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A limitation of some well-balanced schemes

for Shallow Water equations

O. Delestre†,∗, S. Cordier†, F. Darboux‡& F. James†

June 21, 2012

Abstract

English version: Because of their capability to preserve steady-states,
well-balanced schemes for Shallow Water equations are becoming popular.
They allow to verify important mathematical and physical properties like
the positivity of the water height and, thus, to avoid the unstabilities
when dealing with dry zones. In this note, we prove that the well-balanced
scheme based on hydrostatic reconstruction proposed in 2004 [2] exhibits
an abnormal behavior for some combinations of slope, mesh size and water
height.

Version Française : Schémas équilibres pour la résolution du

système de Saint-Venant: une limitation de la reconstruction

hydrostatique. Les schémas équilibres permettent de préserver les états
d’équilibre lors de la résolution des équations de Saint-Venant. Ils con-
naissent actuellement un fort développement car il permettent de garan-
tir certaines propriétés comme la positivité de la hauteur d’eau et, donc,
d’éviter certaines instabilités pour traiter les zones sèches. Dans cette
note, nous montrons que la méthode de reconstruction hydrostatique pro-
posée en 2004 [2] présente un défaut pour certaines combinaisons de pente,
taille de maillage et hauteur d’eau.

Version française abrégée

Les équations de Saint-Venant (1) posent des difficultés numériques spécifiques :
préservation des équilibres stationnaires (flaques d’eau, lacs) et de la positivité
de la hauteur d’eau. La reconstruction hydrostatique, introduite dans [2, 4],
s’est imposée comme une méthode particulièrement adaptée. Elle fait partie de
la classe des schémas dits équilibrés (well-balanced). Partant d’une méthode
de volumes finis (2), dont le flux numérique F est adapté au système sans to-
pographie, on reconstruit les variables u, h, h+z afin de préserver les équilibres.
Cette méthode est appliquée le cas échéant à des variables déjà reconstruites afin
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– Sophia, Université de Nice – Sophia Antipolis, Parc Valrose, F-06108 Nice cedex 02, France

; delestre@unice.fr
†MAPMO UMR CNRS 7349, Université Orléans, Bâtiment de mathématiques, B.P. 6759,
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d’augmenter l’ordre de convergence. La mise en œuvre complète de ce schéma
dans le cas d’une reconstruction linéaire de type MUSCL est donnée par (3)–(7).

Une reformulation de la reconstruction hydrostatique (8) met en évidence un
comportement anormal pour certaines combinaisons de pente, maillage et hau-
teur d’eau. Plus précisément, il est montré que le schéma surestime la hauteur
d’eau dans les régions où la relation (9) est vérifiée.

Ce défaut est illustré par une série de tests numériques sur une solution
analytique (voir 2). Il s’avère particulièrement spectaculaire à l’ordre 1, où la
méthode calcule une même pente apparente pour différentes valeurs effectives
(Figure 2(Left)), mais il reste observable à l’ordre 2 (Figure 2(Right)).

Derived from Navier-Stokes equations, Shallow Water equations describe the
water flow properties as follows

∂th+ ∂x (hu) = 0, ∂t (hu) + ∂x
(

hu2 + gh2/2
)

= −gh∂xz, (1)

where the unknowns are the water height h(t, x), the velocity u(t, x), and the
topography z(x) is a given function. In what follows, we note the discharge
q = hu, the vector of conservative variables U = (h hu)t and the flux F (U) =
(hu gh2/2+hu2)t. The steady state of a lake at rest, or a puddle, (h+z = Cst
and u = q = 0) is a particular solution to (1). Since [1], it is well known that
the topography source term needs a special treatment in order to preserve at
least this equilibrium. Such schemes are said to be well-balanced (since [8]).

In the following, we present briefly one of such methods, the so-called hydro-
static reconstruction, which permits to preserve the water height nonnegativity
and to deal with dry zones. We show that this method, presented in [2, 4] and
widely used, fails for some combinations of slope, mesh size and water height.
We give the criteria that ensures the accuracy of the results.

1 The numerical method

The hydrostatic reconstruction follows the general principle of reconstruction
methods. We start from a first order finite volume scheme for the homogeneous
form of system (1): choosing a numerical flux F(UL, UR) (e.g. Rusanov, HLL,
VFRoe-ncv, kinetic), a finite volume scheme takes the general form

U∗

i = Un
i −

∆t

∆x
[F(Ui, Ui+1)− F(Ui−1, Ui)] , (2)

where ∆t is the time step and ∆x the space step. Now the idea is to modify
this scheme by applying the flux to reconstructed variables. Reconstruction
can be used to get higher order schemes, in that case higher order in time
is achieved through TVD-Runge-Kutta methods. The aim of the hydrostatic
reconstruction, which is described in the next section, is to be well-balanced, in
the sense that it is designed to preserve at least steady states at rest (u = 0).
When directly applied on the initial scheme, it leads to order one methods, while
coupling it with high order accuracy reconstruction increases the order.

