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COUPLING FROM THE PAST TIMES WITH AMBIGUITIES

AND PERTURBATIONS OF INTERACTING PARTICLE

SYSTEMS

JEAN BÉRARD, DIDIER PIAU

Abstract. We discuss coupling from the past techniques (CFTP) for pertur-
bations of interacting particle systems on Zd with a finite set of states, within
the framework of the graphical construction of the dynamics based on Poisson
processes. We first develop general results for what we call CFTP times with

ambiguities. These are analogous to classical coupling (from the past) times,
except that the coupling property holds only provided that some ambiguities
concerning the stochastic evolution of the system are resolved. If these ambi-
guities are rare enough on average, CFTP times with ambiguities can be used
to build actual CFTP times, whose properties can be controlled in terms of
those of the original CFTP time with ambiguities. We then prove a general
perturbation result, which can be stated informally as follows. Start with an
interacting particle system possessing a CFTP time whose definition involves
the exploration of an exponentially integrable number of points in the graphi-
cal construction, and which satisfies the positive rates property. Then consider
a perturbation obtained by adding new transitions to the original dynamics.
Our result states that, provided that the perturbation is small enough (in the
sense of small enough rates), the perturbed interacting particle system too
possesses a CFTP time (with nice properties such as an exponentially decay-
ing tail). The proof consists in defining a CFTP time with ambiguities for
the perturbed dynamics, from the CFTP time for the unperturbed dynamics.
Finally, we discuss examples of particle systems to which this result can be
applied. Concrete examples include a class of neighbor-dependent nucleotide
substitution model, and variations of the classical voter model, illustrating the
ability of our approach to go beyond the case of weakly interacting particle
systems.

1. Introduction

The present paper discusses coupling from the past (CFTP) techniques for inter-
acting particle systems. The key idea of CFTP, as described in the seminal paper
[14] by Propp and Wilson, consists in simulating coupled trajectories of a finite
state-space Markov chain from further and further in the past, until eventually the
present state of the Markov chain is the same for all trajectories, regardless of their
starting point. One thus obtains an exact realization of the stationary distribution
of the corresponding Markov chain, and, under a certain monotonicity condition on
the transitions of the chain, CFTP leads to a practical algorithm for sampling from
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the stationary distribution. Many extensions of this scheme have been developed
since, notably to include processes on more general state-spaces, and situations
where the monotonicity condition is not met (see the online bibliography [17]).

Here, we consider interacting particle systems in the sense of [11], that is, continuous-
time Markov processes describing the evolution of a system of states attached to the
sites of Zd, the evolution at a site being governed by local transition rates involving
the states of the neighboring sites. Our discussion is limited to particle systems
with a finite state space whose dynamics can be prescribed by a finite family or
transition rules (see below for a precise definition). For an ergodic particle system,
one is interested in using CFTP to sample from the stationary distribution of the
system. In general, it is not feasible to sample from the full stationary distribution,
if only because a full configuration of the particle system is an infinite-dimensional
object, comprising one definite state for each site of Zd. A more reasonable goal
is the following: given a finite set of sites in Z

d, use CFTP to sample from the
marginal of the stationary distribution on this set of sites. This turns out to be
possible when the interacting particle system possesses what we call in this paper
a CFTP time, a precise definition being given below.

In the rest of this introduction, we give a quick overview of our results, some formal
definitions and statements being postponed to later sections. A discussion of the
existing literature and how the present work fits into it, is given at the end of the
introduction.

1.1. Interacting particle system dynamics and the graphical construction.

We consider interacting particle systems with a finite state space S, whose set of
sites is Zd for some d ≥ 1. To specify the dynamics of the system, we use the notion
of a transition rule. Such a rule is a triple R = (f,A, r), where A is a finite subset
of Zd, f : SA → S is a map, and r ≥ 0 is a non-negative real number. Given a

configuration of the system η = (η(z))z∈Zd ∈ SZ
d

, and x ∈ Z
d, we denote by Rxη

the configuration defined by (Rxη)(x) = f((η(x+ y))y∈A) and (Rxη)(z) = η(z) for
z 6= x. (Our convention when A = ∅ is that the set SA is a singleton on which f
takes a single well-defined value.)

Now, given a finite list of such transition rules (Ri)i∈I = (fi, Ai, ri)i∈I , we consider
the interacting particle system dynamics specified by the infinitesimal generator L
satisfying

(1) Lφ(η) =
∑

i∈I

∑

x∈Zd

ri (φ(R
xη)− φ(η)) ,

for all functions φ : SZ
d

→ R that depend only on a finite number of coordinates.
Informally, (1) means that, during an infinitesimal time-interval of length dt, in-
dependently at each site x ∈ Z

d, the transformation Rx
i is applied to the current

system configuration with probability ridt. It is standard to check (see [11]) that

(1) uniquely characterizes a càdlàg continuous-time Markov process (ηt)t on SZ
d

equipped with the product topology.

In the sequel, we assume that the dynamics is in fact built through the graphical
construction associated with the list of rules (Ri)i∈I (see [12] for examples of this
construction). Specifically, we consider a Poisson point process P on Z

d × I × R

with intensity J defined by dJ(x, i, t) := rid(cZd ⊗ cI ⊗ ℓR)(x, i, t), where cZd and
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cI denote the counting measure respectively on Z
d and I, while ℓR denotes the

Lebesgue measure on R. The realization of the point process P prescribes the
dynamics of the particle system through the fact that, for every x, (ηt(x))t is a
jump process whose state may change only at times t for which there exists an (a.s.
unique) i such that (x, i, t) ∈ P , and that, for such a t, one has

(2) ηt = Rx
i (ηt−).

Given t1 ≤ t2 and ξ ∈ SZ
d

, define Φt2
t1(ξ) to be the configuration of the system at

time t2 obtained by starting in configuration ξ at time t1−, and using the transitions

specified by P through (2). We refer to Φ as the stochastic flow on SZ
d

induced by
P . Given t ≤ 0, we use the notation Pt = P ∩ (Zd × [t, 0[×I), and let Ft = σ(Pt).

1.2. CFTP times with and without ambiguities. We now consider the cou-
pling properties of the flow Φ. We say that a negative and a.s. finite random
variable T is a CFTP time (for site zero) if the following property holds on the
event1 {T > −∞},

(3) for all ξ1, ξ2 ∈ S
Z
d

, [Φ0−
T (ξ1)](0) = [Φ0−

T (ξ2)](0).

One checks that the existence of a CFTP time implies ergodicity of the particle

system. Moreover, starting from an arbitrary configuration ξ ∈ SZ
d

, the distribu-
tion of [Φ0−

T (ξ)](0) is exactly the marginal at site 0 of the corresponding stationary
distribution. To obtain a sample from the marginal of this distribution on an ar-
bitrary finite set of sites, one then has to repeat (after suitable translation) the
procedure leading to [Φ0−

T (ξ)](0) to each site in the set of interest.

The notion of CFTP time with ambiguities is a weakening of the notion of CFTP
time, in which property (3) holds only when the ”ambiguities” associated with
the rules attached to a specific random subset H of PT , are resolved. To give a
precise definition, let us consider, for each α = (x, i, t) ∈ P , and s < t, the random
variable e(α, ξ, s) denoting the value at site x produced by the application of the
rule attached to α when starting in state ξ at time s−, more formally:

(4) e(α, s, ξ) = [Φt
s(ξ)](x).

When there exist two distinct ξ1, ξ2 such that e(α, s, ξ1) 6= e(α, s, ξ2), we say that
there is an ambiguity as to the result of the application of the rule attached to
α, when we start at time s−. A coupling time with ambiguities consists of a
negative a.s. finite random variable T , together with a random subset H of PT ,
which is assumed to be finite on the event {T > −∞}, and such that the following
modification of (3) holds:

for all ξ1, ξ2 ∈ S
Z
d

, [Φ0−
T (ξ1)](0) = [Φ0−

T (ξ2)](0) provided that(5)

e(α, T, ξ1) = e(α, T, ξ2) for all α ∈ H.

Note that, when H = ∅, (5) is exactly (3). In addition, we require that H has the
stopping property, i.e. H ∩ Pt is Ft-measurable for all t.

1Throughout the paper, we adopt the convention that all possible pathologies of CFTP times
and their variants are concentrated on the event that the corresponding time takes the value
−∞, so that one does not have to bother excluding undesirable zero probability events when the
corresponding time takes a finite value.
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1.3. Description of the main results. Our first main result is that, starting
from a CFTP time with ambiguities (T,H), one can build an actual CFTP time
T ∗, provided that H contains few enough points on average. To give a precise
statement, introduce the quantity

(6) g := E





∑

(x,t,i)∈H

|Ai|



 .

Theorem A. If g < 1, one can construct a CFTP time T ∗ for the interacting
particle system.

