βL ,γ L , where The positive data-driven weights ω j = ω(f j , n, M, ν, x), j = 1, ..., M and δ k = δ(θ k , n, N, ν, y), k = 1, ..., N are defined as follows. Let x > 0, y > 0, ε > 0, ε > 0, c = 2 2(1 + ε), c = 2 2(1 + ε) and (ν, ν) ∈ (0, 3) 2 such that ν > Φ(ν) and ν > Φ(ν), where Φ(u) = exp(u) -u -1. With these notations, the weigths are defined by

( βL , γL ) = arg min (β,γ)∈R M ×R N {C n (λ β,γ ) + pen(β) + pen(γ)},
ω j = c Ŵ ν n (f j )(x + log M ) n + 2 x + log M 3n ||f j || n,∞ and δ k = c T ν n (θ k )(y + log N ) n + 2 y + log N 3n ||θ k || ∞ , (5) 
for

Ŵ ν n (f j ) = ν/n ν/n -Φ(ν/n) Vn (f j ) + x/n ν/n -Φ(ν/n) ||f j || 2 n,∞ , (6) 
T ν n (θ k ) = ν/n ν/n -Φ(ν/n) Rn (θ k ) + y/n ν/n -Φ(ν/n) ||θ k || 2 ∞ , (7) 
where Vn (f j ) and Rn (θ k ) are the "observable" empirical variance of f j and θ k respectively, given by Vn (f j ) = 1

n n i=1 τ 0 (f j (Z i )) 2 dN i (s) and Rn (θ k ) = 1 n n i=1 τ 0 (θ k (s)) 2 dN i (s).
Remark 2.4. The general Lasso estimator for β is classically defined by

βL = arg min β∈R M {C n (λ β ) + Γ M j=1 |β j |},
with Γ > 0 a smoothing parameter. Usually, Γ is of order log M/n (see Massart and Meynet [30] for the usual additive regression model and Antoniadis et al. [START_REF] Antoniadis | The Dantzig selector in Cox's proportional hazards model[END_REF] for the Cox model among other). The Lasso penalization for β corresponds to the simple choice ω j = Γ where Γ > 0 is a smoothing parameter. Our weights could be compared with those of Bickel and al. [START_REF] Bickel | Simultaneous analysis of Lasso and Dantzig selector[END_REF] in the case of an additive regression model with a gaussian noise. They have considered a weighted Lasso with a penalty term of the form Γ M j=1 ||f j || n |β j |, with Γ of order log M/n and ||.|| n the usual empirical norm. We can deduce from the weights ω j defined by [START_REF] Bartlett | l1-regularized linear regression: persistence and oracle inequalities[END_REF] higher suitable weights that can be written Γ 1 n,M ωj with ωj = Ŵ ν n (f j ), which is of order Vn (f j ) and

Γ 1 n,M = c x + log M n + 2 x + log M 3n max 1≤j≤M ||f j || n,∞ Ŵ ν n (f j )
.

The regularization parameter Γ 1 n,M is still of order log M/n. The weights ωj correspond to the estimation of the weighted empirical norm ||.|| n,Λ that is not observable and play the same role than the empirical norm ||f j || n in Bickel et al. [START_REF] Bickel | Simultaneous analysis of Lasso and Dantzig selector[END_REF]. These weights are also of the same form as those of van de Geer [START_REF] Van De Geer | High-dimensional generalized linear models and the lasso[END_REF] for the logistic model.

The idea of adding some weights in the penalization comes from the adaptive Lasso, although it is not the same procedure. Indeed, in the adaptive Lasso (see Zou [START_REF] Zou | The adaptive lasso and its oracle properties[END_REF]) one chooses ω j = | βj | -a where βj is a preliminary estimator and a > 0 a constant. The idea behind this is to correct the bias of the Lasso in terms of variables selection accuracy (see Zou [START_REF] Zou | The adaptive lasso and its oracle properties[END_REF] and Zhang [START_REF] Zhang | Analysis of multi-stage convex relaxation for sparse regularization[END_REF] for regression analysis and Zhang and Lu [START_REF] Zhang | Adaptive Lasso for Cox's proportional hazards model[END_REF] for the Cox model). The weights ω j can also be used to scale each variable at the same level, which is suitable when some variables have a large variance compared to the others.

Oracle inequalities for the Cox model when the baseline hazard function is known

As a first step, we suppose that the intensity satisfies the generalization of the Cox model ( 2) with a known baseline function α 0 . In this context, only f 0 has to be estimated and λ 0 is estimated by

λ βL (t, Z i ) = α 0 (t)e f βL (Z i ) and βL = arg min β∈R M {C n (λ β ) + pen(β)}. ( 8 
)
In this section, we state non-asymptotic oracle inequalities for the prediction loss of the Lasso in terms of the Kullback divergence. These inequalities allow us to compare the prediction error of the estimator and the best approximation of the regression function by a linear combination of the functions of the dictionary in a non-asymptotic way.

A slow oracle inequality

In the following theorem, we state an oracle inequality in the Cox model with slow rate of convergence, i.e. with a rate of convergence of order log M/n. This inequality is obtained under a very light assumption on the dictionary F M .

Proposition 3.1. Consider Model [START_REF] Andersen | Statistical models based on counting processes[END_REF] with known α 0 . Let x > 0 be fixed, ω j be defined by ( 5) and for

β ∈ R M , pen(β) = M j=1 ω j |β j |.
Let A ε,ν be some numerical positive constant depending only on ε and c ℓ , and x > 0 be fixed. Under Assumption A 3 , with a probability larger than 1 -A ε,ν e -x , then

K n (λ 0 , λ βL ) ≤ inf β∈R M K n (λ 0 , λ β ) + 2 pen(β) . ( 9 
)
This theorem states a non-asymptotic oracle inequality in prediction on the conditional hazard rate function in the Cox model. The ω j are the order of log M/n and the penalty term is of order ||β|| 1 log M/n. This variance order is usually referred as a slow rate of convergence in high dimension (see Bickel et al. [START_REF] Bickel | Simultaneous analysis of Lasso and Dantzig selector[END_REF] for the additive regression model, Bertin et al. [START_REF] Bertin | Adaptive Dantzig density estimation[END_REF] and Bunea et al. [START_REF] Bunea | Spades and mixture models[END_REF] for density estimation).

A fast oracle inequality

Now, we are interested in obtaining a non-asymptotic oracle inequality with a fast rate of convergence of order log M/n and we need further assumptions in order to prove such result. In this subsection, we shall work locally, for µ > 0, on the set Γ

M (µ) = {β ∈ R M : || log λ β -log λ 0 || n,∞ ≤ µ}, simply denoted Γ(µ)

to simplify the notations and we consider the following assumption :

There exists µ > 0, such that Γ(µ) contains a non-empty open set of R M .

(A 5 )

This assumption has already been considered by van de Geer [START_REF] Van De Geer | High-dimensional generalized linear models and the lasso[END_REF] or Kong and Nan [START_REF] Kong | Non-asymptotic oracle inequalities for the high-dimensional Cox regression via Lasso[END_REF]. Roughly speaking, it means that one can find a set where we can restrict our attention for finding good estimator of f 0 . This assumption is needed in order to connect, via the notion of self-concordance (see Bach [START_REF] Bach | Self-concordant analysis for logistic regression[END_REF]), the weighted empirical quadratic norm and the empirical Kullback divergence (see Proposition 6.1).

The weighted Lasso estimator becomes

βµ L = arg min β∈Γ(µ) {C n (λ β ) + pen(β)}. ( 10 
)
By definition, this weighted Lasso estimator is obtained on a ball centered around the true function λ 0 . However in Assumption A 5 , we can always consider a large radius µ, which weakens it. This could not change the rate of convergence in the oracle inequalities (∼ log M/n) but only the range of a constant. In the particular case in which log λ β for all β ∈ R M and log λ 0 are bounded, there exists µ > 0 such that

|| log λ β -log λ 0 || n,∞ ≤ || log λ β || n,∞ + || log λ 0 || n,∞ ≤ µ.
To achieve a fast rate of convergence, one needs an additional assumption on the Gram matrix. We choose to work under a Restricted Eigenvalue condition, as introduced in Bickel et al. [START_REF] Bickel | Simultaneous analysis of Lasso and Dantzig selector[END_REF] for the additive regression model. This condition is one of the weakest assumption on the design matrix. See Bühlmann and van de Geer [START_REF] Bühlmann | On the conditions used to prove oracle results for the Lasso[END_REF] and Bickel et al. [START_REF] Bickel | Simultaneous analysis of Lasso and Dantzig selector[END_REF] for further details on assumptions required for oracle inequalities.

Let us first introduce further notations :

∆ = D( βµ L -β) with β ∈ Γ(µ) and D = (diag(ω j )) 1≤j≤M , X = (f j (Z i )) i,j , with i ∈ {1, ..., n} and j ∈ {1, ..., M }, G n = 1 n X T CX with C = (diag(Λ i (τ ))) 1≤i≤n . ( 11 
)
In the matrix G n , the covariates of individual i is re-weighted by its cumulative risk Λ i (τ ), which is consistent with the definition of the empirical norm in [START_REF] Bach | Self-concordant analysis for logistic regression[END_REF]. Let also J(β) be the sparsity set of vector β ∈ Γ(µ) defined by J(β) = {j ∈ {1, ..., M } : β j = 0}, and the sparsity index is then given by |J(β)| = Card{J(β)}. For J ⊂ {1, ..., M }, we denote by β J the vector β restricted to the set J :

(β J ) j = β j if j ∈ J and (β J ) j = 0 if j ∈ J c where J c = {1, ..., M } \ J.
Usually, in order to obtain a fast oracle inequality, we need to assume a Restricted Eigenvalue condition on the Gram matrix G n . However, since G n is random in our case, we impose the Restricted Eigenvalue condition to E(G n ), where the expectation is taken conditionally to the covariates. For some integer s ∈ {1, ..., M } and a constant a 0 > 0, the following condition holds :

0 < κ 0 (s, a 0 ) = min J⊂{1,...,M }, |J|≤s min b∈R M \{0}, ||b J c || 1 ≤a 0 ||b J || 1 (b T E(G n )b) 1/2 ||b J || 2 . (RE(s, a 0 ))
The integer s here plays the role of an upper bound on the sparsity |J(β)| of a vector of coefficients β.