1.1 The hydrostatic reconstruction

We describe now the implementation of this method for high order accuracy.
The first step is to perform a high order reconstruction (MUSCL, ENO, UNO,
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Figure 1: Default of the hydrostatic reconstruction. Left: threshold non acti-
vated (limit case). Right: threshold activated

WENO). To deal properly with the topography source term ∂xz, this recon-
struction has to be performed on u, h and h + z, see [4]. This gives us the
reconstructed values (U−, z−) and (U+, z+), on which we apply the hydrostatic
reconstruction [2, 4] on the water height, namely















hi+1/2L = max(hi+1/2− + zi+1/2− −max(zi+1/2−, zi+1/2+), 0),
Ui+1/2L = (hi+1/2L, hi+1/2Lui+1/2−),
hi+1/2R = max(hi+1/2+ + zi+1/2+ −max(zi+1/2−, zi+1/2+), 0),
Ui+1/2R = (hi+1/2R, hi+1/2Rui+1/2+).

(3)

With the hydrostatic reconstruction, the finite volume scheme (2) is modified
as follows

U∗

i = Un
i −∆tΦ(Un) = Un

i −
∆t

∆x

[

Fn
i+1/2L − Fn

i−1/2R − Fcni

]

, (4)

where

Fn
i+1/2L = Fn

i+1/2 + Sn
i+1/2L, Fn

i−1/2R = Fn
i−1/2 + Sn

i−1/2R (5)

are left (respectively right) modifications of the initial numerical flux for the
homogeneous problem. In this formula the flux is now applied to reconstructed
variables: Fn

i+1/2 = F(Un
i+1/2L, U

n
i+1/2R), and we have introduced

Sn
i+1/2L =

(

0
g

2
(h2

i+1/2− − h2

i+1/2L)

)

, Sn
i−1/2R =

(

0
g

2
(h2

i−1/2+ − h2

i−1/2R)

)

.

(6)
Finally, a centered source term has to be added to preserve consistency and
well-balancing (see [2, 4]):

Fci =

(

0

−g
hi−1/2+ + hi+1/2−

2
(zi+1/2− − zi−1/2+)

)

. (7)

1.2 The hydrostatic reconstruction rewritten

We define ∆zi+1/2 = zi+1/2+− zi+1/2−. Once the space step and the high order
reconstruction chosen, this is a fixed sequence. Now, the reconstructed variables
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(3) write
{

hi+1/2L = max(hi+1/2− −max(0,∆zi+1/2), 0),
hi+1/2R = max(hi+1/2+ +min(0,∆zi+1/2), 0).

(8)

With (8), the defect of the hydrostatic reconstruction becomes apparent. To fix
the ideas, suppose the local slope is positive, hence ∆zi+1/2 > 0, as in Figure 1.
Then, for all ∆zi+1/2 such that ∆zi+1/2 ≥ hi+1/2− ≥ 0, the reconstruction gives
hi+1/2L = 0, while hi+1/2R remains unchanged. In that case, the reconstruction
prevents an unphysical negative value for hi+1/2L, the counterpart of this being
an underestimated difference hi+1/2L − hi+1/2R. Therefore, there is a lack in
the numerical flux computed from the modified Riemann problem, which gives
an underestimated velocity and consequently an overestimated height. This can
be interpreted in terms of reconstructed slope as well, which is underestimated.

In the general case, we can write the following local criterion of “non validity”
for the hydrostatic reconstruction.

Proposition For a fixed discretization, if for some i0 ≤ i ≤ i1 one has

∆zi+1/2 ≥ hi+1/2− ≥ 0, or −∆zi+1/2 ≥ hi+1/2+ ≥ 0, (9)

then the hydrostatic reconstruction will overestimate (resp. underestimate) the
water height (resp. velocity).

Notice that from a theoretical viewpoint, this is not limiting. Indeed, since
this class of schemes is consistent with the system of partial differential equations
(see [4]), the problem disappears when refining the discretization. However, it
has to be taken into account for practical computations, with a fixed discretiza-
tion. It is particularly apparent for order 1 schemes, but also remains present
for order 2.

