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For the semi simple and deployed Lie algebra g = sl(n, R), we give an explicit construction of an overalgebra g + = g ⋊ V of g, where V is a finite dimensional vector space. In such a setup, we prove the existence of a map Φ from the dual g ⋆ of g into the dual (g + ) ⋆ of g + such that the coadjoint orbits of Φ(ξ), for generic ξ in g ⋆ , have a distinct closed convex hulls. Therefore, these closed convex hulls separate 'almost' the generic coadjoint orbits of G.
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Introduction

In this paper, we prove that, for n > 2, the Lie algebra g = sl(n, R) admits an overalgebra almost separating of dgree n, but g does not admit an overalgebra of degree 2. More precisely:

There exist a Lie overalgebra g + = sl(n, R) ⋊ V and an application Φ of degree n, Φ : g ⋆ -→ g +⋆ such that:

1. p • Φ = id g ⋆ , where p is the canonical projection p : g +⋆ -→ g ⋆ , 2. Φ(Coad(SL(n, R))ξ) = Coad(G + )Φ(ξ), 3. if ξ is generic, then Conv (Φ(Coad(SL(n, R)ξ))) = Conv (Φ(Coad(SL(n, R))ξ ′ ))

if and only if Coad(SL(n, R))ξ ′ belongs to a finite set of coadjoint orbits of sl(n, R) (here: a singleton if n is odd, a singleton or a set of two elements if n is even).

We identify (g + ) ⋆ the dual of g + with the space g ⋆ ⊕ V ⋆ . The condition 1. means Φ(ξ) = ξ + φ(ξ), where φ is a polynomial of degree n from g ⋆ to V ⋆ . We say that (g + , φ) is an overalgebra almost separating of g (of degree n).

But there is no separating overalgebra of degree 2, (g + 2 , φ), i.e there is neither a Lie overalgebra g + 2 = sl(n, R) ⋊ V 2 nor φ : g ⋆ -→ V ⋆ 2 of degree 2 such that :

1. p • Φ = id g ⋆ , if p is the canonical projection p : g +⋆ 2 -→ g ⋆ , 2. Φ(Coad(SL(n, R))ξ) = Coad(G + )Φ(ξ), 3. if ξ is generic then, Conv (Φ(Coad(SL(n, R)ξ))) = Conv (Φ(Coad(SL(n, R))ξ ′ ))
if and only if Coad(SL(n, R))ξ ′ belongs to a finite family of coadjoint orbits.

Finally, we show that sl(4, R) does not admit an overalgebra almost separating of degree 3.

2. Description of orbits of sl(n, R) 2.1. Invariant functions of sl(n, R).

Since the Lie algebra sl(n, R) is simple, we can identify the adjoint action and coadjoint action of the Lie group G = SL(n, R). More precisely, we consider the non degenerate bilinear invariant form on sl(n, R) defined by: X, Y = T r(XY ).

Denote ξ an element of the dual of sl(n, R) and X an element of sl(n, R). The functions defined on the dual g * = sl(n, R) of the Lie algebra g by:

T k (ξ) = T r(ξ k ), 2 ≤ k ≤ n
are invariant: T k (gξg -1 ) = T k (ξ) for all ξ and all g.

The ring of the polynomial invariant functions on C is C[T 2 , . . . , T n ] (cf. [W]).

2.2. Description of Ω = {ξ ∈ sl(n, R), #Sp(ξ) = n}. This is classic. We recall this only for completeness.

Denote Ω the set of matrices ξ of sl(n, R) which are diagonalizable on C and have n distinct eigenvalues. The spectrum of this matrix ξ is Sp(ξ) = {c 1 , . . . , c r , a 1 ± ib 1 , . . . , a s ± ib s , with c i , a j , b j ∈ R, b j > 0, r + 2s = n}.

Denote by (a, b) < (a ′ , b ′ ) the lexicographic order :

(a, b) < (a ′ , b ′ ) ⇐⇒      a < a ′ or a = a ′ and b < b ′ .
We note also (the same if the eigenvalues are not stored in lexicographic order ) :

D(c 1 , . . . , c r , a 1 + ib 1 , . . . , a s + ib s ) =              c 1 . . . c r a 1 b 1 -b 1 a 1 . . . a s b s -b s a s             
.

We fix r and s such that r + 2s = n. If r > 0, we put :

Σ r,s = {D(c j , a k + ib k ), c 1 < c 2 < • • • < c r , b k > 0, (a 1 , b 1 ) < (a 2 , b 2 ) < • • • < (a s , b s )}
If r = 0, we note :

Σ + 0,s = {D(a k + ib k ), b k > 0, (a 1 , b 1 ) < (a 2 , b 2 ) < • • • < (a s , b s )} and Σ - 0,s = {D -(a k + ib k ), b k > 0, (a 1 , b 1 ) < (a 2 , b 2 ) < • • • < (a s , b s )}, where 
D -(a 1 + ib 1 , . . . , a s + ib s ) =           a 1 -b 1 b 1 a 1 a 2 b 2 -b 2 a 2 . . . a s b s -b s a s          
.

Finally, we put

Σ =          r>0, r+2s=n Σ r,s Σ + 0, n 2 ∪ Σ - 0, n 2 if n is even r>0, r+2s=n Σ r,s if n is odd.
The set Ω is invariant since the spectrum Sp(ξ) of ξ coincides with the spectrum of

gξg -1 = Ad(g)(ξ) (g ∈ SL(n, R)), or if we prefer, if C ξ is the characteristic polynomial of the matrix ξ, then the adjoint orbit G • ξ 0 of ξ 0 is included in {ξ, such that C ξ = C ξ 0 }.

Adjoint orbits in Ω.

Lemma 2.1.

For all matrix ξ in Ω, the adjoint orbit G • ξ of the matrix ξ contains a point of Σ.

Proof.