This assumption is weaker than the classical one and the following lemma implies that if the Restricted Eigenvalue condition is verified for E(G n ), then the empirical version of the Restricted Eigenvalue condition applied to G n holds true with large probability. This modified Restricted Eigenvalue condition is new and this is the first time to our best knowledge that a fast-non asymptotic oracle inequality has been established under such a condition.

Lemma 3.2. Let L > 0 such that max 1≤j≤M max 1≤i≤n |f j (Z i )| ≤ L. Under Assumptions A 2 and RE(s, a 0 ), we have 0 < κ = min J⊂{1,...,M }, |J|≤s min b∈R M \{0}, ||b J c || 1 ≤a 0 ||b J || 1 (b T G n b) 1/2 ||b J || 2 and κ = (1/ 2A 0 )κ 0 (s, a 0 ), ( 12 
)
with probability larger than 1 -π n , where

π n = 2M 2 exp - nκ 4 2L 2 (1 + a 0 ) 2 s(L 2 (1 + a 0 ) 2 s + κ 2 /3) .
Thanks to Lemma 3.2, the empirical Restricted Eigenvalue condition will be fulfilled on an event of large probability, on which we establish a fast non-asymptotic oracle inequality. Theorem 3.3. Consider Model [START_REF] Andersen | Statistical models based on counting processes[END_REF] with known α 0 and for x > 0, let ω j be defined by [START_REF] Bartlett | l1-regularized linear regression: persistence and oracle inequalities[END_REF] and βµ L be defined by [START_REF] Bühlmann | On the conditions used to prove oracle results for the Lasso[END_REF]. Let A ε,ν > 0 be a numerical positive constant only depending on ε and ν, ζ > 0 and s ∈ {1, ..., M } be fixed. Let Assumptions A 3 , A 5 and RE(s, a 0 ) be satisfied with a 0 = (3 + 4/ζ) and let κ = (1/ √ 2A 0 )κ 0 (s, a 0 ). Then, with a probability larger than 1 -A ε,ν e -x -π n , the following inequality holds

K n (λ 0 , λ βµ L ) ≤ (1 + ζ) inf β∈Γ(µ) |J(β)|≤s K n (λ 0 , λ β ) + C(ζ, µ) |J(β)| κ 2 ( max 1≤j≤M ω j ) 2 , ( 13 
)
where C(ζ, µ) > 0 is a constant depending on ζ and µ.

This result allows to compare the prediction error of the estimator and the best sparse approximation of the regression function by an oracle that knows the truth, but is constrained by sparsity. The Lasso estimator approaches the best approximation in the dictionary with a fast error term of order log M/n.

Thanks to Proposition 6.1, which states a connection between the empirical Kullback divergence (3) and the weighted empirical quadratic norm (4), we deduce from Theorem 3.3 a non-asymptotic oracle inequality in weighted empirical quadratic norm.

Corollary 3.4. Under the assumptions of Theorem 3.3, with a probability larger than

1 -A ε,ν e -x -π n , || log λ βµ L -log λ 0 || 2 n,Λ ≤ (1 + ζ) inf β∈Γ(µ) |J(β)|≤s || log λ β -log λ 0 || 2 n,Λ + c(ζ, µ) |J(β)| κ 2 ( max 1≤j≤M ω j ) 2 ,
where c(ζ, µ) is a positive constant depending on ζ and µ.

Note that for α 0 supposed to be known, this oracle inequality is also equivalent to

||f βµ L -f 0 || 2 n,Λ ≤ (1 + ζ) inf β∈Γ(µ) |J(β)|≤s ||f β -f 0 || 2 n,Λ + c(ζ, µ) |J(β)| κ 2 ( max 1≤j≤M ω j ) 2 .

Particular case : variable selection in the Cox model

We now consider the case of variable selection in the Cox model ( 2) with f 0 (Z i ) = β T 0 Z i . In this case, M = p and the functions of the dictionary are such that for i = 1, ..., n and j = 1, ..., p

f j (Z i ) = Z i,j and f β (Z i ) = p j=1 β j Z i,j = β T Z i . Let X = (Z i,j ) 1≤i≤n 1≤j≤p
be the design matrix and for βL defined by [START_REF] Bradic | Regularization for Cox's proportional hazards model with NPdimensionality[END_REF], let

∆ 0 = D( βL -β 0 ), D = (diag(ω j )) 1≤j≤M , J 0 = J(β 0 ) and |J 0 | = Card{J 0 }.
We now state non-asymptotic inequalities for prediction on Xβ 0 and for estimation on β 0 . In this subsection, we don't need to work locally on the set Γ(µ) to obtain Proposition 6.2 and instead of considering Assumption (A 5 ), we only have to introduce the following assumption to connect the empirical Kullback divergence and the weighted empirical quadratic norm :

Let R be a positive constant, such that max i∈{1,...,n}

||Z i || 2 ≤ R. (A 6 )
We consider the Lasso estimator defined with the regularization parameter Γ 1 > 0 :

βL = arg min β∈R p {C n (λ β ) + Γ 1 p j=1 ω j |β j |},
Theorem 3.5. Consider Model [START_REF] Aalen | A model for nonparametric regression analysis of counting processes[END_REF] with known α 0 . For x > 0, let ω j be defined by [START_REF] Bartlett | l1-regularized linear regression: persistence and oracle inequalities[END_REF] and denote κ ′ = (1/ √ 2A 0 )κ 0 (s, 3). Let A ε,ν be some numerical positive constant depending on ε and ν. Under Assumptions A 3 , A 6 and RE(s, a 0 ) with a 0 = 3, for all Γ 1 such that

Γ 1 ≤ 1 48Rs min 1≤j≤M ω 2 j max 1≤j≤M ω 2 j κ ′2 max 1≤j≤M ω j ,
with a probability larger than

1 -A ε,ν e -Γ 1 x -π n , then ||X( βL -β 0 )|| 2 n,Λ ≤ 4 ξ 2 |J 0 | κ ′ 2 Γ 2 1 ( max 1≤j≤p ω j ) 2 (14) 
and

|| βL -β 0 || 1 ≤ 8 max 1≤j≤p ω j min 1≤j≤p ω j |J 0 | ξκ ′ 2 Γ 1 max 1≤j≤p ω j . ( 15 
)
This theorem gives non-asymptotic upper bounds for two types of loss functions. Inequality ( 14) gives a non-asymptotic bound on prediction loss with a rate of convergence in log M/n, while Inequality (15) states a bound on βLβ 0 .

Oracle inequalities for general intensity

In the previous section, we have assumed α 0 known and have obtained results on the relative risk. Now, we consider a general intensity λ 0 that does not rely on an underlying model. Oracle inequalities are established under different assumptions with slow and fast rates of convergence.

A slow oracle inequality

The slow oracle inequality for a general intensity is obtained under light assumptions that concern only the construction of the two dictionaries F M and G N . Theorem 4.1. For x > 0 and y > 0, let ω j and δ k be defined by ( 5) and ( βL , γL ) be defined in Estimation procedure 2.3. Let A ε,ν and B ε,ν > 0 be two positive numerical constants depending on ε, ν and ε, ν respectively and Assumptions A 3 , A 4 be satisfied. Then, with probability larger than

1 -A ε,ν e -x -B ε,ν e -y K n (λ 0 , λ βL ,γ L ) ≤ inf (β,γ)∈R M ×R N { K n (λ 0 , λ β,γ ) + 2 pen(β) + 2 pen(γ)}. ( 16 
)
We have chosen to estimate the complete intensity, which involves two different parts : the first part is the baseline function α γ : R → R and the second part is the function of the covariates f β : R p → R. The double ℓ 1 -penalization considered here is tuned to concurrently estimate the function f 0 depending on high-dimensional covariates and the non-parametric function α 0 . Examples of Lasso algorithms for the estimation of non-parametric density or intensity may be found in Bertin et al. [START_REF] Bertin | Adaptive Dantzig density estimation[END_REF] and Hansen et al. [START_REF] Hansen | Lasso and probabilistic inequalities for multivariate point processes[END_REF] respectively. As f 0 and α 0 are estimated at once, the resulting rate of convergence is the sum of the two expected rates in both situations considered separately (∼ log M/n + log N/n). Nevertheless, from Bertin et al. [START_REF] Bertin | Adaptive Dantzig density estimation[END_REF], we expect that a choice of N of order n would suitably estimate α 0 . As a consequence, in a very high-dimensional setting the leading error term in ( 16) would be of order log M/n, which again is the classical slow rate of convergence in a regression setting.

A fast oracle inequality

We are now interested in obtaining the fast non-asymptotic oracle inequality and as usual, we need to introduce further notations and assumptions. In this subsection, we shall again work locally for ρ > 0 on the set Γ M,N (ρ

) = {(β, γ) ∈ R M × R N : || log λ β,γ -log λ 0 || n,∞ ≤ ρ}, simply denoted Γ(ρ)

and we consider the following assumption :

There exists ρ > 0, such that Γ(ρ) contains a non-empty open set of

R M × R N . (A 7 )
On Γ(ρ), we define the weighted Lasso estimator as

( βρ L , γρ L ) = arg min (β,γ)∈ Γ(ρ)
{C n (λ β,γ ) + pen(β) + pen(γ)}.