2 Numerical illustration

For numerical illustration purpose, we introduce an explicit solution which con-
sists in a supercritical steady flow on an inclined plane with constant slope
∂xz = α (it is referenced in the SWASHES library [7]). Steady states are solu-
tions to

q(x, t) = q0 = Cst, ∂x

(

hu2 + g
h2

2

)

= −gh∂xz,

and the height profile h(x) must be a solution to Bernoulli’s law rewritten as a
third order equation in h:

h3 + h2

(

αx−
q20

2gh2
0

− h0

)

+
q20
2g

= 0, (10)

where h0 and q0 = h0u0 are the height and discharge at x = 0, which completely
determine the profile since the flow is supercritical. A careful study of the roots
of the polynomial shows that the supercritical height profile is decreasing in x:
h(x) ≤ h0 for all x ≥ 0.

The numerical strategy we choose consists in the HLL flux and a modified
MUSCL reconstruction. In [6], this combination of flux and linear reconstruction
has shown to be the best compromise between accuracy, stability and CPU

4



time cost. We refer to [4, 6] for a presentation of the HLL flux. The MUSCL
reconstruction of a scalar function s ∈ R is

si−1/2+ = si −
∆x

2
Dsi, si+1/2− = si +

∆x

2
Dsi, (11)

where the “minmod” operator D is given by

Dsi = minmod

(

si − si−1

∆x
,
si+1 − si

∆x

)

, minmod(x, y) =











min(x, y) if x, y ≥ 0,

max(x, y) if x, y ≤ 0,

0 else.

(12)
In order to keep the discharge conservation, the reconstruction of the velocity
has to be modified as

ui−1/2+ = ui −
hi+1/2−

hi

∆x

2
Dui ui+1/2− = ui +

hi−1/2+

hi

∆x

2
Dui.

Notice that if we take Dsi = 0 in (11), then zi+1/2− = zi+1/2− = zi so that the
centered term (7) disappears, and we recover the first order scheme in space.
Second order in time is achieved through a classical Heun predictor-corrector
method.

We turn now to the specific data for simulations. The domain length is
L = 10 m, and we choose initial data

h0 = h(x = 0, t) = 0.02 m, q0 = q(x = 0, t) = 0.01 m2/s,

which is indeed supercritical. All simulations are performed with a space step
∆x = 0.1 m, the time step is fixed in order to satisfy the CFL condition.

The analytical solution is computed with 7 negative slopes α = 5%, 13%,
14%, 15%, 16%, 17% and 18%, both at first and second order. Numerical results
are compared to the analytical results in Figure 2, where a part of the domain
is displayed (x between 1 m and 3 m).

With this set of data, a domain of admissible slopes can be estimated for the
order 1 hydrostatic reconstruction. Indeed since ∆zj+1/2 = |α|∆x, inserting a
characteristic height of the flow h∗ in (9) gives a bound for the slope. One can
use h∗ = h0, the incoming height. Since the height profile is decreasing, the
whole profile will be wrong if h0 ≤ |α|∆x, that is here |α| ≥ 20%. But actually,
since the height decreases quite rapidly, a more accurate estimate is obtained
for x = 1.5 m with h∗ = 0.005 m (see Fig. 2), which leads to slopes above 5%.

We observe on Figure 2(Left) that with the first order scheme, the effect of
the hydrostatic reconstruction is so important that all curves for slopes between
13% and 18% are superposed. In that case, the apparent result is the simulation
of a single slope, namely 13%. For a 5% slope, we still observe a slightly overes-
timated water height, as anticipated since 5% is a limit case as observed above.
With the second order, the water heights are still overestimated, but in a very
slighter way, and the different curves are no longer identical (Figure 2(Right)).

3 Conclusions

The hydrostatic reconstruction may fail for certain combinations of water height,
slope and mesh size, namely in regions where (9) holds. The defaults are par-
ticularly apparent for order 1 schemes, leading to wrongly estimated slopes, but
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Figure 2: Default of hydrostatic reconstruction: water height at first and second
order of accuracy for different slopes. Dotted curves are simulations, plain curves
are exact solutions. Left: first and second order curves. Right: zoom on second
order curves

still remain at order 2, with some overestimated water heights. We emphasize
that the problem disappears when refining the mesh, but has to be taken into
account for a given discretization. Other schemes involving threshold values
(e.g. [5, 9]) very likely encounter the same kind of problem. Alternatively, the
scheme recently introduced in [3] preserves the water height positivity and does
not suffer from this problem. Notice finally that criterion (9) may be of some
utility for adaptive mesh schemes, such as the ones used in Gerris [10].
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