Let ξ be a matrix in Ω, ξ is diagonalizable on C, with eigenvalues all distinct. If Sp(ξ) = {c j , a k ± ib k }, where the eigenvalues are ordered as above,

c 1 < • • • < c r and (a 1 , b 1 ) < • • • < (a s , b s ), b 1 > 0, . . . , b s > 0, then there exist vectors E j ∈ C n and F k ∈ C n such that ξE j = c j E j and ξF k = (a k + ib k )F k .
Since ξ is real, we can choose E j real (in R n ) and if we put F k = E r+2k-1 + iE r+2k (E r+t are real), then we obtain a basis of R n . If P is the basis change matrix , then the matrix of ξ is written in the new basis as follows :

ξ ′ = P ξP -1 = D(c 1 , . . . , c r , a 1 + ib 1 , . . . , a s + ib s ).
a. If det P > 0, then there exists g = 1 n √ det P P , such that ξ ′ = gξg -1 and g ∈ SL(n, R). The adjoint orbit G • ξ of the matrix ξ contains a point of Σ. b. If det P < 0 and r > 0, then we replace E 1 by E ′ 1 = -E 1 . The matrix P becomes P ′ = D(-1, 1, . . . , 1)P , P ξP -1 = P ′ ξP ′-1 and det(P ′ ) > 0. As above, the adjoint orbit G • ξ of the matrix ξ contains a point of Σ.

c. If det P < 0 and r = 0, then we replace E 1 by E ′ 1 = E 2 and E 2 by E ′ 2 = E 1 . The matrix P becomes P ′ = D(-1, 1, . . . , 1)P , P ξP -1 = P ′ ξP ′-1 and det(P ′ ) > 0. The adjoint orbit G • ξ of the matrix ξ contains the point

ξ ′ = P ′ ξP ′-1 = D -(a 1 + ib 1 , . . . , a s + ib s ) of Σ. Lemma 2.2.
Σ is a section for the action of SL(n, R) in Ω, i.e each orbit of Ω contains only a single point of Σ.

Proof.

Let ξ 0 be an element in Σ and G • ξ 0 its orbit. If ξ ∈ G • ξ 0 ∩ Σ, then, since the spectrum of ξ is the same as ξ 0 and the order of eigenvalues is fixed, we obtain:

If r > 0 then ξ = ξ 0 . If r = 0, we have either ξ = ξ 0 , or

G • ξ 0 ∩ Σ = {ξ, ξ 0 } = {D + (a k + ib k ), D -(a k + ib k ) = gD + (a k + ib k )g -1 }.
with det(g) = 1.

In the latter case, the sub eigenspaces V ec C (E 2k-1 + iE 2k ) and V ec C (E 2k-1 -iE 2k ) are one dimensional. Thus, there exist a nonzero complex numbers z 1 , . . . , z s such that :

g(E 1 + iE 2 ) = z 1 (E 1 -iE 2 ), and g(E 2k-1 + iE 2k ) = z k (E 2k-1 + iE 2k ), k > 1.
The matrix of g is written in the basis of eigenvectors of the first matrix as follows :

QgQ -1 =           0 z 1 z 1 0 z 2 z 2 . . . z s z s           .
The determinant of the matrix QgQ -1 is negative or zero, which is impossible. Therefore, ξ = ξ 0 and Σ is a section for the action of SL(n, R) on Ω.

Lemma 2.3. Denote Ω r,s = G • Σ r,s . Let ξ 0 ∈ Ω r,s . 1. If r > 0, {ξ, such that C ξ = C ξ 0 } is exactly the adjoint orbit G • ξ 0 of ξ 0 . 2. If r = 0, {ξ, such that C ξ = C ξ 0 } is the union of two adjoint orbits G•ξ 0 ⊔G•ξ 1 .
Now, show that Ω is dense. Let ξ be an arbitrary matrix of sl(n, R). On C, we can transform this matrix in Jordan form:

1. for each Jordan block J j (c) associated to the real eigenvalue c of ξ, there exist vectors E 1 j , . . . , E t j in C n such that ξE 1 j = cE 1 j and, if t > 1, ξE t j = cE t j + E t-1 j . We can choose E t j real.

2. for each Jordan block J k (a + ib) associated to the non real eigenvalue a + ib, with b > 0, we can choose vectors

F 1 k , . . . , F t k in C n such that ξF 1 k = (a+ib)F 1 k and, if t > 1, ξF t k = (a + ib)F t k + F t-1 k .
The union of these families of vectors, for all Jordan blocks associated to a + ib, form a basis of the characteristic subspace V (a + ib) of ξ associated to a + ib. The combined vectors F t k form a basis of the characteristic subspace V (aib). In this basis, the matrix of ξ| V (a-ib) is also in Jordan form. As above, put

F t k = E t k + iE ′t k
, where E t k and E ′t k are real vectors.

We arrange the eigenvalues of ξ as above, then we obtain a real basis of R n . On this basis, ξ is written as follows :

ξ ′ = P ξP -1 =                    c 1 u 1 . . . . . . c r-1 u r-1 c r a 1 b 1 v 1 -b 1 a 1 0 v 1 . . . . . . a s-1 b s-1 v s-1 -b s-1 a s-1 0 v s-1 a s b s -b s a s                    = Diag(c 1 , . . . , c r , a 1 b 1 -b 1 a 1 , . . . , a s b s -b s a s )+ + Overdiag(u 1 , . . . , u r-1 , v 1 0 0 v 1 , . . . , v s-1 0 0 v s-1 ) = D + N.
Where P is a real matrix, Diag means that we place the cited sub matrices on the diagonal, Overdiag means that we place the cited sub matrices on the second diagonal, u j and v k are either 0 or 1. Let now the real numbers x 1 , . . . , x r and y 1 , . . . , y s all distinct such that

x 1 + • • • + x r + 2y 1 + • • • + 2y s = 0. Put: A = Diag(x 1 , . . . , x r , y 1 , y 1 , . . . , y s , y s ),
and for all ε > 0, ξ ε = ξ + εP -1 AP . For almost every ε, the trace of ξ ε is zero and ξ ε has n distinct eigenvalues. Then, ξ ε ∈ Ω and for any norm on sl(n, R), ξξ ε = ε P -1 AP . This proves :

Lemma 2.4. The set Ω is dense in sl(n, R).

Show that the set Ω is an open :

We use the implicit function theorem. Let ξ 0 a matrix in Ω. The characteristic polynomial C ξ 0 of ξ 0 has n simple roots. If C ξ 0 (α) = 0, then C ′ ξ 0 (α) = 0. If c j is a real eigenvalue of ξ 0 , then we consider the map

F j : sl(n, R) × R -→ R defined by F j (ξ, x) = C ξ (x). If a k + ib k is a non real eigenvalue of ξ 0 , we note C ξ (z) = C ξ (x + iy) = A ξ (x, y) + iB ξ (x, y), where A ξ and B ξ are real. C ξ is a polynomial in z, then ∂ ∂z C ξ (z) = ∂ ∂x C ξ (z) + i ∂ ∂y C ξ (z) = 0, for all z. Since a k + ib k is a simple root of C ξ 0 , then ∂ ∂z C ξ 0 (a k + ib k ) = ∂ ∂x C ξ 0 (a k + ib k ) -i ∂ ∂y C ξ 0 (a k + ib k ) = 0.
Therefore, we have either

∂ ∂x A ξ 0 (a k +ib k ) = 0 and ∂ ∂y B ξ 0 (a k +ib k ) = 0 or ∂ ∂y A ξ 0 (a k + ib k ) = 0 and ∂ ∂x B ξ 0 (a k + ib k ) = 0. In all cases, D(A ξ 0 , B ξ 0 ) D(x, y) (a k , b k ) = ∂ x A ξ 0 ∂ y A ξ 0 ∂ x B ξ 0 ∂ y B ξ 0 (a k , b k ) = (∂ x A ξ 0 (a k , b k )) 2 +(∂ x B ξ 0 (a k , b k )) 2 = 0.
We define