The construction of T ∗ is explained in Section 2. Here is an informal description.
Starting with Amb0 := {(0, 0)}, we recursively define a sequence (Ambn)n≥0 of
random subsets of Zd × R in the following way. First, we apply the coupling time
with ambiguities (T,H) at each space-time point in Ambn. This generates a set
of elements of P , with respect to which ambiguities have to be resolved. Then
Ambn+1 is defined as the set of space-time points upon which the resolution of
these ambiguities directly depends, i.e. for α = (x, i, t), the set {(x+ y, t); y ∈ Ai}.
The overall set of points generated by this process is Amb∞ :=

⋃

n≥0 Ambn, and
T ∗ is defined as the lowest value of T obtained when applying the coupling time
with ambiguities (T,H) to the space-time points in Amb∞. The idea underlying
this construction is that, if Amb∞ is finite, one can resolve ambiguities in a step-
by-step manner, starting from the points in Amb∞ that are furthest in the past and
thus associated with an empty set of ambiguities, down to the origin where we can
determine the value of [Φ0−

T∗ (ξ)](0) (a precise formulation is given in Proposition 5.1
in Section 5).

Without giving precise statements (see Theorems C and D in Section 3), let us
mention that, in addition to Theorem A, it is possible to obtain estimates on
the tail of T ∗ and on the range of its space-dependence (in terms of bounds on
exponential moments), from analogous properties for T and H .

Our second main result deals with perturbations of interacting particle systems. To
formalize this notion, consider a particle system whose dynamics is defined by a list
of rules (Ri)i∈Iu . This corresponds to the original, unperturbed, particle system.
Then consider the dynamics defined by a list of rules of the form (Ri)i∈Iu∪Ip ,
where Ip is disjoint from Iu. This corresponds to the perturbed particle system.
Our result gives general conditions under which the existence of a CFTP time T u

for the unperturbed particle system leads to the existence of a CFTP time for the
perturbed particle system, provided that the perturbation is small enough. Our first
condition is that the unperturbed dynamics possesses the positive rates property,
which means that, for every v ∈ S, there exists a rule with index in Iu whose
application inconditionally leads to the value v. Our second condition requires that
the definition of T u involves the exploration of an exponentially integrable2 number
of points in P , a notion whose precise formulation is given in Section 2, and involves
what we call the exploration process associated with T u. Finally, the smallness of
the perturbation is measured through two parameters ǫ and κ, that admit explicit
definitions in terms of (Ri)i∈Iu and (Ri)i∈Ip (see Section 2.4).

2For a non-negative random variable X, we say that X is exponentially integrable if there exists
µ > 0 such that E(eµX) < +∞.
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Theorem B. Assume that the unperturbed dynamics has the positive rates prop-
erty, and possesses a CFTP time associated with an exploration process whose total
number of points is exponentially integrable. Then, for any perturbation with small
enough ǫ and κ, we can construct a CFTP time with ambiguities (T,H) for the per-
turbed dynamics, satisfying condition (6), so that the corresponding T ∗ is a CFTP
time for the perturbed dynamics.

The construction of (T,H) is explained in Section 2. Note that, in addition to satis-
fying (6), (T,H) also satisfies the assumptions of Theorems C and D for sufficiently
small ǫ and κ, leading to exponential moment bounds on the tail of T ∗ and on the
range of its space-dependence. This extension of Theorem B is stated as Theorem
E in Section 3.

We illustrate Theorem B with applications to several kinds of interacting particle
systems. A first class of examples is given by systems that satisfy what we call
the finite factor property (see Section 4). Informally, this means that the state
of a site at a certain time depends on the points in the graphical construction
and on the initial condition only through a window of fixed size around x. The
simplest example is provided by dynamics for which distinct sites do not interact,
whose perturbations correspond to weakly interacting interacting particle systems.
A more elaborate concrete example is a family of nucleotide substitution models
called RN+YpR (see [1]), which allows for arbitrarily strong interactions between
neighboring sites and yet satisfies the finite factor property. Another class of sys-
tems to which we apply Theorem B (and for which the finite factor property is not
satisfied), is given by noisy voter models on Z

d. Specifically, we consider the case
of a classical linear voter model with an arbitrary finite alphabet, and a variation
we call the voter model with asymmetric polling, that uses the classical {+,−}
alphabet (see Section 4). Note that these examples too extend beyond the weakly
interacting case.

Although we do not enter into the details here, let us note that the existence of a
CFTP algorithm is not only interesting for simulation purposes, but can also pro-
vide interesting theoretical results on the particle system. Indeed, the existence of
a CFTP time automatically implies that the interacting particle system is ergodic,
and estimates on the tail of the CFTP time such as those provided by Theorem
C immediately lead to bounds on the speed of convergence to the stationary dis-
tribution. Similarly, estimates on the range of the space-dependence such as those
provided by Theorem D yield bounds on the decay of spatial correlations. As a
consequence, our results can be readily used to derive interesting conclusions about
the behavior of the perturbed particle systems to which Theorem B applies.

Also, note that, in this paper, we do not explicitly address issues related to the
practical implementation of CFTP. However, from the definition of T ∗ in terms of
T andH it should be clear that, if T andH lend themselves to an actual algorithmic
implementation, so is the case for T ∗. Similarly, Theorem B yields an actual CFTP
algorithm for the perturbed particle system provided that T u and the associated
exploration process are compatible with an actual algorithmic implementation.

Finally, let us point out that a key role in the proof of our results is played by first-
moment arguments, that allow us to essentially bypass the quite intricate analysis of
dependencies that would otherwise be required to study the combinatorial objects
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we have to deal with (e.g. the sequence of sets (Ambn)n≥0, or the tree-indexed

exploration process X̂ used to define a coupling time with ambiguities from T u).
In fact, first-moment arguments allow us to largely ignore these dependencies and
obtain results in very much the same way as for classical branching processes.

1.4. Discussion. For ergodic particle systems satisfying a monotonicity condition
similar to that of [14], CFTP is always possible, as shown by van den Berg and
Steif in [16]. For systems lacking monotonicity, CFTP algorithms have been devel-
oped under ”high-noise” or ”weak interaction” type assumptions, meaning that the
strength of the interaction between neighboring sites has to be sufficiently small. In
other words, the particle system under consideration has to be a sufficiently small
perturbation of a system in which distinct sites do not interact. One example is
given by Haggström and Steif [10], who use a bounding set approach to control the
coalescence of trajectories (see also [3] for some refinements). Another example is
given by Galves, Garcia, Löcherbach [7] (see also [8, 9]), whose approach is based
on a branching construction3 of which the one we use in the present paper can be
seen as a generalization. One interest of the present paper is that it provides a
general criterion under which small perturbations of an interacting particle system
retain some of the CFTP properties of the original unperturbed system, allowing
one to go beyond the weakly interacting case. Let us mention that some of our
applications overlap with the recent paper [13], where a specific kind of perturba-
tion of noisy voter models is considered, and ergodicity is proved for sufficiently
small perturbations. Finally, note that the present paper is a revised and extended
version of an earlier manuscript [2], where the results were limited to perturbations
of RN+YpR nucleotide substitution models.

1.5. Organization of the paper. The rest of the paper is organized as follows.
Section 2 contains the definitions of the various notions and objects that were
encountered in the introduction but not formally defined. Section 3 contains ad-
ditional results that were not stated in the introduction. Section 4 contains the
examples of application of Theorem B. Section 5 describes the proofs of Theorems
A, C and D. Section 5 describes the proof of Theorem B (and its extension Theorem
E).

2. Some formal definitions

2.1. Canonical probability space. We assume throughout the paper that P is
defined on a canonical probability space (Ω,F ,P) that we now describe. First,
Ω is the set of locally finite subsets ω of Z

d × I × R satisfying the additional
requirements that (i) no two points in ω share the same R−coordinate, (ii) for
every (x, i) ∈ Z

d × I, both sets ω ∩ ({(x, i)} × R+) and ω ∩ ({(x, i)} × R−) are
infinite, (iii) for every (x, i, t) ∈ ω, and any sequence (yn, jn, sn)n≥0 starting at
(y0, j0, s0) = (x, i, t) and satisfying yn+1 ∈ yn + Ajn and sn+1 < sn for all n ≥ 0,
one has limn→+∞ sn = −∞. Then F is defined as the σ−algebra generated by all
the maps of the form ω 7→ |ω∩B|, where B is a Borel subset of Zd×I×R. Finally,

3A very similar construction was already used in [6] to devise CFTP algorithms in a different
framework. In fact, various constructions of this kind appear in the literature, though not explicitly
in the context of CFTP, see e.g. [5, 4].
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we set P(ω) := ω, and P is uniquely defined on (Ω,F) by the requirement that P
is a Poisson process with intensity J (this definition makes sense since (i), (ii), (iii)
are almost sure properties of a Poisson process with intensity J). Note that thanks

to (i), (ii), (iii), Φt2
t1(ξ) is well-defined for any t1 < t2, ξ ∈ SZ

d

and ω ∈ Ω.

Given (x, t) ∈ Z
d × R, we define the space-time shift τx,t on Ω by τx,t(ω) :=

⋃

(z,i,s)∈ω{(z−x, i, s−t)}. (This definition is possible since (i), (ii), (iii) all are shift-

invariant properties.) Given a ∈ N∪{±∞}, we define P−a,a := P∩([−a, a]d×I×R),
and let F−a,a = σ(P−a,a). On occasions, we use the notation P−a,at := P ∩
([−a, a]d × [t, 0[×I).

