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Introduction

Derived from Navier-Stokes equations, Shallow Water equations describe the water flow properties as follows

∂ t h + ∂ x (hu) = 0, ∂ t (hu) + ∂ x hu 2 + gh 2 /2 = -gh∂ x z, (1) 
where the unknowns are the water height h(t, x), the velocity u(t, x), and the topography z(x) is a given function. In what follows, we note the discharge q = hu, the vector of conservative variables U = (h hu) t and the flux F (U ) = (hu gh 2 /2 + hu 2 ) t . The steady state of a lake at rest, or a puddle, (h+ z = Cst and u = q = 0) is a particular solution to [START_REF] Audusse | A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows[END_REF]. Since [START_REF] Bermudez | Upwind methods for hyperbolic conservation laws with source terms[END_REF], it is well known that the topography source term needs a special treatment in order to preserve at least this equilibrium. Such schemes are said to be well-balanced (since [START_REF] Greenberg | A well-balanced scheme for the numerical processing of source terms in hyperbolic equation[END_REF]).

In the following, we present briefly the so-called hydrostatic reconstruction method, which permits, when coupled to a positive numerical flux, to obtain a family of well-balanced schemes that can preserve the water height nonnegativity and deal with dry zones. We show that this method, presented in [START_REF] Audusse | A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows[END_REF][START_REF] Bouchut | Nonlinear stability of finite volume methods for hyperbolic conservation laws, and well-balanced schemes for sources[END_REF] and widely used, fails for some combinations of slope, mesh size and water height. We give the criteria that ensures the accuracy of the results.

The numerical method

The hydrostatic reconstruction follows the general principle of reconstruction methods. We start from a first order finite volume scheme for the homogeneous form of system (1): choosing a numerical flux F(U L , U R ) (e.g. Rusanov, HLL, VFRoe-ncv, kinetic), a finite volume scheme takes the general form

U * i = U n i - ∆t ∆x [F(U i , U i+1 ) -F(U i-1 , U i )] , (2) 
where ∆t is the time step and ∆x the space step. Now the idea is to modify this scheme by applying the flux to reconstructed variables. Reconstruction can be used to get higher order schemes, in that case higher order in time is achieved through TVD-Runge-Kutta methods. The aim of the hydrostatic reconstruction, which is described in the next section, is to be well-balanced, in the sense that it is designed to preserve at least steady states at rest (u = 0). When directly applied on the initial scheme, it leads to order one methods, while coupling it with high order accuracy reconstruction increases the order.

The hydrostatic reconstruction

We describe now the implementation of this method for high order accuracy. The first step is to perform a high order reconstruction (MUSCL, ENO, UNO, WENO). To deal properly with the topography source term ∂ x z, this reconstruction has to be performed on u, h and h + z, see [START_REF] Bouchut | Nonlinear stability of finite volume methods for hyperbolic conservation laws, and well-balanced schemes for sources[END_REF]. This gives us the reconstructed values (U -, z -) and (U + , z + ), on which we apply the hydrostatic reconstruction [START_REF] Audusse | A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows[END_REF][START_REF] Bouchut | Nonlinear stability of finite volume methods for hyperbolic conservation laws, and well-balanced schemes for sources[END_REF] on the water height, namely

       h i+1/2L = max(h i+1/2-+ z i+1/2--max(z i+1/2-, z i+1/2+ ), 0), U i+1/2L = (h i+1/2L , h i+1/2L u i+1/2-), h i+1/2R = max(h i+1/2+ + z i+1/2+ -max(z i+1/2-, z i+1/2+ ), 0), U i+1/2R = (h i+1/2R , h i+1/2R u i+1/2+ ). (3) 
With the hydrostatic reconstruction, the finite volume scheme ( 2) is modified as follows

U * i = U n i -∆tΦ(U n ) = U n i - ∆t ∆x F n i+1/2L -F n i-1/2R -F c n i , (4) 
where

F n i+1/2L = F n i+1/2 + S n i+1/2L , F n i-1/2R = F n i-1/2 + S n i-1/2R (5) 
are left (respectively right) modifications of the initial numerical flux for the homogeneous problem. In this formula the flux is now applied to reconstructed variables:

F n i+1/2 = F(U n i+1/2L , U n i+1/2R
), and we have introduced

S n i+1/2L = 0 g 2 (h 2 i+1/2--h 2 i+1/2L ) , S n i-1/2R = 0 g 2 (h 2 i-1/2+ -h 2 i-1/2R ) . (6) 
Finally, a centered source term has to be added to preserve consistency and well-balancing (see [START_REF] Audusse | A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows[END_REF][START_REF] Bouchut | Nonlinear stability of finite volume methods for hyperbolic conservation laws, and well-balanced schemes for sources[END_REF]):

F c i = 0 -g h i-1/2+ + h i+1/2- 2 (z i+1/2--z i-1/2+ ) . (7) 
Formula ( 7) preserves the second order accuracy, but has to be modified for higher order approximations.