F j : sl(n, R) × R 2 -→ R 2 by F k (ξ, x, y) = (A ξ (x + iy), B ξ (x + iy)), then Jac(F k )(ξ 0 , a k , b k ) = 0.
The functions F j , F k are differentiable, then F j (ξ 0 , c j ) = 0 and

∂F j ∂x (ξ 0 , c j ) = C ′ ξ 0 (c j ) = 0. Similarly, F k (ξ 0 , a k , b k ) = 0 and DF k D(x, y) (ξ 0 , a k , b k ) = 0.
So, there exists an open U j (resp. U k ) of sl(n, R), containing ξ 0 , and there is an open V j of R containing c j (resp. V k of R 2 , containing (a k , b k )) and there are maps

f j : U j -→ V j (resp. f k : U k -→ V k ) such that (ξ, x) ∈ U j × V j F j (ξ, x) = 0 ⇐⇒ (ξ, x) ∈ U j × V j x = f j (ξ) resp. (ξ, x, y) ∈ U k × V k F k (ξ, x, y) = 0 ⇐⇒ (ξ, x, y) ∈ U k × V k (x, y) = f k (ξ)
We replace as needed the open V r by another open small enough such that

V j ∩ j ′ =j V j ′ = ∅, V k ∩ (R × {0}) ∪ k ′ =k V k ′ = ∅.
And we put U = r U r . U is an open containing ξ 0 and, for all ξ in U, C ξ vanishes at n distinct points (real or complex), then, U ⊂ Ω.

Lemma 2.5.

The set Ω is an open in sl(n, R).

3. sl(n, R) admits an overalgebra almost separating of degree n 3.1. Separation of orbits of Ω by invariant functions. This is also well known. Let ξ a n × n real matrix and C ξ its characteristic polynomial. On C, we can put ξ in Jordan form. We note z 1 , . . . , z n the diagonal terms of this Jordan form. Then :

C ξ (X) = (-1) n det(ξ -XI) = (X -z 1 ) • • • (X -z n ) = X n -( i z i )X n-1 + ( i<j z i z j )X n-2 + • • • + (-1) n z 1 . . . z n = X n -α n-1 X n-1 + α n-2 X n-2 + • • • + (-1) n α 0 .
Therefore, using a formula due to Newton (cf. [W]), we have, for all k,

(-1) k+1 i 1 <•••<i k z i 1 z i 2 . . . z i k = j z k j -( i 1 z i 1 )( j z k-1 j ) + ( i 1 <i 2 z i 1 z i 2 )( j z k-2 j ) + . . . + • • • + (-1) k-1 ( i 1 <•••<i k-1 z i 1 . . . z i k-1 )( j z j ) or (-1) k+1 α n-k = T r(ξ k ) -α n-1 T r(ξ) + α n-2 T r(ξ k-1 ) + • • • + (-1) k-1 α k-1 T r(ξ).
This formula allows to express all α k as functions of the numbers T r(ξ j ), and conversely, to express all T r(ξ k ) as functions of the numbers α j .

Finally, we deduce that: two matrices ξ and ξ ′ satisfying

C ξ = C ξ ′ if and only if T r(ξ k ) = T r(ξ ′k ) for all k = 1, . . . , n. Proposition 3.1.
We keep all previous notations, in particular, Ω = ∪ r+2s=n Ω r,s is an open, dense and invariant subset of sl(n, R). The orbits of Ω will be called generic orbits. Let

ξ 0 ∈ Ω r,s . 1. If r > 0, {ξ, such that T k (ξ) = T k (ξ 0 ) for all k = 2, . . . , n } is exactly the adjoint orbit G • ξ 0 of ξ 0 , 2. If r = 0, {ξ, such that T k (ξ) = T k (ξ 0 ) for all k = 2, . . . , n } is the union of two adjoint orbits G • ξ 0 ⊔ G • ξ 1 .
We say that the invariant functions T k separate almost the (co)adjoint generic orbits of sl(n, R).

Convex hull of orbits of Ω.

For n = 2, the convex hull of the orbits of Ω are well known (cf. [ASZ]). We deduce that, for n = 2 :

Conv(G • D(-c, c)) = sl(2, R) (c > 0), and Conv(G • D + (ib) ∪ G • D -(ib)) = sl(2, R) (b > 0). For n = 3, we deduce that Ω ⊂ Conv(G • D(c 1 , c 2 , c 3 )). Indeed, if c ′ 1 < c ′ 2 < c ′ 3 such that c ′ 1 + c ′ 2 + c ′ 3 = 0, then either c ′ 1 = -2c 3 , or c ′ 2 = -2c 3 . Suppose c ′ 1 = -2c 3
, the other case is trained the same by exchanging the induces 1 and 2. Let

c ′′ 1 = c ′ 1 - c 1 + c 2 2 and c ′′ 2 = -c ′ 1 -c 3 .
We write:

c 1 c 2 =    1 2 (c 1 -c 2 ) 1 2 (c 2 -c 1 )    + c 1 + c 2 2 1 1 , then, there exist t in [0, 1] and g ∈ SL(2, R) such that : c ′ 1 c ′′ 2 = c ′′ 1 -c ′′ 1 + c 1 + c 2 2 1 1 = t c 1 c 2 + (1 -t)g c 1 c 2 g -1 .
We deduce that the convex hull of

G•D(c 1 , c 2 , c 3 ) contains   c ′ 1 c ′′ 2 c 3   with c ′′ 2 = c 3 .
By the same argument, but with induces 2 and 3, we show that this convex hull

contains D(c ′ 1 , c ′ 2 , c ′ 3 ). Let now a ′ = - 1 2 c ′ 1 , and b ′ > 0, then : c ′ 2 c ′ 3 =    1 2 (c ′ 2 -c ′ 3 ) 1 2 (c ′ 3 -c ′ 2 )    + a ′ 1 1 , the convex hull of G • D(c 1 , c 2 , c 3 ) contains also D(c ′ 1 , a ′ + ib ′ ) =   c ′ 1 0 b ′ -b ′ 0   + a ′   0 1 1   .
On the other hand, we saw that

  c a -b b a   belongs to G • D(c, a+ ib). Therefore, if a = 0 then Conv(G • D(c, a + ib)) contains the matrix   c a a   , with a = c. So, by our first argument, Conv(G • D(c, a + ib)) contains the matrix   c ′ 1 c ′ 2 a   with c ′ 1 = c ′ 2 = a = c ′ 1 .Therefore, by the above, Conv(G • D(c, a + ib)) contains all Ω. If a = 0, Conv(G • D(0, ib)) contains the matrices 0 D + (ib) and 0 D -(ib) . So, Conv(G • D(0, ib)) contains the matrix   0 -1 1   . Finally, Conv(G • D(0, ib)) contains all Ω.
We have proved:

Lemma 3.2. If n = 3 and ξ ∈ Ω, then Ω ⊂ Conv(G • ξ).
If n = 4, as above, Ω ⊂ Conv(G • D(c 1 , . . . , c 4 )). We deduce by using the lemma that for all c ′ 2 , . . . , c ′ 4 ,

D(c 1 , c ′ 2 , c ′ 3 , c ′ 4 ) ∈ Conv(G • D(c 1 , c 2 , a + ib))
and also

Ω ⊂ Conv(G • D(c 1 , c 2 , a + ib)). It remains the cases D(a 1 + ib 1 , a 2 + ib 2 ), a 1 = 0 and D(ib 1 , ib 2 ).
In the first case, we saw that

    a 1 -b 1 b 1 a 1 a 2 -b 2 b 2 a 2     ∈ G • D(a 1 + ib 1 , a 2 + ib 2 ), then     a 1 a 1 a 2 a 2     ∈ Conv(G • D(a 1 + ib 1 , a 2 + ib 2 ))
and a 1 = a 2 .

By applying the calculation for n = 2, we deduce that D(a 1 , x, y, a 4 ) belongs to Conv(G • D(a 1 + ib 1 , a 2 + ib 2 )), for all x and y such that

a 1 + x + y + a 4 = 0. Therefore, Ω ⊂ Conv(G • D(a 1 + ib 1 , a 2 + ib 2 )).
For the latter case, we saw that, insl(2, R), the adjoint orbit of D(ib) is the set of

matrices x y + z y -z -x with z 2 -x 2 -y 2 = b 2 and z > 0. Then, G • D(ib 1 , ib 2 )
contains a matrix as follows:

    x z -z -x 0 b 2 -b 2 0     , with 0 < b 1 < z.
Combining this matrix with

    0 1 1 0 0 1 1 0     , we obtain : ξ =     -x -z z x 0 -b 2 b 2 0     ∈ G • D(ib 1 , ib 2 ). If t = b 1 z + b 1 , the matrix tξ + (1 -t)D(ib 1 , ib 2 ) is D(-tx, tx, i(1 -2t)b 2 ) ∈ Conv(G • D(ib 1 , ib 2 )). Or Lemma 3.3. If n = 4 and ξ ∈ Ω, then Ω ⊂ Conv(G • ξ).
Proposition 3.4. For all n > 2, the convex hull of the adjoint orbit of a point ξ in Ω contains Ω:

Ω ⊂ Conv(G • ξ).
This convex hull is dense in sl(n, R).

Proof.

By induction on n > 4, suppose that, for all 2 < p < n, this property is true. We consider D(c j , a k + ib k ) ∈ Σ r,s , with r + 2s = n.

If r ≥ 2, then n -2 > 2, and we write:

D(c j , a k + ib k ) = D(c ′ 1 , c ′ 2 ) D(c ′ 3 , . . . , c ′ r , a ′ k + ib ′ k ) +   c 1 + c 2 2 I 2 - c 1 + c 2 n -2 I n-2   , Using the fact that sl(2, R) = Conv(G • D(c ′ 1 , c ′ 2 ))
and by the induction hypothesis for n -2, we get

Ω ⊂ Conv(G • D(c j , a k + ib k )). If r = 1, we decompose D(c 1 , a k + ib k ) as : D(c 1 , a k + ib k ) = D(c ′ 1 , a ′ 1 + ib 1 ) D(a ′ 2 + ib ′ 2 , . . . , a ′ n + ib ′ n ) +    c 1 + 2a 1 3 I 3 - c 1 + 2a 1 n -3 I n-3    . Then, a matrix D(c ′′ 1 , c ′′ 2 , c ′′ 3 , a 2 + ib 2 , . . . , a n + ib n ) belongs to Conv(G • D(c 1 , a k + ib k ))
. Therefore, the first case applies, and we still get the result.

If r = 0, then s > 2, we decompose D(a k + ib k ) as : D(a k + ib k ) = D(a ′ 1 + ib 1 , a ′ 2 + ib ′ 2 ) D(a ′ 3 + ib ′ 3 , . . . , a ′ n + ib ′ n ) +    2a 1 + 2a 2 4 I 4 - 2a 1 + 2a 2 n -4 I n-4    . Then a matrix D(c ′′ 1 , . . . , c ′′ 4 , a 3 + ib 3 , . . . , a n + ib n ) belongs to Conv(G • D(a k + ib k ))
. So, the first case applies, and this completes the proof of our proposition.

Corollary 3.5. sl(n, R) admits an overalgebra almost separating of degree n.

Proof.

g = sl(n, R) admits an overalgebra of degree n, given by :

g + = sl(n, R) × R n-1 Φ : g ⋆ -→ g +⋆ , Φ(X) = (X, φ(X)) = (X, T 2 (X), T 3 (X), . . . , T n (X)).
Indeed, φ is polynomial, with degree n. Moreover, we have for all ξ in Ω,

Conv (Φ(Coad(SL(n, R))ξ)) = Conv(Coad(SL(n, R))ξ) × (T 2 (ξ), . . . , T n (ξ)) = sl(n, R) ⋆ × (T 2 (ξ), . . . , T n (ξ)).
Then Φ(ξ ′ ) belongs to this set if and only if T k (ξ ′ ) = T k (ξ) for all k, if and only if

C ξ ′ = C ξ .
We saw that if n is odd, {ξ ′ , such that C ξ ′ = C ξ } is exactly the orbit Coad(SL(n, R))ξ and, if n is even, {ξ ′ , such that C ξ ′ = C ξ } is either the orbit Coad(SL(n, R))ξ, or, if C ξ has only non real roots, the set {ξ ′ , such that C ξ ′ = C ξ } is the union of two disjoint orbits. This proves that (g + , φ) is an overalgebra almost separating of degree n of sl(n, R). Let G be a real Lie group, V a finite dimensional vector space and (π, V ) a linear representation of G. Denote by G + = G ′ ⋊ V the Lie group whose set G × V and low:

(g, v).(g ′ , v ′ ) = (gg ′ , v + π(g)v ′ ).
Its Lie algebra is g + = g ′ ⋊ V , whose space g ⊕ V and bracket :

[(X, u), (X ′ , u ′ )] = ([X, X ′ ], π ′ (X)u ′ -π ′ (X ′ )u). ( π ′ is the derivative of π, π ′ is the representation of g in V ). The exponential map is exp(X, u) = (exp X, e π ′ (X) -I π ′ (X) u).
We also define the linear map ψ u : g -→ V , by ψ u (X) = π ′ (X)u, for all u ∈ V . Then, the coadjoint action is realized in g + ⋆ = g ⋆ × V ⋆ and defined by:

Coad ′ (X, u)(ξ, f ) = (Coad ′ (X)ξ + t ψ u (f ), -t π ′ (X)f ).
The group action is

Coad(g, v)(ξ, f ) = (Coad(g)ξ + t ψ v ( t π(g -1 )f ), t π(g -1 )f ).
Denote by π ⋆ (g) = t π(g -1 ).