Finally, to properly define the notion of a random subset of P , we introduce the
space Ω̃ formed by the subsets of elements of Ω, equipped with the σ−algebra
F̃ defined just as F . Note that, as a rule, in the rest of the paper, we mention
measurability issues only when they involve a non-trivial argument.

In the sequel, we have to consider two distinct probability spaces, one associated
with the unperturbed dynamics, and one with the perturbed dynamics. We denote
by (Ωu,Fu,Pu) the probability space associated with the unperturbed dynamics
specified by (Ri)i∈Iu , while (Ω,F ,P) refers to the perturbed dynamics specified by
the full list (Ri)i∈I . The corresponding Poisson processes are denoted respectively
Pu and P .

2.2. Construction of T ∗. Given a coupling time with ambiguities (T,H), define
by induction the following random sequence of subsets of Zd×]−∞, 0]:

(7) Amb0 := {(0, 0)}, Ambn+1 :=
⋃

(x,t)∈Ambn

⋃

(z,i,s)∈τ−1

x,t◦H◦τx,t

⋃

y∈Ai

{(z + y, s)}.

Then let Amb∞ :=
⋃

n≥0 Ambn, and T ∗ := inf(x,t)∈Amb∞
t + T ◦ τx,t in the case

where |Amb∞| < +∞, while T ∗ := −∞ otherwise.

2.3. Exploration process. Here, we define the notion of an exploration process
attached to an interacting particle system.

Given a non-empty finite subset B ⊂ Z
d and t ≤ 0, define n(B, t) to be the element

of P∩(B×I×]−∞, t[) with the highest time coordinate4 (this is always well-defined
with our choice of Ω). Let Ωf denote the set of all finite subsets of sets in Ω, and
let θ denote a measurable map from Ωf to the set of finite subsets of Zd (where Ωf

is equipped with a σ−algebra defined as F).

The exploration process associated to θ is defined as follows. Start with X0 := ∅,
γ0 := 0. Then, for all n ≥ 0, let Bn := θ(Xn). If Bn 6= ∅, denote n(Bn, γn) =:
(xn, in, tn), and let Xn+1 := Xn ∪ {(xn, in, tn)} and γn+1 := tn. If Bn = ∅, then
Xn+1 := Xn, γn+1 := γn. Let X∞ :=

⋃

n≥0 Xn and γ∞ := limn→+∞ γn. The total

number of points in the exploration process is then defined as |X∞|.

We say that a CFTP time T defined on (Ω,F ,P) is associated with such an ex-
ploration process if, on {|X∞| < +∞}, one has T = γ∞, or equivalently, T =
inf{t; (x, i, t) ∈ X∞}, while T = −∞ when |X∞| = +∞, and if, on {T > −∞},

4Note that we are dealing with negative numbers here, so that the highest time coordinate here
corresponds to the time coordinate with the least absolute value.
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the value of [Φ0−
T (ξ)](0), which is the same for every ξ ∈ SZ

d

, is measurable with
respect to X∞.

We shall always assume that there exists a deterministic function β : N→ N such
that for every ℓ ≥ 0,

(8) θ(Xℓ) ⊂ {−β(ℓ), . . . , β(ℓ)}
d,

and such that β(ℓ) = O(ℓ) as ℓ goes to infinity.

In the sequel, we assume that a CFTP time T u for the unperturbed dynamics is
defined on (Ωu,Fu,Pu), and that T u is associated with an exploration process of
the type we have just described. We denote the corresponding process by Xu to
emphasize the fact that this process is defined for the unperturbed dynamics, but,
for the sake of readability, we use θ, xn, in, tn, γn, etc. instead of the awkward θu,
xun, i

u
n, t

u
n, γ

u
n , etc.

Remark 2.1. Given a CFTP time T and an exploration process (Xn)n, the fact
that T = γ∞ does not in general imply that [Φ0−

T (ξ)](0) is measurable with respect
to X∞, so this last condition has to be added to the definition of an exploration
process associated to a CFTP time.

2.4. Positive rates property, ǫ and κ. The positive rates property for the set
of non-perturbative rules (Ri)i∈Iu means that, for every v ∈ S, there exists a rule
with index in Iu which is of the form (A, f, r) with r > 0, A = ∅ and f ≡ v.
We denote by ιv the5 index of such a rule. We then control the smallness of the
perturbation of (Ri)i∈Iu by (Ri)i∈Ip through the following two parameters

(9) ǫ := sup
v∈S





∑

j∈Ip; v∈fj(Aj)

rj



 (rιv )
−1,

(10) κ :=

(

∑

i∈Ip

|Ai|ri

)(

∑

i∈I

ri

)−1

.

2.5. Construction of a coupling time with ambiguities (T,H) from T u. We
now define what we call the exploration process with locking of perturbative ambi-
guities attached to the perturbed dynamics, and associated to the map θ used to
define the exploration process Xu of the unperturbed dynamics. This is the process
we use to define a coupling time with ambiguities for the perturbed dynamics.

Informally, the construction can be described as follows: run the exploration process
associated with the unperturbed dynamics on P (instead of Pu). When an α =
(x, i, t) corresponding to a perturbative rule, i.e. i ∈ Ip is encountered, split the
exploration process into |f(Ai)| exploration processes evolving in parallel, one for
each v ∈ f(Ai), in which (x, i, t) is replaced by (x, ιv, t).

The formal construction uses a recursively constructed tree T to label the process.

Let us start with the root of T, denoted r, for which we set X̂r := ∅ and γr :=
0. Then, for any vertex a ∈ T, we set Ba := θ(X̂a). Then, if Ba 6= ∅, denote

n(Ba, γa) = (xa, ia, ta). If ia ∈ Iu, we attach a single son b to a, and let X̂b :=

5One may assume without loss of generality that, for any v, there is a single such rule, since
identical rules with distinct indices may always be merged into a single rule.
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X̂a ∪ {(xa, ia, ta)} and γb := ta. On the other hand, if ia ∈ Ip, we attach to a a

list of sons
(

bv, v ∈ fia(S
Aia )

)

, and let X̂bv := X̂a ∪ {(xa, ιv, ta)} and γbv := ta. If

Ba = ∅, then a has no son. Finally, we let X̂∞ :=
⋃

a∈T X̂a.

We now define T by

(11) T := inf{t; (x, i, t) ∈ X̂∞} if |X̂∞| < +∞,

while T := −∞ if |X̂∞| = +∞, and H is defined by

(12) H := {(xa, ia, ta); a ∈ T
′, ia ∈ I

p},

where T′ denotes the subtree of T obtained by removing the leaves of T. Note that
one may view X̂∞ as the result of the exploration process associated to a certain

map θ̂. However, the representation with a labelled tree turns out to be more
convenient for our purposes.

Remark 2.2. The definition of X̂∞ makes sense whether or not |Xu
∞| has an ex-

ponentially decaying tail, as assumed in the statement of Theorem B: provided that

|X̂∞| is a.s. finite, (T,H) is indeed a CFTP time with ambiguities (see Proposition
6.1), and the role of the tail condition on |Xu

∞| in Theorem B is indeed to ensure

that |X̂∞| is a.s. finite.

3. Additional results

The first result shows that the exponential moments of T ∗ can be controlled in
terms of similar moments for T and H .

For λ ∈ R, define

(13) ΛT (λ) := E(exp(λT )), ΛH,time(λ) := E





∑

(x,i,t)∈H

|Ai| exp(λt)



 .

Theorem C. Assume that λ 6 0 is such that ΛT (λ) < +∞ and ΛH,time(λ) < 1.
Then

E(exp(λT ∗)) ≤ ΛT (λ)(1 − ΛH,time(λ))
−1.

Our next result deals with the range of space-dependence of T ∗. To formalize this
notion, say that a N ∪ {+∞}-valued random variable L defines a stopping box
in Z

d if, for any a ∈ N, one has {L = a} ∈ F−a,a. We say that an a.s. finite
such random variable bounds the width of a CFTP time T if, on {T > −∞},
the value of [Φ0−

T (ξ)](0) (which by definition does not depend on the choice of

ξ ∈ SZ
d

) is measurable with respect to F−L,L. We say that L bounds the width
of a CFTP time with ambiguities if H is measurable with respect to F−L,L and

if there exists a measurable map6 Θ such that, on {T > −∞}, for all ξ ∈ SZ
d

,
[Φ0−

T (ξ)](0) = Θ
(

L,P−L,L, (e(α, T, ξ))α∈H
)

.

6To be more specific about measurability assumptions concerning (e(α, T, ξ))α∈H , we assume that
it is encoded as the random subset of Zd × I × R × S defined by

⋃
α∈H(α, e(α, T, ξ)), where the

σ−algebra on the set of locally finite subsets of Zd × I ×R×S is generated by maps of the form
̟ → |̟ ∩B|, where B is a Borel subset of Zd × I × R× S.
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For λ ∈ R, and 1 ≤ q ≤ d, define

(14) ΛL(λ) := E(eλL), ΛH,space(λ, q) := E





∑

(x,t,i)∈H

∑

z∈Ai

eλ(xq+zq)



 .