Let us give the additional notations. Set ∆ be

∆ = D βL -β γL -γ ∈ R M +N with (β, γ) ∈ Γ(ρ) and D = diag(ω 1 , ..., ω M , δ 1 , ..., δ N ).
Let 1 n×N be the matrix n × N with all coefficients equal to one,

X(t) = (f j (Z i )) 1≤i≤n 1≤j≤M 1 n×N (diag(θ k (t))) 1≤k≤N =    θ 1 (t) . . . θ N (t) X . . . . . . θ 1 (t) . . . θ N (t)    ∈ R n×(M +N )
and Gn = 1

n τ 0 X(t) T C(t) X(t)dt with C(t) = (diag(λ 0 (t, Z i )Y i (t))) 1≤i≤n , ∀t ≥ 0.
Let also J(β) and J(γ) be the sparsity sets of vectors (β, γ) ∈ Γ(ρ) respectively defined by

J(β) = {j ∈ {1, ..., M } : β j = 0} and J(γ) = {k ∈ {1, ..., N } : γ k = 0},
and the sparsity indexes are then given by

|J(β)| = M j=1 1 {β j =0} = Card{J(β)} and |J(γ)| = N k=1 1 {γ k =0} = Card{J(γ)}.
To obtain the fast non-asymptotic oracle inequality, we consider the Restricted Eigenvalue condition applied to the matrix E( Gn ).

For some integer s ∈ {1, ..., M + N } and a constant r 0 > 0, we assume that Gn satisfies :

0 < κ0 (s, r 0 ) = min J⊂{1,...,M +N }, |J|≤s min b∈R M +N \{0}, ||b J c || 1 ≤r 0 ||b J || 1 (b T E( Gn )b) 1/2 ||b J || 2 . ( RE(s, r 0 ))
The condition on the matrix E( Gn ) is rather strong because the block matrix involves both functions of the covariates of F M and functions of time which belong to G N . This is the price to pay for an oracle inequality on the full intensity. If we had instead considered two restricted eigenvalue assumptions on each block, we would have established an oracle inequality on the sum of the two unknown parameters α 0 and f 0 and not on λ 0 . As in Lemma 3.2, we can show that under Assumption RE(s, r 0 ), we have an empirical Restricted Eigenvalue condition on the matrix Gn . Lemma 4.2. Let L defined as in Lemma 3.2. Under Assumptions A 2 and RE(s, r 0 ), we have

0 < κ = min J⊂{1,...,M }, |J|≤s min b∈R M \{0}, ||b J c || 1 ≤r 0 ||b J || 1 (b T Gn b) 1/2 ||b J || 2 and κ = (1/ 2A 0 )κ 0 (s, r 0 ), (17) 
with probability larger than 1 -πn , where

πn = 2M 2 exp - nκ 4 2L 2 (1 + r 0 ) 2 s(L 2 (1 + r 0 ) 2 s + κ2 /3) .
Theorem 4.3. For x > 0 and y > 0, let ω j and δ k be defined by [START_REF] Bartlett | l1-regularized linear regression: persistence and oracle inequalities[END_REF]. Let A ε,ν > 0 and B ε,ν > 0 be two numerical positive constants depending on ε, ν and ε, ν respectively, ζ > 0 and s ∈ {1, ..., M + N } be fixed. Let Assumptions A 3 , A 4 , A 7 and RE(s, r 0 ) be satisfied with

r 0 = 3 + 8 max |J(β)|, |J(γ)| /ζ ,
and let κ = (1/ √ 2A 0 )κ 0 (s, r 0 ). Then, with probability larger than 1 -A ε,ν e -x -B ε,ν e -yπn

K n (λ 0 , λ βρ L ,γ ρ L ) ≤ (1 + ζ) inf (β,γ)∈ Γ(ρ) max(|J(β)|,|J(γ)|)≤s K n (λ 0 , λ β,γ ) + C(ζ, ρ) max(|J(β)|, |J(γ)|) κ2 max 1≤j≤M 1≤k≤N {ω 2 j , δ 2 k } , ( 18 
)
and

|| logλ 0 -log λ βρ L ,γ ρ L || 2 n,Λ ≤ (1 + ζ) inf (β,γ)∈ Γ(ρ) max(|J(β)|,|J(γ)|)≤s || log λ 0 -log λ β,γ || 2 n,Λ + C ′ (ζ, ρ) max(|J(β)|, |J(γ)|) κ2 max 1≤j≤M 1≤k≤N {ω 2 j , δ 2 k } , ( 19 
)
where C(ζ, ρ) > 0 and C ′ (ζ, ρ) > 0 are constants depending only on ζ and ρ.

We obtain a non-asymptotic fast oracle inequality in prediction. Indeed, the rate of convergence of this oracle inequality is of order

max 1≤j≤M 1≤k≤N {ω j , δ k } 2 ≈ max log M n , log N n ,
namely, if we choose G N of size n, the rate of convergence of this oracle inequality is then of order log M/n (see Subsection 4.1 for more details). While Estimation procedure 2.3 allows to derive a prediction for the survival time through the conditional intensity, Theorem 4.3 measures the accuracy of this prediction. In that sense, the clinical problem of establishing a prognosis has been addressed at this point. To our best knowledge, this oracle inequality is the first non-asymptotic oracle inequality in prediction for the whole intensity with a fast rate of convergence of order log M/n. For the part depending on the covariates, recent results establish non-asymptotic oracle inequalities for the Lasso estimator of f 0 in the usual Cox model (see Bradic and Song [START_REF] Bradic | Gaussian oracle inequalities for structured selection in non-parametric cox model[END_REF] and Kong and Nan [START_REF] Kong | Non-asymptotic oracle inequalities for the high-dimensional Cox regression via Lasso[END_REF]). We cannot compare our results to theirs, since we estimate the whole intensity with the total empirical log-likelihood whereas both of them consider the partial log-likelihood.

The remaining part of the paper is devoted to the technical results and proofs

An empirical Bernstein's inequality

The main ingredient of Theorems 3.1, 3.3, 4.1 and 4.3 are Bernstein's concentration inequalities that we present in this section. To clarify the relation between the stated oracle inequalities and the Bernstein's inequality, we sketch here the proof of Theorem 4.1. Using the Doob-Meyer decomposition

N i = M i + Λ i , we can easily show that for all β ∈ R M and for all γ ∈ R N C n (λ βL ,γ L ) -C n (λ β,γ ) = K n (λ 0 , λ βL ,γ L ) -K n (λ 0 , λ β,γ ) + (γ L -γ) T ν n,τ + ( βL -β) T η n,τ , (20) 
where

η n,τ = 1 n n i=1 τ 0 f (Z i )dM i (t) andÊν n,τ = 1 n n i=1 τ 0 θ(t)dM i (t), (21) 
with f = (f 1 , ..., f M ) T and θ = (θ 1 , ..., θ N ) T . By definition of the Lasso estimator, we have for all (β, γ) in

R M × R N C n (λ βL ,γ L ) + pen( βL ) + pen(γ L ) ≤ C n (λ β,γ ) + pen(β) + pen(γ),
and we finally obtain

K n (λ 0 , λ βL ,γ L ) ≤ K n (λ 0 , λ β,γ ) + (γ L -γ) T ν n,τ + ( βL -β) T η n,τ + pen(β) -pen( βL ) + pen(γ) -pen(γ L ).
Consequently, K n (λ 0 , λ βL ,γ L ) is bounded by

K n (λ 0 , λ β,γ ) + M j=1 ( βL,j -β j )η n,τ (f j ) + M j=1 ω j (|β j | -| βL,j |) + N k=1 (γ L,k -γ k ) T ν n,τ (θ k ) + N k=1 δ k (|γ k | -|γ L,k |), with η n,t (f j ) = 1 n n i=1 t 0 f j (Z i )dM i (s) and ν n,t (θ k ) = 1 n n i=1 t 0 θ k (s)dM i (s).
We will control η n,t (f j ) and ν n,t (θ k ) respectively by ω j and δ k . More precisely, the weights ω j (respectively δ k ) will be chosen such that |η n,t (f j )| ≤ ω j (respectively |ν n,t (θ k )| ≤ δ k ) and P(|η n,t (f j )| > ω j ) (respectively P(|ν n,t (θ k )| > δ k ) large. As η n,t (f j ) and ν n,t (θ k ) involve martingales, we could directly apply classical Bernstein's inequalities for martingales with x > 0 and y > 0

P η n,t (f j ) ≥ 2V n,t (f j )x n + x 3n ≤ e -x and P ν n,t (θ k ) ≥ 2R n,t (θ k )y n + y 3n ≤ e -y ,
where the predictable variations V n,t (f j ) and R n,t (θ k ) of η n,t (f j ) and ν n,t (θ k ) are respectively defined by

V n,t (f j ) = n < η n (f j ) > t = 1 n n i=1 t 0 (f j (Z i )) 2 λ 0 (t, Z i )Y i (s)ds, R n,t (θ k ) = n < ν n (θ k ) > t = 1 n n i=1 t 0 (θ k (t)) 2 λ 0 (t, Z i )Y i (s)ds,
see e.g. van de Geer [START_REF] Van De Geer | Exponential inequalities for martingales, with application to maximum likelihood estimation for counting processes[END_REF]. Applying these inequalities, the weights of Algorithm 2.3 would have the forms ω j = 2V n,t (f j )x/n + x/3n and δ k = 2R n,t (θ k )y/n + y/3n. As V n,t (f j ) and R n,t (θ k ) both depend on λ 0 , this would not result a statistical procedure. We propose to replace in the Bernstein's inequality the predictable variations by the optional variations of the processes η n,t (f j ) and ν n,t (θ k ) defined by

Vn,t (f j ) = n[η n (f j )] t = 1 n n i=1 t 0 (f j (Z i )) 2 dN i (s) and Rn,t (θ k ) = n[ν n (θ k )] t = 1 n n i=1 t 0 (θ k (t)) 2 dN i (s).
This ensures that the weights ω j and δ k will depends on Vn,t (f j ) and Rn,t (θ k ) respectively. Equivalent strategies in different models have been considered in Gaïffas and Guilloux [START_REF] Gaïffas | High-dimensional additive hazard models and the Lasso[END_REF] or Hansen et al. [START_REF] Hansen | Lasso and probabilistic inequalities for multivariate point processes[END_REF]. The following theorem states the resulting Bernstein's inequalities.