Let Φ : g ⋆ -→ g + ⋆ be a map non necessarily linear. We assume that p • Φ = id, then Φ is written Φ(ξ) = (ξ, φ(ξ)). φ is not necessarily linear.

Assume that Φ(Coad(G)ξ) = Coad(G + )Φ(ξ), then : for all g in G and all v in V , there exists

g ′ ∈ G (g ′ = g ′ g,v,ξ ) such that π ⋆ (g)φ(ξ) = φ(Coad(g ′ )ξ), Coad(g)(ξ) + ( t ψ v • π ⋆ (g))φ(ξ) = Coad(g ′ )ξ = Coad(g)(ξ) + t ψ v • φ(Coad(g ′ )ξ). In particular, if X is in g, then π ⋆ (exp(tX))(φ(ξ)) = φ(Coad(g ′ t )ξ). The continuous curve t → π ⋆ (exp(tX))(φ(ξ)) is drawn on the surface C = φ(Coad(G)ξ)
, its derivative at 0 is the vector π ⋆′ (X)φ(ξ). This vector belongs to the tangent space

T φ(ξ) (C) = φ ′ (φ(ξ))(T ξ (Coad(G)ξ)) = φ ′ (φ(ξ))(Coad(g)ξ).
We have also, for the same g in G, v in V , and

g ′ = g ′ g,v,ξ ∈ G, Coad(g)(ξ) = (I -t ψ v • φ)(Coad(g ′ )ξ).
We deduce that, if v = 0, then Coad(g)(ξ) = Coad(g ′ g,0,ξ )(ξ) and therefore π ⋆ (g)φ(ξ) = φ(Coad(g)ξ). So:

Lemma 4.2.
φ is an intertwining (non linear) between the coadjoint representation and the representation π ⋆ .

If φ is polynomial of degree p, then φ is written :

φ(ξ) = φ 1 (ξ) + φ 2 (ξ) + • • • + φ p (ξ),
with φ k homogeneous of degree k.

Since φ is an intertwining, then φ • Ad g = π ⋆ (g) • φ, and for all k, φ k • Ad g = π ⋆ (g) • φ k , i.e each φ k is an intertwining.

On the other hand, for each k, φ k (ξ) can be written

φ k (ξ) = b k (ξ • . . . • ξ k ),
where b k is a linear map from S k (g ⋆ ) in V ⋆ . The map b k is also an intertwining, since the action Coad k of G on S k (g ⋆ ) is such that :

φ k (Coad(g)ξ) = b k (Coad(g)ξ • . . . • Coad(g)ξ) = (b k • Coad k (g))(ξ • . . . • ξ). Put then: S p (g ⋆ ) = g ⋆ ⊕ S 2 (g ⋆ ) ⊕ • • • ⊕ S p (g ⋆ ), and b : S p (g ⋆ ) -→ V ⋆ , b(v 1 + v 2 + • • • + v p ) = b 1 (v 1 ) + • • • + b p (v p ). Let U = b(S p (g ⋆ )). U is a submodule of V ⋆ , isomorphic to the quotient module S p (g ⋆ )/ ker(b). Put then W = V /U ⊥ . W is a quotient module of the module V such that W ⋆ ≃ U ( and then W ≃ U ⋆ ). Lemma 4.3. If (g ⋊ V, φ) is an overalgebra almost separating of g, then (g ⋊ W, φ), where φ(ξ) = b(ξ + ξ • ξ + • • • + ξ • . . . • ξ)
is also an overalgebra almost separating of g.

Proof.

In the statement of this lemma, we identify

W ⋆ with the submodule U of V ⋆ . With this identification, if ι is the canonical injection of U in V ⋆ , then φ(ξ) = ι • φ(ξ). The application Φ becomes Φ(ξ) = (ξ, ι • φ(ξ)) = (j • Φ)(ξ) if j(ξ, v) = (ξ, ι(v)). Therefore Conv Φ(CoadG ξ) = j Conv (Φ(CoadG ξ)) , and Conv Φ(CoadG ξ) = Conv Φ(CoadG ξ ′ ) if and only if Conv (Φ(CoadG ξ)) = Conv (Φ(CoadG ξ ′ )).
We deduce that (g⋊W, φ) or, if we prefer, (g⋊(S p (g ⋆ )/ ker b) ⋆ , φ) is an overalgebra almost separating of g.

If g is semi-simple and deployed, then all its representations are completely reducible. Therefore W ⋆ = S p (g ⋆ )/ ker b is isomorphic to a submodule of S p (g ⋆ ) = S p (g). In this case, W is isomorphic to a submodule of (S p (g)) ⋆ . So, we consider the application φ with values in S p (g), and φ becomes :

φ(ξ) = b 1 (ξ) + • • • + b p (ξ • . . . • ξ).
The application b becomes an intertwining of modules S p (g).

Corollary 4.4.

If g is a deployed and semi-simple Lie algebra, admitting an overalgebra almost separating of degree p, and τ a natural application from g = g ⋆ to S p (g) defined by : τ

(ξ) = ξ + ξ • ξ + • • • + ξ • . . . • ξ,
then there exists an intertwining b of S p (g) such that (g ⋊ (S p (g)) ⋆ , b • τ ) is an overalgebra almost separating of g.

5.

The case g = sl(n, R) and p = 2 5.1. The case g = sl(n, R).

We suppose now g = sl(n, R). Recall the usual notations (cf. [FH]). sl(n, R) is a real simple algebra. A Cartan subalgebra h of sl(n, R), of dimension n -1, is given by the set of diagonal matrices ξ = D(c 1 , . . . , c n ). With this Cartan algebra, sl(n, R) is deployed. For H ∈ h, we note

L i (H) = c i , with L 1 + • • • + L n = 0.
We choose the usual system of simple roots, i.e the forms α i = L i -L i+1 (1 ≤ i ≤ n -1). The system of positive roots is the set of forms L i -L j , with i < j. If e ij = (x rs ) is the n × n matrix such that x rs = δ ri δ sj , then for all H in h,

ad(H)e ij = (α i + • • • + α j-1 )(H)e ij , if i < j -(α j + • • • + α i-1 )(H)e ij , if i > j.
The fundamental weights are

ω k = L 1 + • • •+ L k (1 ≤ k ≤ n -1
) and the simple modules are exactly the modules noted Γ a 1 ...a n-1 of highest weight

a 1 ω 1 + • • • + a n-1 ω n-1 ,
with a k integer. Moreover, the dual of Γ a 1 ,...,a n-1 is the module Γ a n-1 ,...,a 1 . (cf. [FH]).