Then define L∗+ by L∗+ := sup1≤q≤d sup(x,t)∈Amb∞
xq + L ◦ τx,t, and L∗− by L∗− :=

inf1≤q≤d inf(x,t)∈Amb∞
xq − L ◦ τx,t. Finally, let L∗ := max(L+,−L−).

Theorem D. If g < 1, and L bounds the width of (T,H) then L∗ bounds the width
of T ∗. Moreover, if λ > 0 is such that ΛL(λ) < +∞ and ΛH,space(±λ, q) < 1 for
all q, then

E(exp(λL∗+)) ≤ ΛL(λ) sup
1≤q≤d

(1− ΛH,space(λ, q))
−1,

E(exp(−λL∗−)) ≤ ΛL(λ) sup
1≤q≤d

(1− ΛH,space(−λ, q))
−1.

Finally, we have the following extension of Theorem B.

Theorem E (Extension of Theorem B). Under the assumptions of Theorem B, for
any list of perturbative rules with small enough ǫ and κ, the pair (T,H) defined by
(11) and (12) defines a CFTP time with ambiguities that satisfies the assumptions
of Theorem A, together with the assumptions of Theorems C and D for small enough
|λ|.

For the sake of readability, we did not include explicit estimates in the statement of
Theorem E. However, looking at the proofs given in Section 6, it is easy to obtain
explicit control upon the characteristics of (T,H) (namely, g, ΛT , ΛH,time, ΛL,
ΛH,space) in terms of ǫ, κ, and the parameters (Ri)i∈Iu of the unperturbed model.
Combined with Theorems A, C and D, this leads to an explicit control upon the
characteristics of the resulting CFTP time T ∗.

4. Applications

In this section, we give some examples of dynamics which satisfy the properties re-
quired for the unperturbed dynamics in Theorem B. Since we discuss unperturbed
dynamics only, it is unnecessary to use u superscripts to distinguish between per-
turbed and unperturbed dynamics, and consequently such superscripts are not used
in this section.

4.1. Perturbations of finite factor models. We say that the dynamics possess
the finite factor property if there exists b ∈ N such that, for all t < 0,

[

Φ0−
t (ξ)

]

is

measurable with respect to P−b,bt and
(

ξ(x); x ∈ {−b, . . . , b}d
)

.

Proposition 4.1. Any dynamics with the finite factor property and the positive
rates property satisfies the assumptions of Theorem B, i.e. there exists a CFTP time
associated with an exploration process whose total size has some finite exponential
moment.

Proof. Given X ∈ Ωf , let q := |X |, and denote by (yk, jk, sk)0≤k≤q−1 the list of
elements of X , indexed by decreasing order of time, so that s0 > · · · > sq−1. Let
also h := (2b+ 1)d. Now consider the exploration process associated with the map
θ defined as follows. Set θ(X) := ∅ when the following three conditions are met
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a) |X | ≥ h,
b) {yq−1, . . . , yq−h} = {−b, . . . , b}d,
c) for all q − h ≤ k ≤ q − 1, Ajk = ∅,

Otherwise, let θ(X) := {−b, . . . , b}d. Denote by (Xn)n the corresponding explo-
ration process, and observe that condition (8) is satisfied with β(ℓ) := b for all
ℓ. One checks that given Xn, the probability that Xn+h satisfies θ(Xn+h) = ∅
is bounded below by h!h−hρh, where ρ := (

∑

i∈I ri1(Ai = ∅))(
∑

i∈I ri)
−1. This

proves the fact that there exists µ > 0 such that E
(

eµ|X∞ |
)

< +∞. Let us now
check that T := γ∞ is a CFTP time for the dynamics, associated with the explo-
ration process defined by θ. Define U to be the a.s. finite smallest index k such
that θ(Xk) = ∅. From conditions a) b) c), one has that, on {U < +∞}, for all

x ∈ {−b, . . . , b}d, [Φ
γU−h−
T (ξ)](x) takes the same value for every ξ, and this value

is measurable with respect to (yU , jU ), . . . , (yU−h+1, jU−h+1). On the other hand,
the fact that θ(Xk) = {−b, . . . , b}d for all k ≤ U − h shows that XU−h = P−b,bγU−h

.
Now by the definition of the flow, one has that

[Φ0−
T (ξ)](0) =

[

Φ0−
γU−h

(

Φ
γU−h−
T (ξ)

)]

(0).

The finite factor property then yields that [Φ0−
T (ξ)](0) is the same whatever the

value of ξ, and that this value is measurable with respect to XU . �

The simplest example of dynamics with the finite factor property is the case where
distinct sites do not interact, i.e. Ai ⊂ {0} for every i ∈ I. In this case, the
factor property holds with b = 0, and each site evolves independently according to
a continuous-time Markov chain on S.

A more sophisticated example, whose study was our original motivation for this
work, is the so-called class of RN+YpR nucleotide substitution models, see [1],
whose goal is to provide tractable models that include neighbor-dependent effects
such as the well-known hypermutability of CpG dinucleotides. These models use
the nucleotidic alphabet S := {A,C,G, T } as their state space, and Z as their set of
sites, with SZ being an idealized representation of a DNA sequence. Additionally,
S is divided into the set of pyrimidines Y := {C, T }, and purines R := {A,G}, and
we say that Y is the type of C and T , while R is the type of A and G.

The RN+YpR dynamics is specified through the following list of rules (each rule is
of the form (f,A, r)):

• unconditional rules: for each v ∈ S, a rule with A := ∅, r > 0 and f ≡ v;
• transversion rules: for each v ∈ S, a rule with A := {0} and f(w) := v if v
and w are not of the same type, f(w) := w otherwise;
• transition rules: for each v ∈ S, a rule with A := {0} and f(w) := v if v
and w are of the same type, f(w) := w otherwise;
• left-dependent rules: for each u ∈ Y , v ∈ R, v′ ∈ R, a rule with A :=
{−1, 0}, f(w−1, w0) := v′ if (w−1, w0) = (u, v), f(w−1, w0) := w0 otherwise;
• right-dependent rules: for each u ∈ Y , v ∈ R, u′ ∈ Y , a rule with A :=
{0, 1}, f(w0, w1) := u′ if (w0, w1) = (u, v), f(w0, w1) := w0 otherwise.

It turns out (see [1]) that RN+YpR models have the finite factor property with
b := 1. Let us insist that the rates of left- and right-dependent rules, whence
the strength of the interaction between sites, may be arbitrarily large, so that the
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RN+YpR class contains models that are not weakly dependent. Note that one
can generalize this class of models to produce interacting particle systems with an
arbitrarily long range of dependence, where the minimal b for which the finite factor
property holds can be made arbitrarily large, although these seem less biologically
motivated. Note also that, in the case of the RN+YpR model, one can define
alternative coupling times which, as opposed to the one defined in the proof of
Proposition 4.1, do not get larger and larger when the interaction strength (given
by the rates of the rules involving interactions between neighboring sites) gets large,
see [2].

4.2. Perturbations of voter-like models. We now describe how Theorem B
can be applied to variants of classical interacting particle systems such as the voter
model on Z

d (see [12]).

4.2.1. Classical linear voter model. Let p(·) denote a probability measure on Z
d

with finite support. The dynamics of the classical voter model can be defined
thanks to the following set of rules:

• state-copying rules: for each x in the support of p(·), a rule with A := {0, x}
and r := p(x), with f(w0, wx) := wx.

One might interpret this model as describing the evolution of opinions of individuals
attached to the sites of Zd, with S representing the set of possible opinions. The
individual at x waits for a unit exponential time, then chooses a random location
y ∈ Z

d with probability p(y−x), and adopts the opinion of the individual attached
to site y. As such, the voter model does not satisfy the assumptions of Theorem
B, since it does not enjoy the positive rates property. As a consequence, we add to
this model a list of unconditional rules so as to enforce this property:

• unconditional rules: for each v ∈ S, a rule with A := ∅, r > 0 and f ≡ v.

We call the resulting model ”noisy voter model”. Note that this addition dramati-
cally changes the dynamics of the voter model, since it automatically turns it into
an ergodic interacting particle system. Note that we may consider this addition as
part of the perturbation of the original voter model we want to study, but this part
of the perturbation has to be included in the dynamics prior to the application of
Theorem B.

Proposition 4.2. The noisy voter model satisfies the assumptions of Theorem B.