Theorem 5.1. Let Assumption A 2 be satisfied. For any numerical constant ε > 0, ε > 0, c = 2(1 + ε) and c = 2(1 + ε), the following holds for any x > 0, y > 0 :

P |η n,t (f j )| ≥ c Ŵ ν n (f j )x n + x 3n ||f j || n,∞ ≤ 2 log(1 + ε) log 2 + A 0 (ν/n + Φ(ν/n)) x/n + 1 e -x , (22) 
P |ν n,t (θ k )| ≥ c T ν n (θ k )y n + y 3n ||θ k || ∞ ≤ 2 log(1 + ε) log 2 + A 0 (ν/n + Φ(ν/n)) y/n + 1 e -y , ( 23 
)
where

W ν n (f j ) = ν/n ν/n -Φ(ν/n) Vn (f j ) + x/n ν/n -Φ(ν/n) ||f j || 2 n,∞ , ( 24 
)
T ν n (θ k ) = ν/n ν/n -Φ(ν/n) Rn (θ k ) + y/n ν/n -Φ(ν/n) ||θ k || 2 ∞ , ( 25 
)
for real numbers (ν, ν) ∈ (0, 3) 2 such that ν > Φ(ν) and ν > Φ(ν), where Φ(u) = exp(u) -u -1.

We deduce the weights ω j and δ k defined in (5), from Theorem 5.1. These empirical Bernstein's inequalities hold true for martingales with jumps, when the predictable variation is not observable. Remark 5.2. Theorem 5.1 is closed to Theorem 3 in Hansen et al. [START_REF] Hansen | Lasso and probabilistic inequalities for multivariate point processes[END_REF], although in our version the event bounding Ŵ ν n (f j ) and T ν n (θ k ) has been removed from the probability (see the proof of Theorem 5.1). Other weights can also be obtained from empirical Bernstein's inequalities that are closer to those obtained by Gaïffas and Guilloux [START_REF] Gaïffas | High-dimensional additive hazard models and the Lasso[END_REF] in Theorem 3. We refer to an other version of the paper (see [START_REF] Lemler | Oracle inequalities for the lasso in the high-dimensional multiplicative Aalen intensity model[END_REF]), in which these weights appear. Their forms are less simple than those defined in ( 5), but they do not depend on tuning parameters ν and ν to determine for the applications. An interesting perspective would be to determine which one of those two forms of weights gives the best results in the applications.

Proofs

Proof of Proposition 2.1

Following the proof of Theorem 1 in Senoussi [START_REF] Senoussi | Problème d'identification dans le modèle de Cox[END_REF], we rewrite the empirical Kullback divergence (3) as

K n (λ 0 , λ) = 1 n n i=1 τ 0 log λ 0 (t, Z i ) -log λ(t, Z i ) -1 - λ(t, Z i ) λ 0 (t, Z i ) λ 0 (t, Z i )Y i (t)dt = 1 n n i=1 τ 0 exp log λ(t, Z i ) λ 0 (t, Z i ) -log λ(t, Z i ) λ 0 (t, Z i ) -1 λ 0 (t, Z i )Y i (t)dt.
Since the map t → e t -t -1 is a positive function on R, we deduce that except for λ = λ 0 ,

exp log λ(t, Z i ) λ 0 (t, Z i ) -log λ(t, Z i ) λ 0 (t, Z i ) -1 > 0.
Thus K n (λ 0 , λ) is positive and vanishes only if (log λ 0 -log λ)(t, Z i ) = 0 almost surely, namely if λ 0 = λ almost surely.

Proof of Proposition 3.1

According to the definition (10) of βL , for all β in R M , we have

C n (λ βL ) + pen( βL ) ≤ C n (λ β ) + pen(β).
Here α 0 is assumed to be known. Hence applying [START_REF] Gourlay | Bone-density testing interval and transition to osteoporosis in older women[END_REF], we obtain

K n (λ 0 , λ βL ) ≤ K n (λ 0 , λ β ) + ( βL -β) T η n,τ + pen(β) -pen( βL ). ( 26 
)
It remains to control the term ( βLβ) T η n,τ . For ω j defined in [START_REF] Bartlett | l1-regularized linear regression: persistence and oracle inequalities[END_REF], set

A = M j=1 |η n,τ (f j )| ≤ ω j 2 .
On A, we have

|( βL -β) T η n,τ | ≤ M j=1 ω j 2 |( βL -β) j | ≤ M j=1 ω j |( βL -β) j |.
The result ( 9) follows since pen(β) = M j=1 ω j |β j |. It remains to bound up P(A c ). By applying Theorem 5.1

P(A c ) ≤ M j=1 P |η n,τ (f j )| > ω j 2 ≤ A ε,ν e -x , with A ε,ν = 2 log(1 + ε) log 2 + A 0 (ν/n + Φ(ν/n)) x/n + 1.
We conclude that P(A) ≥ 1 -A ε,ν e -x , which ends up the proof of Theorem 3.1.

Proof of Lemma 3.2

We show with high probability, that under RE(s, a 0 ), for all J ⊂ {1, ..., M } such that |J| ≤ s and for all

b ∈ R M \{0} such that ||b J c || 1 ≤ a 0 ||b J || 1 , b T G n b ||b J || 2 2
> κ 2 , with κ = (1/ 2A 0 )κ 0 (s, a 0 ) and A 0 defined in Assumption A 2 .

Let consider the set Ω

Gn = {|(G n -E(G n )) j,k | ≤ t, ∀(j, k) ∈ {1, ..., M } 2 }. Under RE(s, a 0 ), on Ω Gn , for all J ⊂ {1, ..., M } such that |J| ≤ s and for all b ∈ R M \{0} such that ||b J c || 1 ≤ a 0 ||b J || 1 , we have b T G n b = b T (G n -E(G n ))b + b T E(G n )b ≥ b T (G n -E(G n ))b + κ 0 2 ||b J || 2 2 . Since b T (G n -E(G n ))b = n j=1 n k=1 (G n -E(G n )) j,k b j b k , on Ω Gn , under RE(s, a 0 ) we deduce that b T G n b ≥ - i,j t|b i ||b j | + κ 0 2 ||b J || 2 2 .
Since

||b|| 2 ≤ ||b|| 1 ≤ (1 + a 0 )||b J || 1 ≤ (1 + a 0 ) √ s||b J || 2 , we finally obtain b T G n b ≥ (-t(1 + a 0 ) 2 s + κ 2 0 )||b J || 2 2 . We choose t = A 0 κ 2 /(1 + a 0 ) 2 s with κ = κ 0 / √ 2A 0 to get b T G n b ≥ κ 0 2 ||b J || 2 2 .
It remains to calculate P(Ω Gn ). The coefficient (j, k) of the matrix

G n -E(G n ) is given by 1 n n i=1 (Λ i -E(Λ i ))f j (Z i )f k (Z i ).
For sake of simplicity, we put

ζ j,k i = Λ i f j (Z i )f k (Z i ) for i = 1, .
.., n and (j, k) ∈ {1, ..., M } 2 fixed. To apply a standard Bernstein's inequality to the independent random variables ζ j,k 1 , ..., ζ j,k n , (j, k) ∈ {1, ..., M } 2 we have to verify that (1/n) n i=1 E|ζ j,k i | m ≤ m!vc m-2 for some positive constants v and c and for all integers m ≥ 2 (see Proposition 2.9 in Massart [START_REF] Massart | Concentration inequalities and model selection[END_REF]). Under Assumptions A 2 and A 3 the variables ζ j,k i are bounded, |ζ j,k i | ≤ A 0 L 2 for all i = 1, ..., n and (j, k) ∈ {1, ..., M } 2 , so that the previous assumption is satisfied with

v = n i=1 E[ζ j,k i ] ≤ A 2 0 L 4 and c = A 0 L 2 and the Bernstein's inequality applied to (ζ j,k i ) i=1,...,n is P n i=1 (ζ j,k i -E[ζ j,k i ]) > x ≤ exp - x 2 2(v + cx) . ( 27 
)
From ( 27), we get

P |(G n -E(G n )) i,j | > A 0 κ 2 (1 + a 0 ) 2 s ≤ 2 exp - nκ 4 2(1 + a 0 ) 2 sL 2 (L 2 (1 + a 0 ) 2 s + κ 2 /3)
.

So the probability of Ω c

Gn is given by

P(Ω c Gn ) = P ∃(j, k) ∈ {1, ..., M } 2 : |(G n -E(G n )) j,k | > A 0 κ 2 (1 + a 0 ) 2 s ≤ M j=1 M k=1 P |(G n -E(G n )) j,k | > A 0 κ 2 (1 + a 0 ) 2 s ≤ 2M 2 exp - nκ 4 2(1 + a 0 ) 2 sL 2 (L 2 (1 + a 0 ) 2 s + κ 2 /3) ,
and by denoting

π n = 2M 2 exp - nκ 4 2(1 + a 0 ) 2 sL 2 (L 2 (1 + a 0 ) 2 s + κ 2 /3) ,
we finally get [START_REF] Bunea | Aggregation and sparsity via l1 penalized least squares[END_REF] with probability larger than 1 -π n .