Let X → X s be the symmetry operation relative to the second diagonal given by: if X is the matrix (x ij ), then X s is the matrix (x s ij ) with :

x s ij = x (n+1-j)(n+1-i) ,
The operation s leaves the Cartan subalgebra invariant. For all weight ω, put ω s (H) = ω(H s ). In particular, L s i = L n+1-i and ω s j = -ω n-j . Moreover, s permutes the radiciel spaces, since e s ij = e (n+1-j)(n+1-i) , or, if H belongs to h and i < j,

[H, e s ij ] = -(L s i -L s j )(H)e s ij . We consider now the module S k (sl(n, R)) i.e the space of the sums

i 1 <•••<i k λ i 1 ,...,i k X i 1 • . . . • X i k on
which sl(n, R) acts by the adjoint action ad defined by:

ad X (X i 1 • . . . • X i k ) = k r=1 X i 1 • . . . • [X, X ir ] • . . . • X i k . Lemma 5.1. The space S k (sl(n, R)) is self-dual i.e S k (sl(n, R)) ⋆ = S k (sl(n, R)).
Proof. Suppose that the module Γ a 1 ,...,a n-1 appears in S k (sl(n, R)). Then, there is a non zero vector v a 1 ,...,a n-1 such that , for all H in h, and for all i < j,

ad H (v a 1 ...a n-1 ) = (a 1 ω 1 + • • • + a n-1 ω n-1 )(H)v a 1 ...a n-1 , ad e ij (v a 1 ...a n-1 ) = 0. If v = i 1 <•••<i k λ i 1 ,...,i k X i 1 •. . .•X i k is a vector of S k (sl(n, R)), then v s = i 1 <•••<i k λ i 1 ,...,i k X s i 1 • . . . • X s i k . Moreover, the map v → v s is an involutive bijection : (v s ) s = v.
The vector v s a 1 ...a n-1 is not zero and, for all H in h, and all i < j, ad

H (v s a 1 ...a n-1 ) = -(a 1 ω 1 + • • • + a n-1 ω n-1 ) s (H)v s a 1 ...a n-1 = (a n-1 ω 1 + • • • + a 1 ω n-1 )(H)v s a 1 ...a n-1 , ad e ij (v s a 1 ...a n-1 ) = 0. In other words, Γ a 1 ,...,a n-1 s = Γ a n-1 ,...,a 1 ≃ Γ a 1 ,...,a n-1 ⋆ .
Corollary 5.2.

If sl(n, R) admits an overalgebra almost separating of degree p, if τ is the natural application of sl(n, R) ⋆ in S p (sl(n, R)) = (S p (sl(n, R))) ⋆ given by : τ

(ξ) = ξ +ξ •ξ +• • •+ξ •. . .•ξ, then there exist an intertwining b k of S k (sl(n, R)) (k = 1, . . . , p) such that (sl(n, R) ⋊ S p (sl(n, R)), k b k • τ ) is an overalgebra almost separating of the Lie algebra sl(n, R).

The case p = 2.

For k = 1 and k = 2, looking for the intertwining between S k (sl(n, R) ⋆ ) and S k (sl(n, R)) ⋆ . For k = 1, the space of these intertwining is one dimensional and generated by P 0 defined by : P 0 (ξ), X = T r(ξX).

Therefore, any intertwining b 1 is written b 1 = a 0 P 0 , with a 0 real. For k=2: 5.2.1. Decomposition of S 2 (g).

The module S 2 (g) is the sum of three or four irreducible modules, all of different types. Recall the usual notations (cf. [FH]).

• The highest weight vector in S 2 (sl(n, R)) is v 20...02 = e 1n .e 1n .

The weight of this vector is 2ω 1 + 2ω n = 2L 1 -2L n . Then, we deduce the existence of a simple module Γ 20...02 of dimension (cf. [FH]):

dim Γ 20...02 = n-1 i=2 2 + n -i n -i . n-1 j=2 2 + j -1 j -1 . 4 + n -1 n -1 = n 2 (n -1)(n + 3) 4 .
• Among the weight vectors of weight

ω 2 + ω n-2 = L 1 -L n + L 2 -L n-1
, and if n > 3, there is one that is annulled by the action of e i(i+1) , 1 ≤ i ≤ (n -1). This weight vector is : v 010...010 = e 2n .e 1(n-1)e 2(n-1) .e 1n .

We deduce then the existence of a simple module Γ 010...010 of dimension: 3), and this dimension is 0. This sub module does not appear.

dim Γ 010...010 = n-2 j=3 1 + (j -1) j -1 . n-2 j=3 1 + (j -2) j -2 . n-2 i=3 1 + (n -1) -i n -1 -i . n-2 i=3 1 + n -i n -i . n 2 (n + 1) 4(n -2) 2 (n -3) = n 2 (n + 1)(n -3) 4 If n = 3, e 22 is not in sl(
• Among the weight vectors of weight ω 1 + ω n-1 = L 1 -L n , there is one that is annulled by the action of e i(i+1) , 1 ≤ i ≤ (n -1). This weight vector is:

v 10...01 = n i=1 e 1i .e in - 2 n n j=1
e jj .e 1n .

Then, we deduce the existence of a simple module Γ 10...01 of dimension:

dim Γ 10...01 = n-1 i=2 1 + n -i n -i . n-1 j=2 1 + j -1 j -1 . 2 + n -1 n -1 = n 2 -1.
• Among the weight vectors of weight 0, there is one that is annulled by the action of e i(i+1) , 1 ≤ i ≤ (n -1). This weight vector is: We deduce the existence of a trivial simple module Γ 00...00 of dimension 1. Therefore:

S 2 (sl(n, R)) ∼ =      Γ 20...02 ⊕ Γ 10...01 ⊕ Γ 010...010 ⊕ Γ 0...0 , if n > 3 Γ 22 ⊕ Γ 11 ⊕ Γ 00 , if n = 3. since the dimensions, n 2 (n 2 -1) 2 = n 2 (n -1)(n + 3) 4 +n 2 -1+ n 2 (n + 1)(n -3) 4 +1.

Intertwining of S 2 (sl(n, R)).