Proof. The corresponding exploration process is defined as follows. First θ(∅) :=
{0}. Then, given a non-empty X ∈ Ωf , denote by (y, j, s) the element of X with
the lowest time-coordinate. Then let θ(X) := ∅ if Aj = ∅. Otherwise, Aj is of the
form {0, x}, and we let θ(X) := {y + x}. We denote by (Xn)n the corresponding
exploration process. Note that condition (8) is satisfied with β(ℓ) := sup{|z|; p(z) 6=
0} × ℓ. To prove that the |X∞| has some finite exponential moment, note that,
conditional upon Xn, if θ(Xn) 6= ∅, the probability that the next point to be included
in Xn+1 corresponds to a rule of the form f ≡ v for some v, is bounded below by the
ratio (

∑

v∈S rιv )(
∑

i∈I ri)
−1. Since in this case θ(Xn+1) = ∅, a geometric upper

bound holds for the tail of |X∞|. Let us now check that T defined as the least
time-coordinate of an element in X∞ is a CFTP time for the dynamics, associated
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with the exploration process defined by θ. Indeed, it is clear from the definition of
the dynamics that if the element of X∞ with the least time-coordinate is associated
with the rule ιv, then

[

Φ0−
T (ξ)

]

(0) = v for all ξ. �

4.2.2. Voter model with asymmetric polling. We now consider a variation upon the
classical voter model. Let A(1), . . . , A(m) denote a list of finite non-empty subsets
of Zd, r(1), . . . , r(m) denote a list of non-negative real numbers, and take as a state
space S := {+,−}. The set of rules characterizing our model is the following:

• polling rules: for each 1 ≤ i ≤ m, a rule with A := A(i) and f(w) := + if
wx = + for at least one x ∈ A(i), f(w) := − otherwise.

We call this model the voter model with asymmetric polling. Here, an individual
performs a poll within a randomly chosen finite subset of individuals, and adopts
an opinion that depends on the results of the poll in an asymmetric way: indeed,
the individual will adopt the opinion denoted + if any of the individuals in the poll
expresses the opinion +, while, to adopt the opinion denoted −, consensus within
the poll is required.

As in the case of the classical linear voter model, we add to the above set of rules
a list of unconditional rules ensuring the positive rates property:

• unconditional rules: for v = +,−, a rule with A := ∅, r > 0 and f ≡ v.

The resulting model is called noisy voter model with asymmetric polling.

Proposition 4.3. The noisy voter model with asymmetric polling satisfies the as-
sumptions of Theorem B.

Proof. The corresponding exploration process is defined as follows. First θ(∅) :=
{0}. Then, given a non-empty set X ∈ Ωf , denote by (y, j, s) the element of X
with the least time-coordinate. Then let θ(X) := ∅ if Aj = ∅ and fj ≡ +. If Aj = ∅
and fj ≡ −, then let θ(X) := θ(X \ {(y, j, s)}) \ {j}. Otherwise, Aj is of the form

A(k) for some 1 ≤ k ≤ m, and we let θ(X) := θ(X \ {(y, j, s)}) ∪ (y + A(k)). We
denote by (Xn)n the corresponding exploration process. Note that condition (8) is
satisfied with β(ℓ) := sup{|z|; z ∈ ∪1≤k≤mA(k)} × ℓ.

To prove that the number of points in |X∞| has some finite exponential moment,
note that, conditional upon Xn, if θ(Xn) 6= ∅, the probability that the next point
to be included in Xn+1 corresponds to the rule with f ≡ +, is bounded below
by the ratio rι+(

∑

i∈I ri)
−1. Since in this case θ(Xn+1) = ∅, a geometric upper

bound holds for the tail of |X∞|. Let us now check that T defined as the least
time-coordinate of an element in X∞ is a CFTP time for the dynamics, associated
with the exploration process defined by θ. Indeed, it is clear from the definition of
the dynamics that if the element of X∞ with the least time coordinate is associated
with the rule ι+,

[

Φ0−
T (ξ)

]

(0) = + for all ξ, while, if this element is associated with

the rule ι−,
[

Φ0−
T (ξ)

]

(0) = − for all ξ. �

5. Proofs of Theorems A, C and D

We start with a proposition showing that, if T ∗ is finite with probability one, then
T ∗ is indeed a CFTP time.
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Proposition 5.1. If P(T ∗ > −∞) = 1, then T ∗ is a CFTP time.

Proof. Note that, with our definitions, T ∗ > −∞ implies that |Amb∞| < +∞.
The proof is by induction on |Amb∞|. Specifically, we shall show for all n ≥ 0
that the following property (Pn) is true: on {|Amb∞| = n, T ∗ > −∞}, for all

ξ1, ξ2 ∈ SZ
d

, [Φ0−
T∗ (ξ1)](0) = [Φ0−

T∗ (ξ2)](0). Assume throughout that T ∗ > −∞, and
let us start with n = 1. If |Amb∞| = 1, a first possibility is that H = ∅. In this
case, the definition of a CFTP time with ambiguities shows that [Φ0−

T (ξ1)](0) =

[Φ0−
T (ξ2)](0) for all ξ1, ξ2 ∈ SZ

d

, whence, since by definition T ∗ ≤ T , the fact that

[Φ0−
T∗ (ξ1)](0) = [Φ0−

T∗ (ξ2)](0) for all ξ1, ξ2 ∈ SZ
d

. If H 6= ∅, the fact that |Amb∞| = 1
shows that every α = (x, i, t) ∈ H is such that Ai = ∅. In this case, for any s ≤ t,
e(α, ξ, s) depends neither on ξ nor s, so that again [Φ0−

T∗ (ξ1)](0) = [Φ0−
T∗ (ξ2)](0) for

all ξ1, ξ2 ∈ SZ
d

. We now show that (Pn+1) is valid provided that (Pk) is valid for
all 1 ≤ k ≤ n. Assume that |Amb∞| = n + 1. It is enough to prove that, for any
α = (z, i, t) ∈ H such that Ai 6= ∅, e(α, T ∗, ξ) admits the same value for every

ξ ∈ SZ
d

. Consider such an α = (z, i, t), let y ∈ Ai, and x := z + y. Then observe
that, by definition,

(15) τ−1x,t ◦Amb∞ ◦ τx,t ⊂
⋃

k≥1

Ambk.

Since Amb0 = {(0, 0)} while (0, 0) /∈
⋃

k≥1 Ambk, our assumption that |Amb∞| =
n+1 implies that |

⋃

k≥1 Ambk| = n. We thus deduce from (15) that |Amb∞◦τx,t| ≤
n. Moreover, (15) shows that t + T ∗ ◦ τx,t ≥ T ∗, so that our assumption that
T ∗ > −∞ implies that T ∗ ◦ τx,t > −∞. Our induction hypothesis then implies

that for all ξ1, ξ2 ∈ SZ
d

, [Φ0−
T∗ (ξ1)](0) ◦ τx,t = [Φ0−

T∗ (ξ2)](0) ◦ τx,t, which rewrites as

[Φt−
t+T∗◦τx,t

(ξ1)](x) = [Φt−
t+T∗◦τx,t

(ξ2)](x). We have seen that T ∗ ≤ t + T ∗ ◦ τx,t, so

we can deduce that e(α, T ∗, ξ) does not depend on ξ ∈ SZ
d

. �

Let M denote the intensity measure of the set Amb1, i.e. the positive measure on
Z
d × R defined for all Borel set C by

M(C) := E(|Amb1 ∩C|) = E





∑

(z,i,s)∈H

∑

y∈Ai

1((z + y, s) ∈ C)



 .

We use the notation ⋆ for the convolution product of measures on Z
d × R. For all

n ≥ 0, M⋆n denotes the convolution product M ⋆ · · · ⋆ M with n factors, with the
convention M⋆0 := δ(0,0).

Our key first-moment estimates are given in the next proposition and its corollary.

Proposition 5.2. For any measurable f : Z
d×R→ R+, and any n ≥ 0, one has

E





∑

ζ∈Ambn

f(ζ)



 ≤

∫

f(ζ)dM⋆n(ζ),

with the convention M⋆0 := δ(0,0).
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Corollary 5.3. For measurable f : Z
d×R→ R+, any non-negative F0−measurable

random variable D, and any n ≥ 0, one has

E





∑

ζ∈Ambn

f(ζ) ·D ◦ τζ



 ≤ E(D) ·

∫

f(ζ)dM⋆n(ζ),

with the convention M⋆0 := δ(0,0).

The proof makes use of the so-called refined Campbell theorem (see [15]), which we
quote here in the special form we need:

Theorem F. For any measurable map Ψ : (Zd × I ×R)× Ω→ R+, one has the
following identity:

E

(

∑

α∈P

Ψ(α,P)

)

=

∫

E(Ψ(α,P ∪ {α}))dJ(α),

where J denotes the intensity measure of P.

A crucial property of the sets Ambn is that they possess the stopping property, as
stated in the following lemma.

Lemma 5.4. For all n ≥ 0, Ambn has the stopping property, i.e. for all t < 0,
Ambn ∩ Pt is Ft−measurable.

Before we prove Lemma 5.4, we need the following lemma.

Lemma 5.5. There exists a measurable map Ξ from Ω̃×]−∞, 0[ to Ω̃ such that,
for all t < 0,

H ∩ Pt = Ξ(t,Pt).

Proof. We first prove that there exists a measurable map V from Ω×]−∞, 0[ to Ω̃
such that, for all t > 0,

(16) H ∩ Pt = V (t,P).

For each (x, i) ∈ Z
d × I, let (ψ(x, i, k))k≥1 denote the successive points P whose

coordinate on Z
d × I is (x, i), in decreasing order of the R−coordinate. We let

ψ(x, i, k) =: (x, i, s(x, i, k)). Given a Borel set B of Zd × I × R, one has that, for
all t < 0,

|H ∩ Pt ∩B| =
∑

x,i,k

1(ψ(x, i, k) ∈ H)1(s(x, i, k) ≥ t)1(ψ(x, i, k) ∈ B).