Proof of Theorem 3.3

Let introduce the event

Ω RE n (s,a 0 ) (κ) = 0 < κ = min J⊂{1,...,M }, |J|≤s min b∈R M \{0}, ||b J c || 1 ≤a 0 ||b J || 1 (b T G n b) 1/2 ||b J || 2
. We start from Inequality [START_REF] Lemler | Oracle inequalities for the lasso in the high-dimensional multiplicative Aalen intensity model[END_REF] and the fact that on A, for β ∈ Γ(µ),

|( βµ L -β) T η n,τ | ≤ M j=1 ω j 2 |( βµ L -β) j |.
It follows that

K n (λ 0 , λ βµ L ) + M j=1 ω j 2 |( βµ L -β) j | ≤ K n (λ 0 , λ β ) + M j=1 ω j (|( βµ L -β) j | + |β j | -|( βµ L ) j |). On J(β) c , |( βµ L -β) j | + |β j | -|( βµ L ) j | = 0, so on A we obtain K n (λ 0 , λ βµ L ) + M j=1 ω j 2 |( βµ L -β) j | ≤ K n (λ 0 , λ β ) + 2 j∈J(β) ω j |( βµ L -β) j |. ( 28 
)
We apply Cauchy-Schwarz Inequality to the second right hand side of (28) to get

K n (λ 0 , λ βµ L ) + M j=1 ω j 2 |( βµ L -β) j | ≤ K n (λ 0 , λ β ) + 2 |J(β)| j∈J(β) ω 2 j | βµ L -β| 2 j . ( 29 
)
With the notations ∆ = D( βµ L -β) and D = (diag(ω j )) 1≤j≤M introduced in Subsection 3.2 , Inequalities ( 28) and ( 29) become

K n (λ 0 , λ βµ L ) + 1 2 ||∆|| 1 ≤ K n (λ 0 , λ β ) + 2||∆ J(β) || 1 , (30) 
and

K n (λ 0 , λ βµ L ) ≤ K n (λ 0 , λ β ) + 2 |J(β)|||∆ J(β) || 2 . ( 31 
)
Consider,

A 1 = {ζ K n (λ 0 , λ β ) ≤ 2||∆ J(β) || 1 }. (32) 
On A A c 1 , the result of the theorem follows immediately from [START_REF] Massart | The Lasso as an l1-ball model selection procedure[END_REF]. As soon as, || 1 , and we will verify later that this inequality holds. Since,

||∆ J(β) c || 1 ≤ (3 + 4/ζ) ||∆ J(β) || 1 , on Ω RE n (s,a 0 ) (κ), with a 0 = (3 + 4/ζ) and κ = (1/ √ 2A 0 )κ 0 (s, a 0 ) we get κ 2 ||∆ J(β) || 2 2 ≤ ∆ T G n ∆. So, initially we will assume that ||∆ J(β) c || 1 ≤ (3 + 4/ζ) ||∆ J(β)
∆ T G n ∆ = 1 n n i=1 M j=1 ω j ( βµ L,j -β j )f j (Z i ) 2 Λ i (τ ) ≤ ( max 1≤j≤M ω j ) 2 1 n n i=1 τ 0 log(α 0 (t)e f βµ L (Z i ) ) -log(α 0 (t)e f β (Z i ) ) 2 dΛ i (t) ≤ ( max 1≤j≤M ω j ) 2 || log λ βµ L -log λ β || 2 n,Λ , on Ω RE n (s,a 0 ) (κ), Inequality (31) becomes on A ∩ Ω RE n (s,a 0 ) (κ) K n (λ 0 , λ βµ L ) ≤ K n (λ 0 , λ β ) + 2 |J(β)|( max 1≤j≤M ω j )κ -1 || log λ βµ L -log λ β || n,Λ ≤ K n (λ 0 , λ β ) + 2 |J(β)|( max 1≤j≤M ω j )κ -1 (|| log λ βµ L -log λ 0 || n,Λ + || log λ 0 -log λ β || n,Λ ).
The following proposition (proof in Annexe A) connects the weighted empirical norm and the empirical Kullback divergence. Proposition 6.1. Under Assumption A 5 , for all β ∈ Γ(µ),

µ ′ || log λ β -log λ 0 || 2 n,Λ ≤ K n (λ 0 , λ β ) ≤ µ ′′ || log λ β -log λ 0 || 2 n,Λ , where µ ′ = φ(µ)/µ 2 , µ ′′ = φ(-µ)/µ 2 and φ(t) = e -t + t -1.
Now, applying Proposition 6.1, it follows that

K n (λ 0 , λ βµ L ) ≤ K n (λ 0 , λ β ) + 2 |J(β)|( max 1≤j≤M ω j ) κ -1 √ µ ′ K n (λ 0 , λ βµ L ) + K n (λ 0 , λ β ) .
We now use the elementary inequality 2uv

≤ bu 2 + v 2 b with b > 1, u = |J(β)|( max 1≤j≤M ω j )κ -1 and v being either 1 µ ′ K n (λ 0 , λ βµ L ) or 1 µ ′ K n (λ 0 , λ β ). Consequently K n (λ 0 , λ βµ L ) ≤ K n (λ 0 , λ β ) + 2b|J(β)|( max 1≤j≤M ω j ) 2 κ -2 + 1 bµ ′ K n (λ 0 , λ βµ L ) + 1 bµ ′ K n (λ 0 , λ β ). Hence, 1 - 1 µ ′ b K n (λ 0 , λ βµ L ) ≤ 1 + 1 bµ ′ K n (λ 0 , λ β ) + 2b|J(β)|( max 1≤j≤M ω j ) 2 κ -2 ,
and

K n (λ 0 , λ βµ L ) ≤ bµ ′ + 1 bµ ′ -1 K n (λ 0 , λ β ) + 2 b 2 µ ′ bµ ′ -1 |J(β)|( max 1≤j≤M ω j ) 2 κ -2 .
We take

bµ ′ + 1 bµ ′ -1 = 1 + ζ and C(ζ, µ) = 2 b 2 µ ′ bµ ′ + 1
a constant depending on ζ and µ. It follows that for any

β ∈ Γ(µ) : K n (λ 0 , λ βµ L ) ≤ (1 + ζ) K n (λ 0 , λ β ) + C(ζ, µ)|J(β)|( max 1≤j≤M ω j ) 2 κ -2 .
Finally, taking the infimum over all β ∈ Γ(µ) such that |J(β)| ≤ s, we obtain [START_REF] Bunea | Spades and mixture models[END_REF].

We have now to verify that [START_REF] Massart | The Lasso as an l1-ball model selection procedure[END_REF] we get that

||∆ J(β) c || 1 ≤ (3 + 4/ζ) ||∆ J(β) || 1 . On A A 1 , applying
||∆|| 1 ≤ 4 1 + 1 ζ ||∆ J(β) || 1 ,
so by splitting ∆ = ∆ J(β) + ∆ J(β) c , we finally obtain

||∆ J(β) c || 1 ≤ 3 + 4 ζ ||∆ J(β) || 1 .
Finally, Lemma 3.2 ensures that P(A c ∪ Ω c RE n (s,a 0 ) (κ)) ≤ A ε,ν e -x + π n , which achieves the proof of Theorem 3.3. 

Proof of Corollary 3.4

= µ ′ (1 + ζ) + µ ′′ µ ′ (1 + ζ) -µ ′′ .

Proof of Theorem 3.5

To prove Inequality ( 14) of Theorem 3.5, we start from [START_REF] Martinussen | Covariate selection for the semiparametric additive risk model[END_REF] with β = β 0 and βL defined by [START_REF] Bradic | Regularization for Cox's proportional hazards model with NPdimensionality[END_REF]. Consequently K n (λ 0 , λ β ) = 0. Here we give the proposition that gives the relation between the empirical Kullback divergence and the empirical norm, in the case of variable selection. Proposition 6.2. Under Assumption (A 6 ), there exist two positive numerical constants ξ and ξ ′ such that

ξ||( βL -β 0 ) T X|| 2 n,Λ ≤ K n (λ 0 , λ βL ) ≤ ξ ′ ||( βL -β 0 ) T X|| 2 n,Λ .
The proof of Proposition (6.2) is given in Annexe B. Applying Proposition 6.2 with λ 0 (t,

Z i ) = α 0 (t)e β T 0 Z i and λ βL (t, Z i ) = α 0 (t)e βT L Z i , we obtain that, on A = p j=1 |η n,τ (f j )| ≤ Γ 1 ω j 2 ξ||( βL -β 0 ) T X|| 2 n,Λ + Γ 1 p j=1 ω j 2 | βL -β 0 | j ≤ 2Γ 1 j∈J 0 ω j | βL -β 0 | j . ( 33 
)
From this inequality, we deduce

ξ||X( βL -β 0 )|| 2 n,Λ ≤ 2Γ 1 j∈J 0 ω j | βL -β 0 | j ≤ 2 |J 0 |Γ 1 ||∆ 0,J 0 || 2 . ( 34 
)
From ( 33), we also have

p j=1 ω j | βL -β 0 | j ≤ 4 j∈J 0 ω j | βL -β 0 | j and we obtain ||∆ 0 || 1 ≤ 4||∆ 0J 0 || 1 . We then split ||∆ 0 || 1 = ||∆ 0J 0 || 1 + ||∆ 0J c 0 || 1 to get ||∆ 0J c 0 || 1 ≤ 3||∆ 0J 0 || 1 . ( 35 
)
On Ω RE n (s,a 0 ) (κ ′ ), with a 0 = 3 and κ ′ = (1/ √ 2A 0 )κ 0 (s, 3) we get

||X∆ 0 || 2 n,Λ ≥ κ ′ 2 ||∆ 0,J 0 || 2 2 . ( 36 
)
According to [START_REF] Stone | The use of polynomial splines and their tensor products in multivariate function estimation[END_REF], we conclude that on