Let P 1 , P 2 , P 3 and P 4 the intertwining defined from S 2 (sl(n, R)) in (S 2 (sl(n, R))) ⋆ , such that, for all ξ, η ∈ sl(n, R) and X, Y ∈ sl(n, R) :

• P 1 (ξ.η), X.Y = T r(ξXηY ) + T r(ξY ηX),

• P 2 (ξ.η), X.Y = T r(ξX)T r(ηY ) + T r(ξY )T r(ηX),

• P 3 (ξ.η), X.Y = T r(ξηXY ) + T r(ξηY X) + T r(ηξXY ) + T r(ηξY X),

• P 4 (ξ.η), X.Y = T r(ξη)T r(XY ). In particular, we have :

• P 2 (v 20...02 ) = P 3 (v 20...02 ) = P 4 (v 20...02 ) = 0, and P 1 (v 20...02 ), e n1 .e n1 = 1 = 0,

• P 3 (v 010...010 ) = P 4 (v 010...010 ) = 0, and P 2 (v 010...010 ), e n2 .e (n-1)1 = 4 = 0,

• P 4 (v 10...01 ) = 0, and P 3 (v 10...01 ), e n2 .e 21 = 0,

• P 4 (v 00...00 ) = 0.

Thus, if n > 3, P 1 , P 2 , P 3 and P 4 are independent and, since the dimension of the space of intertwining of S 2 (sl(n, R)) is 4, then any intertwining b 2 is written : b 2 = a 1 P 1 + a 2 P 2 + a 3 P 3 + a 4 P 4 , where a i are real constants.

If n = 3, P 1 , P 3 and P 4 are independent and, since the dimension of the space of intertwining is three, then we can write : b 2 = a 1 P 1 + a 3 P 3 + a 4 P 4 , where a i are real constants.

Remark 5.1. First, recall that for gl(n, R), the forms

(A 1 , . . . , A m ) → T r(A i 1 . . . A i k ) are the only invariant functions which generate K[End(V ) m ] GL(V ) (see [H-C]).
Remark that there are 24 possible products of 4 matrices, depending on the position of the matrix in the product. If we take the trace of these products, then there are only 6 distinct forms, since, for all A 1 , A 2 , A 3 , A 4 ∈ sl(n, R):

T r(A 1 A 2 A 3 A 4 ) = T r(A 2 A 3 A 4 A 1 ) = T r(A 3 A 4 A 1 A 2 ) = T r(A 4 A 1 A 2 A 3 ).
Since we are looking here to build symmetric forms in ξ, η and X, Y , there are only 4 symmetric forms obtained as product of traces of product matrices. These forms are the 4 forms described above. 5.3. sl(n, R) does not admit an overalgebra almost separating of degree 2.

We have seen if sl(n, R) admits an overalgebra almost separating of degree 2, then sl(n, R) admits an overalgebra of the form

G = (sl(n, R) ⋊ S 2 (sl(n, R)), (φ : ξ → b 1 (ξ) + b 2 (ξ • ξ))), with b 1 = a 0 P 0 and b 2 = a 1 P 1 + • • • + a 4 P 4 .
We assume that a such overalgebra almost separating G exists.

The generic orbits SL(n, R) • ξ are the orbits of the points ξ of Ω. Recall that :

SL(n, R) • ξ ⊂ {ξ ′ ∈ sl(n, R), C ξ ′ = C ξ }.
Thus, for all ξ in Ω and all v ∈ S 2 (sl(n, R)), we put

ζ = ξ + t ψ v (φ(ξ)) such that C ξ ′ = C ξ . Lemma 5.3.
If G is an overalgebra almost separating for sl(n, R), then for all ξ of sl(n, R) and all v of S 2 (sl(n, R)), ζ = ξ + t ψ v (φ(ξ)) has the same caracteristic polynomial as ξ and the same eigenvalues.

Proof. For any matrix ξ of sl(n, R), and all ε > 0, there exists ξ ε in Ω such that :

ξ -ξ ε < ε. Since ξ ε is in Ω, det(ξ ε + t ψ v (φ(ξ ε )) -λI) = det(ξ ε -λI), ∀λ, ∀v
If ε tends to 0, then, for all λ, det(ξ + t ψ v (φ(ξ)) -λI) = det(ξ -λI).

Theorem 5.4.

For n > 2, sl(n, R) does not admit an overalgebra almost separating of degree 2.

Proof.

We have seen if sl(n, R) has an overalgebra almost separating of degree 2, there exists an overalgebra G, with

φ(ξ) = a 0 P 0 (ξ) + (a 1 P 1 + • • • + a 4 P 4 )(ξ • ξ).
We will show that, if for all ξ in Ω, and all v in S 2 (sl(n, R)), ξ and ζ = ξ + t ψ v (φ(ξ)) have the same eigenvalues, then a 0 = a 1 = • • • = a 3 = 0, and that the function φ(ξ) = a 4 P 4 (ξ • ξ) does not separate the coadjoint orbits of sl(n, R), if n > 2.

Taking first v = U ∈ sl(n, R). Then t ψ U (φ(ξ)), X = a 0 T r(ξ[X, U]), and ζ = ξ + a 0 [U, ξ].
Let U = e n1 + e (n-1)2 and ξ = e 1n + e 2(n-1) , thus ζ = a 0 (-e 11e 22 + e (n-1)(n-1) + e nn ) + e 1n + e 2(n-1) and det(ζ -λI) = (-λ) n-4 (λ 2a 2 0 ) 2 . Therefore, ζ has the same spectrum as ξ implies a 0 = 0.

Put now v = X.X, then a direct calculation gives :

t ψ X.X (φ(ξ)) = 4a 1 [X, ξXξ] + 4a 2 T r(ξX)[X, ξ] + 4a 3 [X 2 , ξ 2 ], if n > 3, 4a 1 [X, ξXξ] + 4a 3 [X 2 , ξ 2 ], if n = 3.
Choose ξ = e 1n and X = e n1 . ξ and X are nilpotent matrices : X 2 = ξ 2 = 0 and we obtain :

ξX = e 11 , [X, ξXξ] = e nn -e 11 , T r(ξX) = 1, [X, ξ] = e nn -e 11 , thus t ψ X.X (φ(ξ)) = (4a 1 + 4a 2 )(-e 11 -e 22 + e (n-1)(n-1) + e nn ), if n > 3, 4a 1 (e 33 -e 22 ), if n = 3, and, if we note ζ = ξ + t ψ X.X (φ(ξ)), then det(ζ -λI) = (-λ) n-2 (λ 2 -(4a 1 + 4a 2 ) 2 ), if n > 3, -λ(λ 2 -(4a 1 ) 2 ), if n = 3.
Since det(ξ -λI) = (-λ) n , then we deduce that 4a 1 + 4a 2 = 0 if n > 3 and a 1 = 0 if n = 3.