Since H is a measurable map from (Ω,F) to (Ω̃, F̃ ), one has that ω 7→ 1(ψ(x, i, k) ∈
H)(ω) is a measurable map from (Ω,F) to R. This is also the case for ω 7→
1(ψ(x, i, k) ∈ B)(ω). Finally, (t, ω) 7→ (s(x, i, k)−t) is measurable from Ω×]−∞, 0[
to R, so this is also the case for 1(s(x, i, k) ≥ t). We conclude that (ω, t) 7→ H ∩Pt

is measurable from Ω×]−∞, 0[ to Ω̃, whence the existence of V . Consider now an
arbitrarily fixed element ω0 ∈ Ω that contains no point with 0 R−coordinate, and
define the map a from Ω̃×]−∞, 0[ to Ω by

a(ω̃, t) :=
(

ω̃ ∩ (Zd × I × [t, 0[)
)

∪ τ0,t(ω0).
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One checks that a is measurable by writing

|a(ω, t) ∩B| =
∑

x,i,k

1(s(x, i, k)(ω̃) ≥ t)1(ψ(x, i, k)(ω̃) ∈ B) + |τ0,t(ω0) ∩B|,

where we have extended the definition of ψ(x, i, k) to Ω̃ in the obvious way, with
the convention that s(x, i, k) takes the value −∞ when the value of k excesses
the number of points to be indexed. Now, since, for any given t < 0, H ∩ Pt is
Ft−measurable by assumption, one has that, in view of (16), for any t < 0,

V (t,P) = V (t, a(Pt, t)).

As a consequence, the conclusion of the proposition is achieved by defining

Ξ(t, ω̃) := V (t, a(ω̃, t)).

�

Proof of Lemma 5.4. We re-use the notations introduced in the proof of Lemma
5.5. The proof is by induction. For n = 0, the result is obvious since Amb0 :=
{(0, 0)}. Now assume the result to be true for a given n ≥ 0. Define Dn :=
{(w, i, k); π(ψ(w, i, k)) ∩ Ambn 6= ∅}. By definition, one has

(17) Ambn+1 :=
⋃

(x,i,k)∈Dn

π
(

τ−1x,s(x,i,k) ◦H ◦ τx,s(x,i,k)

)

,

with the slight abuse of notation that, given a subset C of Zd × I × R, π(C) :=
⋃

c∈C π(c).

Now consider t < 0. From Lemma 5.5, we deduce that the map on Ω × [t, 0]
defined by (ω, s) 7→

(

τ−1x,s ◦H ◦ τx,s(ω)
)

∩ Pt(ω) is Ft ⊗ B([t, 0])−measurable. On
the other hand, our induction hypothesis shows that for any (x, i, k), the event
{(x, i, k) ∈ Dn, s(x, i, k) ≥ t} is Ft−measurable. We can then deduce from (17)
that Ambn+1 ∩ Pt is Ft−measurable. �

Proof of Proposition 5.2. We proceed by induction. For n = 0, the result is imme-
diate since by definition Amb0 := {(0, 0)}, while, for n = 1, the result is a direct
consequence of M being the intensity measure of Amb1. Now consider n ≥ 1, and
note that, by definition,

(18)
∑

ζ∈Ambn+1

f(ζ) ≤
∑

(x,t)∈Ambn

gx,t,

with

gx,t :=
∑

(z,i,s)∈τ−1

x,t◦H◦τx,t

∑

y∈Ai

f(z + y, i, s).

For (x, i, t) ∈ Z
d × I × R, define π(x, i, t) :=

⋃

z∈Ai
{(x+ z, t)}. Now we rewrite

∑

(x,t)∈Ambn

gx,t =
∑

α∈P

Ψ(α,P),

with

Ψ(α, ω) := 1(π(α) ⊂ Ambn(ω))
∑

(x,t)∈π(α)

gx,t(ω).
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Applying Campbell’s theorem (Theorem F), we deduce that

(19) E





∑

ζ∈Ambn+1

f(ζ)



 ≤

∫

E(Ψ(α,P ∪ {α}))dJ(α).

No we deduce from Lemma 5.4 that, for all α = (w, j, t) ∈ Z
d × I × R such that

t < 0, the event {π(α) ⊂ Ambn(P ∪ {α})} is Ft−measurable. On the other hand,
for all (x, t) ∈ π(α), the random variable gx,t is measurable with respect to σ(P<t),
where P<t := P ∩ (Zd ×I×]−∞, t[). As a consequence, 1(π(α) ⊂ Ambn(P ∪ {α})
and

∑

(x,t)∈π(α) gx,t(P ∪ {α}) are independent. Moreover, one has that

E





∑

(x,t)∈π(α)

gx,t(P ∪ {α})



 =
∑

(x,t)∈π(α)

ϕ(x, t),

with

ϕ(x, t) :=

∫

f(ζ)d(δ(x,t) ⋆ M)(ζ).

Thus

(20) E(Ψ(α,P ∪ {α})) = E



1(π(α) ⊂ Ambn(P ∪ {α}))×
∑

(x,t)∈π(α)

ϕ(x, t)



 ,

Applying again Campbell’s theorem, we deduce from (20) that

∫

E(Ψ(α,P ∪ {α}))dJ(α) = E





∑

α∈P

1(π(α) ⊂ Ambn)
∑

(x,t)∈π(α)

ϕ(x, t)





= E





∑

ζ∈Ambn

ϕ(ζ)



 .

Assuming the conclusion of the proposition to be true for n, we deduce that
∫

E(Ψ(α,P ∪ {α}))dJ(α) =

∫

ϕ(ζ)dM⋆n(ζ) =

∫

f(ζ)dM⋆(n+1)(ζ).

In view of (19), this establishes the conclusion of the proposition for n+ 1. �

Proof of Corollary 5.3. For n = 0 the result is immediate. For n ≥ 1,
∑

ζ∈Ambn

f(ζ) ·D ◦ τζ =
∑

α∈P

Ψ′(α,P),

with

Ψ′(α, ω) := 1(π(α) ⊂ Ambn(ω))
∑

(x,t)∈π(α)

g′x,t(ω),

g′x,t := f(x, t) ·D ◦ τx,t(ω).

Then Campbell’s theorem shows that

E





∑

ζ∈Ambn

f(ζ) ·D ◦ τζ



 =

∫

E(Ψ′(α,P ∪ {α}))dJ(α).
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As in the proof of Proposition 5.2, given α = (w, j, t) ∈ Z
d×I ×R such that t < 0,

the event {π(α) ⊂ Ambn(P ∪ {α})} is Ft−measurable while, for all (x, t) ∈ π(α),
the random variable g′x,t is measurable with respect to σ(P<t). Moreover,

E
(

g′x,t(P ∪ {α}
)

) = f(x, t) · E(D),

so that

E(Ψ′(α,P ∪ {α})) = E



1(π(α) ⊂ Ambn(ω))
∑

(x,t)∈π(α)

f(x, t) · E(D)



 .

Another application of Campbell’s theorem yields that

∫

E(Ψ′(α,P ∪ {α}))dJ(α) = E(D) · E





∑

α∈P

1(π(α) ⊂ Ambn)
∑

(x,t)∈π(α)

f(x, t)





= E(D) · E





∑

ζ∈Ambn

f(ζ)



 .

Proposition 5.2 then yields the conclusion. �

Proof of Theorem A. Assume that g < 1, and note that, by definition, one has
∫

dM(ζ) = g. We now use Proposition 5.2 with f ≡ 1, and obtain that, for all
n ≥ 0, E(|Ambn|) ≤ gn. As a consequence,

E(|Amb∞|) ≤ E





∑

n≥0

|Ambn|



 =
∑

n≥0

E (|Ambn|) ≤
∑

n≥0

gn < +∞.

It is now clear that P(|Amb∞| < +∞) = 1. Similarly, applying Corollary 5.3 with
f ≡ 1 and D := 1(T = −∞) yields that, for all n ≥ 0,

E





∑

(x,t)∈Ambn

1(T ◦ τx,t = −∞)



 = 0.

As a consequence, with probability one, T ◦ τx,t > −∞ for all (x, t) ∈ Amb∞. We
have thus proved that P(T ∗ > −∞) = 1. The conclusion of the theorem is now a
consequence of Proposition 5.1. �

Proof of Theorem C. We apply Corollary 5.3 with f(x, t) ≡ exp(λt) and D :=
exp(λT ). As a result, for all n ≥ 0,

E





∑

(x,t)∈Ambn

eλ(t+T◦τx,t)



 ≤ E
(

eλT
)

(∫

eλtdM⋆n(x, t)

)

.

One has
∫

eλtdM⋆n(x, t) =

(∫

eλtdM(x, t)

)n

= (ΛH,time(λ))
n.

Summing over n ≥ 0, we obtain that

E





∑

(x,t)∈Amb∞

eλ(t+T◦τx,t)



 ≤
∑

n≥0

E
(

eλT
)

(ΛH,time(λ))
n =

E
(

eλT
)

1− ΛH,time(λ)
.
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Now by definition of T ∗, using the fact that λ < 0,

E(exp(λT ∗)) ≤ E





∑

(x,t)∈Amb∞

eλ(t+T◦τx,t)



 .