A ∩ Ω RE n (s,a 0 ) (κ ′ ) ξ||X( βL -β 0 )|| 2 n,Λ ≤ 2 |J 0 |Γ 1 max 1≤j≤p ω j ||X( βL -β 0 )|| n,Λ κ ′ , which entails that ||X( βL -β 0 )|| 2 n,Λ ≤ 4|J 0 | ξ 2 κ ′ 2 Γ 2 1 ( max 1≤j≤p ω j ) 2 , with P(A ∩ Ω RE n (s,a 0 ) (κ ′ )) ≥ 1 -A ε,ν e -Γ 1 x -π n .
Let us come to the proof of Inequality (15) in Theorem 3.5. On A ∩ Ω RE n (s,a 0 ) (κ ′ ), with a 0 = 3, Inequality [START_REF] Stone | The use of polynomial splines and their tensor products in multivariate function estimation[END_REF] becomes

ξ κ ′ 2 max 1≤j≤M ω 2 j ||∆ 0,J 0 || 2 2 ≤ 2 |J 0 |Γ 1 ||∆ 0,J 0 || 2 ,
and hence

||∆ 0,J 0 || 2 ≤ 2 |J 0 | ξκ ′ 2 Γ 1 max 1≤j≤p ω 2 j . ( 37 
)
According to [START_REF] Tibshirani | Regression shrinkage and selection via the Lasso[END_REF] and thanks to Cauchy-Schwarz Inequality, we have

||∆ 0 || 1 = ||∆ 0J 0 || 1 + ||∆ 0J c 0 || 1 ≤ 4||∆ 0J 0 || 1 ≤ 4 |J 0 |||∆ 0J 0 || 2 . From (37), we get ||∆ 0 || 1 4 |J 0 | ≤ 2 |J 0 | ξκ ′ 2 Γ 1 max 1≤j≤p ω 2 j ,
and finally

|| βL -β 0 || 1 ≤ 8 |J 0 | ξκ ′ 2 Γ 1 max 1≤j≤p ω 2 j min 1≤j≤p ω j , with P(A ∩ Ω RE n (s,a 0 ) (κ ′ )) ≥ 1 -A ε,ν e -Γ 1 x -π n .

Proof of Theorem 4.1

The proof is very similar to the one of Theorem 3.1. We start from ( 20) and ( 21), and write

K n (λ 0 , λ βL ,γ L ) ≤ K n (λ 0 , λ β,γ ) + (γ L -γ) T ν n,τ + pen(γ) -pen(γ L ) + ( βL -β) T η n,τ + pen(β) -pen( βL ). (38) 
Set A and B such that

A = M j=1 |η n,τ (f j )| ≤ ω j 2 and B = N k=1 |ν n,τ (θ k )| ≤ δ k 2 . ( 39 
)
We apply Theorem 5.1 to bound up P(A c ) and P(B c ) and obtain that P(A c ) ≤ c 3,ε,c ℓ e -x and P(B c ) ≤ c3,ε,c ′ ℓ e -y . Hence for A ε,ν = c 3,ε,c ℓ and B ε,ν = c3,ε,c ′ ℓ , we have

P[(A ∩ B) c ] = P(A c ∪ B c ) ≤ P(A c ) + P(B c ) ≤ A ε,ν e -x + B ε,ν e -y , (40) 
with

A ε,ν = 2 log(1 + ε) log 2 + A 0 (ν/n + Φ(ν/n)) x/n + 1 and B ε,ν = 2 log(1 + ε) log 2 + A 0 (ν/n + Φ(ν/n)) y/n + 1
On A ∩ B arguing as in the proof of Theorem 3.1, with probability larger than 1 -A ε,ν e -x -B ε,ν e -y , we finish the proof by writing (16).

Proof of Theorem 4.3

Let introduce the event Ω RE n (s,r 0 ) (κ) = 0 < κ = min J⊂{1,...,M }, |J|≤s

min b∈R M \{0}, ||b J c || 1 ≤r 0 ||b J || 1 (b T Gn b) 1/2
||b J || 2 . We start from Inequality [START_REF] Van De Geer | High-dimensional generalized linear models and the lasso[END_REF]. On A ∩ B defined in [START_REF] Zhang | The sparsity and bias of the Lasso selection in high-dimensional linear regression[END_REF], for (β, γ) ∈ Γ(ρ),

|( βL -β) T η n,τ | ≤ M j=1 ω j 2 |( βL -β) j | and |(γ L -γ) T ν n,τ | ≤ N k=1 δ k 2 |(γ L -γ) k |,
and therefore

K n (λ 0 , λ βρ L ,γ ρ L ) + M j=1 ω j 2 |( βρ L -β) j | + N k=1 δ k 2 |(γ ρ L -γ) k | ≤ K n (λ 0 , λ β,γ ) + 2 j∈J(β) ω j |( βρ L -β) j | + 2 k∈J(γ) δ k |(γ ρ L -γ) k |. (41) 
We then apply Cauchy-Schwarz inequality to the second right-term of ( 41) and obtain

K n (λ 0 , λ βρ L ,γ ρ L ) + M j=1 ω j 2 |( βρ L -β) j | + N k=1 δ k 2 |(γ ρ L -γ) k | ≤ K n (λ 0 , λ β,γ ) + 2 |J(β)| j∈J(β) ω 2 j | βρ L -β| 2 j + 2 |J(γ)| k∈J(γ) δ 2 k |γ ρ L -γ| 2 k . ( 42 
)
With the notation of Subsection 4.2, Inequality ( 41) is rewritten as :

K n (λ 0 , λ βρ L ,γ ρ L ) + 1 2 || ∆|| 1 ≤ K n (λ 0 , λ β,γ ) + 2|| ∆J(β),J(γ) || 1 , ( 43 
)
where ∆J(β),J(γ) = D ( βρ

L -β) J(β) (γ ρ L -γ) J(γ)
. In the same way, Inequality (42) becomes :

K n (λ 0 , λ βρ L ,γ ρ L ) ≤ K n (λ 0 , λ β,γ ) + 4 max |J(β)|, |J(γ)| || ∆J(β),J(γ) || 2 . ( 44 
) Consider A 1 = ζ K n (λ 0 , λ β,γ ) ≤ 2|| ∆J(β),J(γ) || 1 . ( 45 
)
On A ∩ B ∩ A 1 , Inequality [START_REF] Gaïffas | High-dimensional additive hazard models and the Lasso[END_REF] in Theorem 4. On A ∩ B ∩ Ω RE n (s,r 0 ) (κ), Equation [START_REF] Zou | The adaptive lasso and its oracle properties[END_REF] becomes

K n (λ 0 , λ βρ L ,γ ρ L ) ≤ K n (λ 0 , λ β,γ ) + 4 max |J(β)|, |J(γ)| || ∆J(β),J(γ) || 2 ≤ K n (λ 0 , λ β ) + 4 max |J(β)|, |J(γ)| max 1≤j≤M 1≤k≤N {ω j , δ k }κ -1 || log λ βρ L ,γ ρ L -log λ β,γ || n,Λ . Using that || log λ βρ L ,γ ρ L -log λ β,γ || n,Λ ≤ || log λ βρ L ,γ ρ L -log λ 0 || n,Λ + || log λ 0 -log λ β,γ || n,Λ , we obtain that K n (λ 0 , λ βρ L ,γ ρ L
) is less than

K n (λ 0 , λ β,γ )+4 max |J(β)|, |J(γ)| max 1≤j≤M 1≤k≤N {ω j , δ k }κ -1 (|| log λ βρ L ,γ ρ L -log λ 0 || n,Λ +|| log λ 0 -log λ β,γ || n,Λ ).
This inequality involves both oracle inequalities in empirical Kullback divergence and in weighted empirical norm.

In the same way that Proposition 6.1, we obtain a Proposition that connect the empirical Kullback divergence and the weighted empirical norm. Proposition 6.3. Under Assumption A 7 , for all (β, γ) ∈ Γ(ρ),

ρ ′ || log λ β,γ -log λ 0 || 2 n,Λ ≤ K n (λ 0 , λ β,γ ) ≤ ρ ′′ || log λ β,γ -log λ 0 || 2 n,Λ ,
where ρ ′ = φ(ρ)/ρ 2 , ρ ′′ = φ(-ρ)/ρ 2 and φ(t) = e -t + t -1.

Applying Proposition 6.3, we obtain that K n (λ 0 , λ βρ

L ,γ ρ L
) is less than

K n (λ 0 , λ β,γ ) + 4 max |J(β)|, |J(γ)| max 1≤j≤M 1≤k≤N {ω j , δ k } κ-1 √ ρ ′ K n (λ 0 , λ βρ L ,γ ρ L ) + K n (λ 0 , λ β,γ ) . Using again 2uv ≤ bu 2 + v 2 b with b > 1, u = 2 max |J(β)|, |J(γ)| max 1≤j≤M 1≤k≤N
{ω j , δ k }κ -1 and v being either

1 ρ ′ K n (λ 0 , λ βρ L ,γ ρ L ) or 1 ρ ′ K n (λ 0 , λ β,γ ), we obtain K n (λ 0 , λ βρ L ,γ ρ L ) ≤ K n (λ 0 , λ β,γ ) + 8b max(|J(β)|, |J(γ)|) max 1≤j≤M 1≤k≤N {ω j , δ k } 2 κ-2 + 1 bρ ′ K n (λ 0 , λ βρ L ,γ ρ L ) + 1 bρ ′ K n (λ 0 , λ β,γ ).
Hence,

1 - 1 bρ ′ K n (λ 0 , λ βρ L ,γ ρ L ) ≤ 1 + 1 bρ ′ K n (λ 0 , λ β,γ ) + 8b max(|J(β)|, |J(γ)|) max 1≤j≤M 1≤k≤N {ω j , δ k } 2 κ-2 ,
and

K n (λ 0 , λ βρ L ,γ ρ L ) ≤ bρ ′ + 1 bρ ′ -1 K n (λ 0 , λ β,γ ) + 8 b 2 ρ ′ bρ ′ -1 max(|J(β)|, |J(γ)|) max 1≤j≤M 1≤k≤N {ω j , δ k } 2 κ-2 ρ ′ . ( 46 
)
We take bρ

′ + 1 bρ ′ -1 = 1 + ζ and we introduce C(ζ, ρ) = 8 b 2 ρ ′ bρ ′ + 1
a constant depending on ζ and ρ. For all (β, γ) in Γ(ρ), we obtain

K n (λ 0 , λ βρ L ,γ ρ L ) ≤ (1 + ζ) K n (λ 0 , λ β,γ ) + C(ζ, ρ) max(|J(β)|, |J(γ)|) max 1≤j≤M 1≤k≤N {ω j , δ k } 2 κ-2 .
Finally, taking the infimum over all (β, γ) ∈ Γ(ρ) such that max(|J(β)|, |J(γ)|) ≤ s, we obtain Inequality [START_REF] Gaïffas | High-dimensional additive hazard models and the Lasso[END_REF]. Inequality [START_REF] Gill | Large sample behaviour of the product-limit estimator on the whole line[END_REF] follows by applying Proposition 6.