The hydrostatic reconstruction rewritten

We define ∆z i+1/2 = z i+1/2+ -z i+1/2-. Once the space step and the high order reconstruction chosen, this is a fixed sequence. Now, the reconstructed variables (3) write

h i+1/2L = max(h i+1/2--max(0, ∆z i+1/2 ), 0), h i+1/2R = max(h i+1/2+ + min(0, ∆z i+1/2 ), 0). (8) 
With [START_REF] Delestre | SWASHES: a library of Shallow Water Analytic Solutions for Hydraulic and Environmental Studies[END_REF], the defect of the hydrostatic reconstruction becomes apparent. To fix the ideas, suppose the local slope is positive, hence ∆z i+1/2 > 0, as in Figure 1.

Then, for all ∆z i+1/2 such that ∆z i+1/2 ≥ h i+1/2-≥ 0, the reconstruction gives h i+1/2L = 0, while h i+1/2R remains unchanged. In that case, the reconstruction

∆z i+1/2 z i+1/2+ h i+1/2+ + z i+1/2+ h i+1/2R + z i+1/2+ z i+1/2- h i+1/2-+ z i+1/2- h i+1/2- i i + 1 i + 1/2 h i+1/2L + z i+1/2-
Figure 1: Default of the hydrostatic reconstruction. Left: threshold non activated (limit case). Right: threshold activated prevents an unphysical negative value for h i+1/2L , the counterpart of this being an underestimated difference h i+1/2L -h i+1/2R . Therefore, there is a lack in the numerical flux computed from the modified Riemann problem, which gives an underestimated velocity and consequently an overestimated height. This can be interpreted in terms of reconstructed slope as well, which is underestimated.

In the general case, we can write the following local criterion of "non validity" for the hydrostatic reconstruction.

Proposition 2.1 For a fixed discretization, if for some i 0 ≤ i ≤ i 1 one has

∆z i+1/2 ≥ h i+1/2-≥ 0, or -∆z i+1/2 ≥ h i+1/2+ ≥ 0, (9) 
then the hydrostatic reconstruction will overestimate (resp. underestimate) the water height (resp. velocity).

Notice that from a theoretical viewpoint, this is not limiting. Indeed, since this class of schemes is consistent with the system of partial differential equations (see [START_REF] Bouchut | Nonlinear stability of finite volume methods for hyperbolic conservation laws, and well-balanced schemes for sources[END_REF]), the problem disappears when refining the discretization. However, it has to be taken into account for practical computations, with a fixed discretization. It is particularly apparent for order 1 schemes, but also remains present for order 2.

Numerical illustration

For numerical illustration purpose, we introduce an explicit solution which consists in a supercritical steady flow on an inclined plane with constant slope ∂ x z = α (it is referenced in the SWASHES library [START_REF] Delestre | SWASHES: a library of Shallow Water Analytic Solutions for Hydraulic and Environmental Studies[END_REF]). Steady states are solutions to

q(x, t) = q 0 = Cst, ∂ x hu 2 + g h 2 2 = -gh∂ x z,
and the height profile h(x) must be a solution to Bernoulli's law rewritten as a third order equation in h:

h 3 + h 2 αx - q 2 0 2gh 2 0 -h 0 + q 2 0 2g = 0, ( 10 
)
where h 0 and q 0 = h 0 u 0 are the height and discharge at x = 0, which completely determine the profile since the flow is supercritical. A careful study of the roots of the polynomial shows that the supercritical height profile is decreasing in x: h(x) ≤ h 0 for all x ≥ 0.