The conclusion follows. �

Proof of Theorem D (sketch). First note that, when g < 1, L∗+ and L∗− are a.s.
finite, using an argument similar to the one establishing that T ∗ is a.s. finite in
the proof of Theorem A. Moreover, the proof of the estimates on E(exp(λL∗+))
and E(exp(−λL∗−)) is completely similar to the proof of Theorem C. It remains
to prove that L∗ indeed bounds the width of T ∗. This is done by adapting the
proof of Proposition 5.1 as follows. We work on the event T ∗ > −∞. First note
that, thanks to the fact that L defines a stopping box, L is F−L

′,L′

−measurable
for any random variable such that L ≤ L′. Then observe that Amb∞ is measurable
with respect to F−L

∗,L∗

, since, for each n ≥ 0 and (x, t) ∈ Ambn, one has that
L∗− ≤ x − L ◦ τx,t ≤ x + L ◦ τx,t ≤ L∗+. We now start the induction with the
case |Amb∞| = 1. Then the values of the e(α, T, ξ) for α ∈ H are completely
determined by H itself, and H is measurable with respect to F−L,L, so we are
done. If |Amb∞| = n+1, we apply the induction hypothesis to every |Amb∞ ◦ τx,t|
such that x = z + y for some α = (z, i, t) ∈ Amb1 and y ∈ Ai, then deduce that
[Φ0−

T∗ (ξ)](0) has the required measurability properties. �

6. Proof of Theorem B

We start with a proposition showing that (T,H) is a CFTP time with ambiguities

for the perturbed dynamics if X̂∞ is a finite set P−a.s.

Proposition 6.1. If P(|X̂∞| < +∞) = 1, then (T,H) is a CFTP time with ambi-
guities.

Proof. First note that the stopping property of X̂∞ is a direct consequence of the
way the process is constructed. We now work on the event that |X̂∞| is finite.

Consider ξ ∈ SZ
d

, and let Q be the element of Ωu obtained from P by replacing
any α = (x, i, s) ∈ P such that s ≥ T and i ∈ Ip by (x, ιe(α,T,ξ), s), and suppressing
any α = (x, i, s) ∈ P such that s < T and i ∈ Ip. Let ht(ξ) denote the random
variable defined on Ωu by

ht(ξ) := [(Φu)0−t (ξ)](0),

where Φu denotes the stochastic flow defined by Pu on Ωu. From the definition of
the dynamics, we see that

(21) [Φ0−
T (ξ)](0) = [hT (ξ)](Q).

Now define a path c0, . . . , cm in T as follows. Start with c0 := r. Then assume that
c0, . . . , ck have been defined. If ck has no son in T, the path ends at ck, so that
m := k. If ck has a single son in T, then ck+1 is defined to be this single son. Finally,
if ck has several sons in T, ck+1 is defined to be the son associated with the value

v := e((xck , ick , tck), T, ξ). By definition of the exploration processes Xu and X̂, one

has that Xu
∞(Q) = X̂cm . Then by definition T u(Q) = inf{t; (x, i, t) ∈ Xu

∞(Q)}, so

that the identity Xu
∞(Q) = X̂cm implies that T u(Q) ≥ T . From the fact that T u
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is associated with the exploration process specified by θ, there exists a measurable
map G defined on the set Ωu

f such that, on the event {T u > −∞} = {|Xu
∞| < +∞},

one has, for every χ ∈ SZ
d

, hTu(χ) = G(Xu
∞). As a consequence,

(22) [hT (ξ)](Q) = G(X̂cm).

It is now immediate from (21) and (22) that if e(α, ξ1, T ) = e(α, ξ2, T ) for every

α ∈ H , then [Φ0−
T (ξ1)](0) = [Φ0−

T (ξ2)](0), since both values of X̂cm obtained starting
from ξ1 or ξ2 are identical. �

The next two propositions are the key first-moment estimates needed to control
X̂∞.

Define a kernelK on Ωu
f as follows. If θ(X) = ∅, then K(X, ·) = δX(·). If θ(X) 6= ∅,

let s := inf{t; (x, i, t) ∈ X}, and let

dK(X,X ∪ {(x, i, t)}) = ri exp(|θ(X)|ru(t− s))1(t < s)1(x ∈ θ(X))dJu(x, i, t),

with ru :=
∑

j∈Iu rj . From the definition, one has the following.

Proposition 6.2. The sequence (Xu
ℓ )ℓ≥0 is a Markov chain on Ωu

f with initial state

∅ and transition kernel K.

Now define a kernel K̂ on the set of elements X ∈ Ωu
f such that θ(X) 6= ∅ as follows.

Let s := inf{t; (x, i, t) ∈ X}, and let

dK̂(X,X ∪ {(x, i, t)}) = r̂i exp(|θ(X)|r(t− s))1(t < s)1(x ∈ θ(X))dJu(x, i, t),

with, for i ∈ Iu, r̂i := ri +
∑

j∈Ip
∑

v∈fj(Aj)
rj1(ιv = i), and r :=

∑

j∈I rj . Define

also the kernel L by

dL(X, (x, i, t)) = ri exp(|θ(X)|r(s − t))1(t < s)1(x ∈ θ(X))dJ(x, i, t).

For ℓ ≥ 0, let Tℓ (resp. T
′
ℓ) denote the set of vertices at distance ℓ from the root in

T (resp. T′); let also

Γℓ :=
{

(X0, . . . , Xℓ) ∈ (Ωu
f )

ℓ+1; θ(X0) 6= ∅, . . . , θ(Xℓ−1) 6= ∅
}

,

∆ℓ :=
{

(X0, . . . , Xℓ) ∈ (Ωu
f )

ℓ+1; θ(X0) 6= ∅, . . . , θ(Xℓ) 6= ∅
}

.

Proposition 6.3. For every ℓ ≥ 0, and any measurable map F : Ωu
f → R+, one

has the identity

E

(

∑

a∈Tℓ

F (X̂a)

)

=

∫

Γℓ

F (Xℓ)dδ∅(X0)dK̂(X0, X1) · · · dK̂(Xℓ−1, Xℓ).

For every ℓ ≥ 0, and any measurable map f : Z
d × I × R → R+, one has the

identity

E





∑

a∈T′

ℓ

f(xa, ia, ta)



 =

∫

f(α)dδ∅(X0)dK̂(X0, X1) · · · dK̂(Xℓ−1, Xℓ)dL(Xℓ, α),

where the integral is over (X0, . . . , Xℓ, α) ∈ ∆ℓ × (Zd × I × R).
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Proof. The proof is similar to that of Proposition 5.2. We start with the first
identity, whose proof is by induction. For ℓ = 0, 1, the result is a direct consequence
of the definition. Now for ℓ ≥ 1, write

(23)
∑

a∈Tℓ+1

F (X̂a) =
∑

α∈P

Z1(α,P),

where

Z1(α, ·) :=
∑

c∈T′

ℓ−1

1(α = (xc, ic, tc))
∑

b∈Tℓ, b←c

1(θ(X̂b) 6= ∅)Z2(X̂b, ·),

with b← c meaning that b is a son of c in T, and with

Z2(X, ·) := 1(j ∈ Iu)F (X ∪ {(y, j, s)}) + 1(j ∈ Ip)
∑

v∈fj(Aj)

F (X ∪ {(y, ιv, s)}),

with (y, j, s) := n(θ(X), t), and t := inf{ν; (w, k, ν) ∈ X}. (We write Z1(α, ·) and
Z(X, ·) to make the dependence on ω explicit.)

By Campbell’s theorem (Theorem F), one has that

E





∑

a∈Tℓ+1

F (X̂a)



 =

∫

E(Z1(α,P ∪ {α}))dJ(α).

Now given α = (x, i, t), define the random finite counting measure7M on Ωu
f by

M :=
∑

c∈T′

ℓ−1

1(α = (xc, ic, tc))
∑

b∈Tℓ, b←c

1(θ(X̂b) 6= ∅)δX̂b
,

so that

Z1(α, ·) =

∫

Z2(X, ·)dM(X, ·).

Note that M is Ft−measurable, while, for any X ∈ Ωu
f such that θ(X) 6= ∅ and

t := inf{ν; (w, k, ν) ∈ X}, Z2(X, ·) is measurable with respect to σ(P<t) and

satisfies E(Z2(X, ·)) = K̂F (X). We deduce that

E(Z1(α,P ∪ {α})) = E

(∫

K̂F (X)dM(X,P ∪ {α})

)

= E(Z3(α,P ∪ {α})),

where

Z3(α, ·) :=
∑

c∈T′

ℓ−1

1(α = (xc, ic, tc))
∑

b∈Tℓ, b←c

K̂F (X̂b).

Using Campbell’s theorem again shows that
∫

E(Z3(α,P ∪ {α}))dJ(α) = E

(

∑

b∈Tℓ

K̂F (X̂b)

)

.