1 with b = (1 + ζ)ρ ′ + ρ ′′ (1 + ζ)ρ ′ -ρ ′′ in (46). We have now to verify that || ∆J(β) c ,J(γ) c || 1 ≤ 3 + 8 max |J(β)|, |J(γ)| /ζ || ∆J(β),J(γ) || 1 . We deduce from (43) that, on A ∩ B ∩ A 1 , || ∆|| 1 ≤ 4 1 + 2 ζ max |J(β)|, |J(γ)| || ∆J(β),J(γ) || 1 .
By splitting ∆ = ∆J(β),J(γ) + ∆J(β) c ,J(γ) c , we infer that

|| ∆J(β) c ,J(γ) c || 1 ≤ 3 + 8 ζ max |J(β)|, |J(γ)| || ∆J(β),J(γ) || 1 .
To achieve the proof of Theorem 4.3, we combine Equation [START_REF] Zhang | Adaptive Lasso for Cox's proportional hazards model[END_REF] with Lemma 4.2 to conclude

P A ∩ B ∩ Ω RE n (s,r 0 ) (κ) c
≤ A ε,ν e -x + B ε,ν e -y + πn .

Proof of Theorem 5.1

The proofs of ( 22) and ( 23) are quite similar, so we only present the one of [START_REF] Kearns | Toward efficient agnostic learning[END_REF]. To prove [START_REF] Koltchinskii | Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery Problems: Ecole d'Eté[END_REF], it suffices to replace η n,t (f j ) by the process ν n,t (θ k ) throughout the following. Denote by U n,t and H i (f j ) the quantities

U n,t (f j ) = 1 n n i=1 t 0 H i (f j )dM i (s) and H i (f j ) := f j (Z i ) max 1≤i≤n |f j (Z i )| .
Since H i (f j ) is a bounded predictable process with respect to F t , U n,t (f j ) is a square integrable martingale. Its predictable variation is given by

ϑ n,t (f j ) = n < U n (f j ) > t = 1 n n i=1 t 0 (H i (f j )) 2 dΛ i (s)
and the optional variation of

U n,t (f j ) is θn,t (f j ) = n[U n (f j )] t = 1 n n i=1 t 0 (H i (f j )) 2 dN i (s).
We also define

Ŵν n (f j ) = ν/n ν/n -Φ(ν/n) θn,t (f j ) + x/n ν/n -Φ(ν/n) , ( 47 
)
for ν ∈ (0, 3) such that ν > Φ(ν) with Φ(u) = e u -u -1.

From Inequality (7.12) in Hansen et al. [START_REF] Hansen | Lasso and probabilistic inequalities for multivariate point processes[END_REF], for any 0 < v < ω < +∞, we have

P U n,t (f j ) ≥ 2(1 + ε) Ŵν n (f j )x n + x 3n , v ≤ Ŵν n (f j ) ≤ ω ≤ 2 log(ω/v) log(1 + ε) + 1 e -x . ( 48 
)
We focus now on removing the event {v ≤ Ŵν n (f j ) ≤ ω} in (48). Let us consider the martingale given

F t θn,t (f j ) -ϑ n,t (f j ) = 1 n n i=1 t 0 (H i (f j )) 2 dN i (s) -dΛ i (s) = 1 n n i=1 t 0 (H i (f j )) 2 dM i (s),
and let

S ν,t (f j ) = n i=1 t 0 Φ ν n H 2 i (f j ) dΛ i (s).
From van de Geer [START_REF] Van De Geer | Exponential inequalities for martingales, with application to maximum likelihood estimation for counting processes[END_REF], we know that exp(ν( θn,t (f j ) -ϑ n,t (f j )) -S ν,t (f j )) is a supermartingale. Now from Markov Inequality, for any ν, x > 0, we obtain that

P | θn,t (f j ) -ϑ n,t (f j )| ≥ S ν,t (f j ) ν + x n ≤ 2e -x . ( 49 
)
For any 0 < h < 1 and x > 0, Φ(xh) ≤ h 2 Φ(x). This combined with the fact that 0 < H 2 i (f j ) < 1, we get

S ν,t (f j ) ≤ Φ(ν/n) n i=1 t 0 H 4 i (f j )dM i (s) ≤ Φ(ν/n)nϑ n,t (f j ). (50) 
Combining ( 49) and (50), we deduce that

P | θn,t (f j ) -ϑ n,t (f j )| ≥ Φ(ν/n) ν/n ϑ n,t (f j ) + x ν ≤ 2e -x . ( 51 
)
Now, under Assumption A 2 , we have ϑ n,t (f j ) ≤ A 0 , so the events

Ω ν n = x/n ν/n -Φ(ν/n) ≤ Ŵν n (f j ) ∩ {ϑ n,t (f j ) ≤ A 0 }
is of probability one and thus

P U n,t (f j ) ≥ 2(1 + ε) Ŵν n (f j )x n + x 3n ≤ P U n,t (f j ) ≥ 2(1 + ε) Ŵν n (f j )x n + x 3n ∩ Ω ν n . (52) 
From (51), we have

P θn,t (f j ) ≥ ϑ n,t (f j ) 1 + Φ(ν/n) ν/n + x ν ≤ e -x ,
and if we denote E ν n the event

E ν n = θn,t (f j ) ≤ ϑ n,t (f j ) 1 + Φ(ν/n) ν/n + x ν ,
we get

P U n,t (f j ) ≥ 2(1 + ε) Ŵν n (f j )x n + x 3n ≤ e -x + P U n,t (f j ) ≥ 2(1 + ε) Ŵν n (f j )x n + x 3n ∩ Ω ν n ∩ E ν n .
On the event E ν n ∩ Ω ν n , from the definition of Ŵν n (f j ) given by (47), we have

Ŵν n (f j ) ≤ ν/n ν/n -Φ(ν/n) ϑ n,t (f j ) 1 + Φ(ν/n) ν/n + x ν + x/n ν/n -Φ(ν/n) ≤ A 0 ν/n + Φ(ν/n) ν/n -Φ(ν/n) + 2 x/n ν/n -Φ(ν/n) . ( 53 
)
From (53), we obtain

P U n,t (f j ) ≥ 2(1 + ε) Ŵν n (f j )x n + x 3n ∩ Ω ν n ∩ E ν n ≤P U n,t (f j ) ≥ 2(1 + ε) Ŵν n (f j )x n + x 3n , x/n ν/n -Φ(ν/n) ≤ Ŵν n (f j ) ≤ A 0 ν/n + Φ(ν/n) ν/n -Φ(ν/n) + 2 x/n ν/n -Φ(ν/n) .
We now apply Inequality (48 

) with v = x/n ν/n -Φ(ν/n) and ω = A 0 ν/n + Φ(ν/n) ν/n -Φ(ν/n) + 2 x/n ν/n -Φ(ν/n) , P U n,t (f j ) ≥ 2(1 + ε) Ŵν n (f j )x n + x 3n ≤ e -x + 2 log A 0 ν/n + Φ(ν/n) ν/n -Φ(ν/n) + 2 x/n ν/n -Φ(ν/n) x/n ν/n -Φ(ν/n) + 1 e -x , (54) ≤ 2 log(1 + ε) log 2 + A 0 (ν/n + Φ(ν/n)) x/n + 1 e -x . ( 55 

A Proof of Proposition 6.3

The proof of Proposition 6.1 and Proposition 6.3 are similar. So we only dprove Proposition 6.3 which corresponds to the general case. To compare the empirical Kullback divergence (3) and the weighted empirical norm (4), we use Lemma 1 in Bach [START_REF] Bach | Self-concordant analysis for logistic regression[END_REF], that we recall here : Lemma A.1. Let g be a convex three times differentiable function g : R → R such that for all t ∈ R, |g ′′′ (t)| ≤ Sg ′′ (t), for some S ≥ 0. Then, for all t ≥ 0 :

g ′′ (0) S 2 φ(St) ≤ g(t) -g(0) -g ′ (0)t ≤ g ′′ (0) S 2 φ(-St) with φ(u) = e -u + u -1
This Lemma gives upper and lower Taylor expansions for some convex and three times differentiable function. It has been introduced to extend tools from self-concordant functions (i.e. which verify |g ′′′ (t)| ≤ 2g ′′ (t) 3/2 ) and provide simple extensions of theoretical results for the square loss for logistic regression.

Let h be a function on [0, τ ] × R p and define

G(h) = - 1 n n i=1 τ 0 h(s, Z i )dΛ i (s) + 1 n n i=1 τ 0 e h(s,Z i ) Y i (s)ds.
Consider the function g : R → R defined by g(t) = G(h + tk), where h and k are two functions defined on R p . By differentiating G with respect to t we get :

g ′ (t) = - 1 n n i=1 τ 0 k(s, Z i )dΛ i (s) + 1 n n i=1 τ 0 k(s, Z i )e h(s,Z i )+tk(s,Z i ) Y i (s)ds, g ′′ (t) = 1 n n i=1 τ 0 (k(s, Z i )) 2 e h(s,Z i )+tk(s,Z i ) Y i (s)ds, g ′′′ (t) = 1 
n n i=1 τ 0 (k(s, Z i )) 3 e h(s,Z i )+tk(s,Z i ) Y i (s)ds.