The numerical strategy we choose consists in the HLL flux and a modified MUSCL reconstruction. In [START_REF] Delestre | Rain water overland flow on agricultural fields simulation/Simulation du ruissellement d'eau de pluie sur des surfaces agricoles[END_REF], this combination of flux and linear reconstruction has shown to be the best compromise between accuracy, stability and CPU time cost. We refer to [START_REF] Bouchut | Nonlinear stability of finite volume methods for hyperbolic conservation laws, and well-balanced schemes for sources[END_REF][START_REF] Delestre | Rain water overland flow on agricultural fields simulation/Simulation du ruissellement d'eau de pluie sur des surfaces agricoles[END_REF] for a presentation of the HLL flux. The MUSCL reconstruction of a scalar function s ∈ R is

s i-1/2+ = s i - ∆x 2 Ds i , s i+1/2-= s i + ∆x 2 Ds i , (11) 
where the "minmod" operator D is given by

Ds i = minmod s i -s i-1 ∆x , s i+1 -s i ∆x , minmod(x, y) =      min(x, y) if x, y ≥ 0, max(x, y) if x, y ≤ 0, 0 else. ( 12 
) In order to keep the discharge conservation, the reconstruction of the velocity has to be modified as

u i-1/2+ = u i - h i+1/2- h i ∆x 2 Du i u i+1/2-= u i + h i-1/2+ h i ∆x 2 Du i .
Notice that if we take Ds i = 0 in [START_REF] Popinet | Quadtree-adaptative tsunami modelling[END_REF], then z i+1/2-= z i+1/2-= z i so that the centered term ( 7) disappears, and we recover the first order scheme in space.

Second order in time is achieved through a classical Heun predictor-corrector method.

We turn now to the specific data for simulations. The domain length is L = 10 m, and we choose initial data h 0 = h(x = 0, t) = 0.02 m, q 0 = q(x = 0, t) = 0.01 m 2 /s, which is indeed supercritical. All simulations are performed with a space step ∆x = 0.1 m, the time step is fixed in order to satisfy the CFL condition. The analytical solution is computed with 7 negative slopes α = 5%, 13%, 14%, 15%, 16%, 17% and 18%, both at first and second order. Numerical results are compared to the analytical results in Figure 2, where a part of the domain is displayed (x between 1 m and 3 m).

With this set of data, a domain of admissible slopes can be estimated for the order 1 hydrostatic reconstruction. Indeed since ∆z j+1/2 = |α|∆x, inserting a characteristic height of the flow h * in (9) gives a bound for the slope. One can use h * = h 0 , the incoming height. Since the height profile is decreasing, the whole profile will be wrong if h 0 ≤ |α|∆x, that is here |α| ≥ 20%. But actually, since the height decreases quite rapidly, a more accurate estimate is obtained for x = 1.5 m with h * = 0.005 m (see Fig. 2), which leads to slopes above 5%.

We observe on Figure 2(Left) that with the first order scheme, the effect of the hydrostatic reconstruction is so important that all curves for slopes between 13% and 18% are superposed. In that case, the apparent result is the simulation of a single slope, namely 13%. For a 5% slope, we still observe a slightly overestimated water height, as anticipated since 5% is a limit case as observed above. With the second order, the water heights are still overestimated, but in a very slighter way, and the different curves are no longer identical (Figure 2(Right)). 

Conclusions

The hydrostatic reconstruction may fail for certain combinations of water height, slope and mesh size, namely in regions where (9) holds. The defaults are particularly apparent for order 1 schemes, leading to wrongly estimated slopes, but still remain at order 2, with some overestimated water heights. We emphasize that the problem disappears when refining the mesh, but has to be taken into account for a given discretization. The generalization of the hydrostatic reconstruction proposed in [START_REF] Castro | Well-balanced numerical schemes based on a generalized hydrostatic reconstruction technique[END_REF] does not exhibit the limitation discussed here, even for first order schemes, but positivity is not ensured. Other schemes involving threshold values (e.g. [START_REF] Bouchut | A subsonic-well-balanced reconstruction scheme for shallow water flows[END_REF][START_REF] Liang | Numerical resolution of well-balanced shallow water equations with complex source terms[END_REF]) very likely encounter the same kind of problem. Alternatively, the scheme recently introduced in [START_REF] Berthon | Efficient well-balanced hydrostatic upwind schemes for shallow-water equations[END_REF] preserves the water height positivity and does not suffer from this problem. Notice finally that criterion (9) may be of some utility for adaptive mesh schemes, such as the ones used in Gerris [START_REF] Popinet | Quadtree-adaptative tsunami modelling[END_REF].
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