This computation allows induction over ℓ to be used to prove the desired identity
for all ℓ ≥ 1. The second identity of the Proposition can be deduced from the first
one, using an argument similar to the derivation of Corollary 5.3 from Proposition
5.2. �

7We equip the set of finite counting measures on Ωu
f

with the σ−algebra generated by all the

maps of the form Y 7→ Y (B), where B belongs to the σ−algebra defined on Ωu
f
.
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Combined with Propositions 6.2 and 6.3, the following remark is the key to ob-

taining estimates on X̂ from the properties of Xu. Consider X ∈ Ωu
f such that

θ(X) 6= ∅. From the definition of ǫ given in (9) and the fact that ru ≤ r, one has
that

(24) dK̂(X,X ∪ {(x, i, t)}) ≤ (1 + ǫ)dK(X,X ∪ {(x, i, t)}).

We can now prove the various estimates that are needed in the proof of Theorem
B.

Lemma 6.4. For every ℓ ≥ 1,

E(|Tℓ|) ≤ (1 + ǫ)ℓPu(|Xu
∞| ≥ ℓ).

Proof. By Proposition 6.3, one has that

E(|Tℓ|) =

∫

(X0,...,Xℓ)∈Γℓ

dδ∅(X0)dK̂(X0, X1) · · · dK̂(Xℓ−1, Xℓ),

From (24), one deduces that

E(|Tℓ|) ≤ (1 + ǫ)ℓ
∫

(X0,...,Xℓ)∈Γℓ

dδ∅(X0)dK(X0, X1) · · · dK(Xℓ−1, Xℓ).

But by Proposition 6.2,
∫

(X0,...,Xℓ)∈Γℓ

dδ∅(X0)dK(X0, X1) · · · dK(Xℓ−1, Xℓ) = P
u(|Xu

∞| ≥ ℓ),

so that

E(|Tℓ|) ≤ (1 + ǫ)ℓPu(|Xu
∞| ≥ ℓ).

�

Lemma 6.5. For every ℓ ≥ 0,

E





∑

a∈T′

ℓ

|Aia |1(ia ∈ I
p)



 ≤ κ(1 + ǫ)ℓPu(|Xu
∞| > ℓ).

Proof. Let f(x, i, t) := |Ai|1(i ∈ I
p). Note that, given X ∈ Ωu

f such that θ(X) 6= ∅,

one has
∫

(x,i,t)∈Zd×I×R f(x, i, t)dL(X, (x, i, t)) = κ. Using Proposition 6.3 and (24),

one obtains that

E





∑

a∈T′

ℓ

|Aia |1(ia ∈ I
p)



 ≤ κ(1 + ǫ)ℓI2,

where

I2 =

∫

(X0,··· ,Xℓ)∈∆ℓ

dδ∅(X0)dK(X0, X1) · · · dK(Xℓ−1, Xℓ) = P
u(|Xu

∞| > ℓ).

�

Lemma 6.6. For every ℓ ≥ 0, and λ < r,

E





∑

a∈T′

ℓ

exp(λta)



 ≤
r

r− λ
(1 + ǫ)ℓEu(exp(λtℓ−1)1(|X

u
∞| > ℓ)),
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with the convention t−1 := 0 (remember that (xn, in, tn)n≥0 corresponds to the
exploration process Xu).

Lemma 6.7. For every ℓ ≥ 0, and λ < r,

E





∑

a∈T′

ℓ

|Ai| exp(λta)1(ia ∈ I
p)



 ≤
κr

r− λ
(1 + ǫ)ℓEu(exp(λtℓ−1)1(|X

u
∞| > ℓ)),

with the convention t−1 := 0.

Proof. We prove Lemma 6.7, the proof of Lemma 6.6 being quite similar. Let
f(x, i, t) := |Ai| exp(λt)1(i ∈ Ip). Consider X ∈ Ωu

f such that θ(X) 6= ∅, and

let s := inf{t; (x, i, t) ∈ X}. One has
∫

(x,i,t)∈Zd×I×R
f(x, i, t)dL(X, (x, i, t)) =

κr|θ(X)|(r|θ(X)| − λ)−1 exp(λs) ≤ κr(r − λ)−1 exp(λs), since |θ(X)| ≥ 1. Using
Proposition 6.3 and (24), we deduce that

E





∑

a∈T′

ℓ

exp(λta)1(ia ∈ I
p)



 ≤ κr(r− λ)−1(1 + ǫ)ℓI3,

with

I3 =

∫

(X0,··· ,Xℓ)∈∆ℓ

exp(λsℓ−1)dδ∅(X0)dK(X0, X1) · · · dK(Xℓ−1, Xℓ)

and sℓ−1 := inf{t; (x, i, t) ∈ Xℓ}, with the convention sℓ−1 := 0. Then note that
I3 = E

u(exp(λtℓ−1)1(|Xu
∞| > ℓ)). �

Lemma 6.8. For every ℓ ≥ 1, λ ∈ R and 1 ≤ q ≤ d,

E





∑

a∈T′

ℓ

∑

z∈Aia

eλ(xa+z)q1(ia ∈ Ip)



 ≤ Q(1+ǫ)ℓEu





1

|θ(Xu
ℓ )|

∑

x∈θ(Xu
ℓ
)

eλxq1(|Xu
∞

| > ℓ)



 ,

where

(25) Q :=

(

∑

i∈Ip

(ri/r)
∑

z∈Ai

exp(λzq)

)

.

We are now ready to prove Theorem B. From now on, we assume that there exists
µ > 0 such that Eu

(

eµ|X
u
∞ |
)

< +∞. As a consequence, there exists a finite constant
C such that, for all ℓ ≥ 1,

(26) P
u(|Xu

∞| ≥ ℓ) ≤ C exp(−µℓ).

We first prove that, as soon as ǫ < µ, E(|X̂∞|) < +∞. Indeed, one has that

|X̂∞| ≤ |T|, so that

(27) E(|X̂∞|) ≤ E(|T|) = E





∑

ℓ≥0

|Tℓ|



 =
∑

ℓ≥0

E(|Tℓ|).

By Lemma 6.4, for all ℓ ≥ 1, one has E(|Tℓ|) ≤ (1 + ǫ)ℓPu(|Xu
∞| ≥ ℓ). Combining

(26) and (27), we see that E(|X̂∞|) < +∞ when ǫ < µ. By Proposition 6.1, this
proves that the pair (T,H) defined by (11) and (12) is indeed a CFTP time with
ambiguities.
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We now prove that, for small enough ǫ and κ, the pair (T,H) satisfies g < 1. Using
the definition, then Lemma 6.5 , we have that

g =
∑

ℓ≥0

E





∑

a∈T′

ℓ

|Aia |1(ia ∈ I
p)



 ≤ κ
∑

ℓ≥0

(1 + ǫ)ℓPu(|Xu
∞| > ℓ).

From (26), we see that g < 1 for all ǫ < µ and small enough κ.

We now prove that E(exp(λT )) < +∞ for all small enough ǫ and λ. We start with
the observation that

E(exp(λT )) ≤ E

(

∑

a∈T′

exp(λta)

)

=
∑

ℓ≥0

E





∑

a∈T′

ℓ

exp(λta)



 .

From Lemma 6.6, we deduce that, for all λ < r,

(28) E(exp(λT )) ≤
r

r− λ

∑

ℓ≥0

(1 + ǫ)ℓEu(exp(λtℓ−1)1(|X
u
∞| > ℓ)).

By Schwarz’s inequality,

E
u(exp(λtℓ−1)1(|X

u
∞| > ℓ)) ≤ (Eu(exp(2λtℓ−1))

1/2
P
u(|Xu

∞| > ℓ)1/2.

Bounding above tℓ−1 by the sum of ℓ independent exponential random variables
with parameter ru on one hand, and using (26) on the other hand, one obtains that,
when λ < ru/2,

(29) E
u(exp(λtℓ)1(|X

u
∞| > ℓ)) ≤ C1/2

(

ru

ru − 2λ

)ℓ

exp(−µ(ℓ+ 1)/2).

Combining (28) and (29), we have that E(exp(λT )) < +∞ for all small enough ǫ
and λ.

We now prove that ΛH,time(λ) < 1 for all small enough ǫ, κ, λ. Using Lemma 6.7,
we obtain that

(30) ΛH,time(λ) ≤
κr

r− λ

∑

ℓ≥0

(1 + ǫ)ℓEu(exp(λtℓ)1(|X
u
∞| > ℓ)).

Using again (29), one concludes that ΛH,time(λ) < 1 for all small enough ǫ, κ, λ.

Now let R denote the depth of T, and define L := βu(R) (remember that β is
defined in (8)). By definition of the exploration process with locking of ambigu-
ities, one checks that L defines a stopping box and that H is measurable with
respect to F−L,L. Now, (21) and (22) show that

[

Φ0−
T (ξ)

]

(0) satisfies the required
measurability properties.

Using the obvious inequality R ≤ |T|, Lemma 6.4 shows that ΛL(λ) is finite for
small enough ǫ, λ. Finally, Lemma 6.8 shows that ΛH,space(λ, q) < 1 for all q, when
ǫ, κ, λ are small enough.
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[7] A. Galves, N. Garcia, and E. Löcherbach. Perfect simulation and finitary coding for multicolor
systems with interactions of infinite range. arXiv:0809.3494, 2008.
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