It follows that |g ′′′ (t)| ≤ ||k|| n,∞ g ′′ (t).

Applying Lemma A.1 with S = ||k|| n,∞ , we obtain for all t ≥ 0,

g ′′ (0) ||k|| 2 n,∞ φ(t||k|| n,∞ ) ≤ g(t) -g(0) -g ′ (0)t ≤ g ′′ (0) ||k|| 2 n,∞ φ(-t||k|| n,∞ ).
Take t = 1, h(s, Z i ) = log λ 0 (s, Z i ) and for (β, γ) ∈ Γ(ρ), k(s, Z i ) = log λ β,γ (s, Z i ) -log λ 0 (s, Z i ). We obtain Take ρ ′ := φ(ρ)/ρ 2 > 0 and ρ ′′ := φ(-ρ)/ρ 2 > 0 to finish the proof.

B Proof of Proposition 6.2

The beginning of this proof is similar to the proof of Proposition 6. (58)

• Now, we will show that R|| βLβ 0 || 2 is bounded. From Equation [START_REF] Massart | The Lasso as an l1-ball model selection procedure[END_REF] with βµ L = βL and β = β 0 , we can deduce that

K n (λ 0 , λ βL ) ≤ 3 2 Γ 1 ||∆ 0 || 1 ,
where ∆ 0 = D( βLβ 0 ) and D = (diag(ω j )) 1≤j≤M . From (58), we have 

ω

  j |β j | and pen(γ) = N k=1 δ k |γ k |.

Corollary 3 .

 3 4 follows from Proposition 6.1 and same arguments as in the proof of Theorem 3.3 with b

  3 follows immediately from[START_REF] Zhao | On model selection consistency of Lasso[END_REF]. As soon as,|| ∆J(β) c ,J(γ) c || 1 ≤ 3 + 8 max |J(β)|, |J(γ)| /ζ || ∆J(β),J(γ) || 1 , on Ω RE n (s,r 0 ) (κ), with κ = (1/ √ 2)κ 0 (s, r 0 ) and r 0 = 3 + 8 max |J(β)|, |J(γ)| /ζ , j , δ k }|| log λ βρ L ,γ ρ L -log λ β,γ || 2 n,Λ .

)

  Now it suffices to multiply both sides of the inequality inside the probability by ||f j || n,∞ = max 1≤i≤n |f j (Z i )| to end up the proof of Theorem 5.1.

g

  ′′ (0) φ(|| log λ β,γ -log λ 0 || n,∞ ) || log λ β,γ -log λ 0 || 2 n,∞ ≤ G(log λ β,γ ) -G(log λ 0 ) -g ′ (0) ≤ g ′′ (0) φ(-|| log λ β,γ -log λ 0 || n,∞ ) || log λ β,γ -log λ 0 || 2 λ β,γ -log λ 0 )(s, Z i )) 2 dΛ i (s) = || log λ β,γ -log λ 0 || 2 n,Λ .Replacing g ′ (0) and g ′′ (0) by their expressions in (56) and noting thatG(log λ β,γ ) -G(log λ 0 ) = K n (λ 0 , λ β,γ ), we get φ(|| log λ β,γ -log λ 0 || n,∞ ) || log λ β,γ -log λ 0 || 2 n,∞ || log λ β,γ -log λ 0 || 2 n,Λ ≤ K n (λ 0 , λ β,γ ) ≤ φ(-|| log λ β,γ -log λ 0 || n,∞ ) || log λ β,γ -log λ 0 || 2 n,∞ || log λ β,γ -log λ 0 || 2 n,Λ .According to Assumption A 5 for (β, γ) ∈ Γ(ρ),|| log λ β,γ -log λ 0 || n,∞ ≤ ρ.Since φ(t)/t 2 is decreasing and bounded below by 0, we can deduce thatφ(|| log λ β,γ -log λ 0 || n,∞ ) || log λ β,γ -log λ 0 || 2 n,∞ ≥ φ(ρ) ρ 2 and φ(-|| log λ β,γ -log λ 0 || n,∞ ) || log λ β,γ -log λ 0 || 2 n,∞ ≤ φ(-ρ) ρ 2 .

3 .•||η|| 2 2 φR 2 || βL -β 0 || 2 2 ≤R 2 || βL -β 0 || 2 2R 2 2 ≤R 2

 322222222 For β and η in R M , let G : R M → R and g : R → R define by G(β) = -0 (s)e β T Z i )dΛ i (ss)e β T Z i Y i (s)ds and g(t) = G(β + tη).By differentiating G with respect to t, we getg ′ (t) = -s)η T Z i e (β+tη) T Z i Y i (s)ds g ′′ (ts)(η T Z i ) 2 e (β+tη) T Z i Y i (s)ds g ′′′ (ts)(η T Z i ) 3 e (β+tη) T Z i Y i (ss)||η|| 2 ||Z i || 2 (η T Z i ) 2 e (β+tη) T Z i Y i (s)ds,Under Assumption A 6 , we can deduce that |g ′′′ (t)| ≤ R||η|| 2 g ′′ (t). Now applying Lemma A.1 with S = R||η|| 2 , we obtain for all t ≥ 0,g ′′ (0) R 2 ||η|| 2 2 φ(R||η|| 2 t) ≤ g(t) -g(0) -g ′ (0)t ≤ g ′′ (0) R 2 (-R||η|| 2 t)Take t = 1, β = β 0 and η = βLβ 0 , to writeg ′′ (0) φ(R|| βLβ 0 || 2 ) G( βL ) -G(β 0 ) -g ′ (0) ≤ g ′′ (0) φ(-R|| βLβ 0 || 2 ) β 0 ) T Z i ) 2 α 0 (s)e β T 0 Z i Y i (t)dt = 1 β 0 ) T Z i ) 2 dΛ i (s) = ||( βLβ 0 ) T X|| 2 n,Λ ,Replacing g ′ (0) and g ′′ (0) by their expressions in (57) and noting thatG( βL ) -G(β 0 ) = K n (λ 0 , λ βL ), we get ||( βLβ 0 ) T X|| 2 n,Λ φ(R|| βLβ 0 || 2 ) || βLβ 0 || 2 K n (λ 0 , λ βL ) ≤ ||( βLβ 0 ) T X|| 2 n,Λ φ(-R|| βLβ 0 || 2 ) || βLβ 0 || 2 2 .

K 2 φ 2 max 1≤j≤M ω 2 jR 2 || βL -β 0 || 2 2 ≤ 3 2 Γ 1 ||∆ 0 || 1 . 4 √ 2 2ω j sR 2 2 2 2 + 2 2 2 +ω j sR 2 •R 2 || βL -β 0 || 2 2 ≥βL -β 0 || 2 )R 2 || βL -β 0 || 2 2 ≤ φ(-2) 4

 22222321142222222222224 n (λ 0 , λ βL ) ≥ ||( βLβ 0 ) T X|| 2 n,Λ R 2 ||( βLβ 0 )|| 2 (R||( βLβ 0 )|| 2 )We apply Assumption RE(s, a 0 ) with a 0 = 3 and κ ′ = κ ′ (s, 3) and we infer thatκ ′2 ||∆ 0,J 0 || 2 2 ≤ ||∆ T 0 X|| 2 n,Λ . So we have, κ ′2 ||∆ 0,J 0 || 2 φ(R|| βLβ 0 || 2 )We can now use, withs = |J 0 |, ||∆ 0 || 2 ≤ ||∆ 0 || 1 ≤ 4||∆ 0,J 0 || 1 ≤ 4 √ s||∆ 0,J 0 || 2 to get κ ′2 φ(R|| βLβ 0 || 2 ) s||( βLβ 0 ) J 0 || 2 ) 2 R 2 || βLβ 0 || 2 ||( βLβ 0 ) J 0 || ||∆ 0 || 2 .A short calculation shows that for all k ∈ (0, 1] :e -2k(1-k) -1 + (1 -k)2k(1 -k) -1 -1 ≥ 0.(see Bach[START_REF] Bach | Self-concordant analysis for logistic regression[END_REF] for more details) So by taking 2k(1-k) -1 = R|| βLβ 0 || 2 , we have e -R|| βL -β 0 || 2 + R|| βLβ 0 || 2 -1 ≥ R 2 || βLβ 0 || R|| βLβ 0 || 2and we deduce thatκ ′2 R 2 || βLβ 0 || R|| βLβ 0 || 2 || βLβ 0 || 2 .This implies that R|| βLβ 0 || 2 ≤ Since φ(t)/t 2 is decreasing and bounded below by 0, we can deduce thatφ(R|| βLβ 0 || 2 )Take ξ := φ(2)/4 > 0 and ξ ′ := φ(-2)/4 > 0 and conclude that ξ||( βLβ 0 ) T X|| 2 n,Λ ≤ K n (λ 0 , λ βL ) ≤ ξ ′ ||( βLβ 0 ) T X|| 2 n,Λ .

Proposition 2.1. The

  empirical Kullback divergence K n (λ 0 , λ) is nonnegative and equals zero if and only if λ = λ 0 almost surely on the interval [0, τ ∧ sup{t : ∃i ∈ {1, ..., n}, Y i (t) = 0}].

	Remark 2.2. In the specific case of right censoring, the proposition holds true on [0, τ ∧ max 1≤i≤n case, we can specify that P([0, τ ] ⊂ [0, max 1≤i≤n X i ]) = 1 -(1 -S T (τ )) n (1 -S C (τ )) n , where S T and S C are the X i ]. In this survival functions of the survival time T and the censoring time C respectively. From A 2 , S T (τ ) > 0 and if τ is such that S C (τ ) > 0, then P([0, τ ] ⊂ [0, max 1≤i≤n
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