Suppose now n > 3. We choose ξ = e 1n + e 2(n-1) and X = t ξ = e n1 + e (n-1)2 . These matrices are nilpotent and we obtain and λ) n , we deduce that 4a 1 + 8a 2 = 0. Thus, in all cases, a 1 = a 2 = 0.

det(ζ -λI) = (-λ) (n-4) (λ 2 -(4a 1 + 8a 2 ) 2 ) 2 . Since det(ξ -λI) = (-
Choose now ξ = e 1(n-1) + e (n-1)n and X = t ξ = e (n-1)1 + e n(n-1) , then

X 2 = e n1 , ξ 2 = e 1n , [X 2 , ξ 2 ] = -e 11 + e nn . Therefore t ψ X 2 (φ(ξ)) = 4a 3 (-e 11 + e nn ) and det(ζ -λI) = (-λ) (n-2) (λ 2 -(4a 3 ) 2 ). Hence, since det(ξ -λI) = (-λ) n , then a 3 = 0.
Thus, we deduce that :

φ(ξ) = b 2 (ξ.ξ) = a 4 P 4 (ξ.ξ) or φ(ξ), U + X.Y = a 4 T r(ξ 2 )T r(XY ).
But the overalgebra G is not separating, since, for all t in [0, 1], and all matrix M = D(c 4 , . . . , c n ) ∈ sl(n -3, R), with |c k | > 2, we define the matrix

ξ t =       1 2 (t + √ 4 -3t 2 ) 1 2 (t - √ 4 -3t 2 ) -t M       . For all t, ξ t ∈ Ω, det(ξ t ) = t(1 -t 2 ) k c k and T r(ξ 2 t ) = 2 + k c 2 k .
i.e, for all t,

Conv (Φ(CoadSL(n, R)ξ t )) = sl(n, R) ⋆ × {U + X • Y → a 4 (2 + k c 2 k )T r(XY )}, therefore if t = 1 √ 3 , Coad SL(n, R)(ξ t ) = Coad SL(n, R)(ξ 1 √ 3 ). Since t(1 -t 2 ) < 1 √ 3 (1 - 1 3 ) = 2 3 √ 3 , det(ξ t ) = det(ξ 1 √ 3
), thus ξ t is not in the orbit

Coad SL(n, R)ξ 1 √ 3 . Remark 5.2. Recall that, if n = 2, the overalgebra (sl(2, R) ⋊ R, [ξ → T r(ξ 2 )]
) is an overalgebra almost separating of degree 2 of sl(2, R) (cf. [ASZ] where we use the function

det(ξ) = - 1 2 T r(ξ 2 )).
Similarly, sl(3, R) does not admit an overalgebra almost separating of degree 2 but sl(3, R) admits an overalgebra almost separating of degree 3.

In this following section, we will show that sl(4, R) does not admit an overalgebra almost separating of degree 2 or 3 but it admits one overalgebra almost separating of degree 4.

6. The case n = 4 and p = 3

As above, we shall first find the explicit decomposition of S 3 (sl(4, R)).

6.1. Decomposition of S 3 (sl(4, R)).

We have seen that the module S 3 (sl(4, R)) is self dual. Then, if the submodule Γ a 1 a 2 a 3 appears in the decomposition of S 3 (sl(4, R)), the submodule Γ a 3 a 2 a 1 ≃ (Γ a 1 a 2 a 3 ) s appears also.

The module S 3 (sl(4, R)) is a submodule of S 2 (sl(4, R)) ⊗ sl(4, R). The decomposition of S 2 (sl(4, R)) ⊗ sl(4, R) is given by Littlewood-Richardson's rule (cf. [FH]), as follows :

S 2 (sl(4, R)) ⊗ sl(4, R) = (Γ 303 + Γ 212 + Γ 202 + Γ 101 ) + (Γ 121 + Γ 202 + Γ 101 + Γ 311 + Γ 113 ) + 3(Γ 210 + Γ 012 ) + 2Γ 020 + 3Γ 101 + Γ 000 .
The highest weight vectors which appear in S 2 (sl(4, R)) are v 202 , v 020 , v 101 and v 000 . We deduce that there are 4 highest weight vectors in S 3 (sl(4, R)) which are w 303 = v 202 .e 14 , w 121 = v 020 .e 14 , w 202 = v 101 .e 14 and w 101 = v 000 .e 14 . These vectors are the highest weight vectors for the simple modules Γ 303 , Γ 121 , Γ 202 and Γ 101 .

In S 2 (sl(4, R)) ⊗ sl(4, R), the highest weight vectors v 020 ⊗ e 14v 020 .e 14 , v 101 ⊗ e 14v 101 .e 14 and v 000 ⊗ e 14v 000 .e 14 appear also. The corresponding simple modules of these vectors are, respectively, Γ 121 , Γ 202 and Γ 101 . Since these vectors are not symmetric, then their corresponding modules are not submodules of S 3 (sl(4, R)).

The highest weight vector of Γ 311 is e 14 ⊗ e 13 ⊗ e 14e 14 .e 13 .e 14 which is not symmetric, then Γ 311 does not appear in S 3 (sl(4, R)), and Γ 113 does not appear also.

We conclude:

Γ 303 + Γ 121 + Γ 202 + Γ 101 ⊂ S 3 (sl(4, R)).
The additional invariant space of (Γ 303 + Γ 212 + Γ 202 + Γ 101 ) in S 3 (sl(4, R)) has the following decomposition, by using the dimensions :

S 3 (sl(4, R))/(Γ 303 + Γ 212 + Γ 202 + Γ 101 ) = (Γ 210 + Γ 012 ) + Γ 101 + Γ 000 .
Therefore :

S 3 (sl(4, R)) = (Γ 303 + Γ 212 + Γ 202 + Γ 101 ) + (Γ 210 + Γ 012 + Γ 101 + Γ 000 ).
The Now looking for the highest weight vectors of the four remaining simple modules.

By Littlewood-Richardson's rule, (Γ 210 + Γ 012 ) appears in the tensorial product Γ 020 ⊗ Γ 101 where Γ 020 is in S 2 (sl(4, R)), and Γ 101 is in sl(4, R).

The highest weight vector of the module Γ 020 is : v 020 = e 24 .e 13e 23 .e 14 .

We deduce also two other vectors of Γ 020 given by : ad e 42 v 020 = ((e 44e 22 ).e 13e 43 .e 14 + e 23 e 12 ), ad e 32 v 020 = (e 34 .e 13e 24 .e 12 -(e 33e 22 ).e 14 ).

Thus, there is a highest weight vector of Γ 210 , defined by : w 210 = e 12 .e 24 .e 13e 12 .e 23 .e 14e 14 .e 43 .e 14 + e 13 .e 34 .e 13 + (e 44e 33 ).e 13 .e 14 .

w 210 is a non zero vector and its weight is 4L 1 + 2L 2 + 2L 3 = 2ω 1 + 2ω 3 . Indeed : ad e 12 w 210 = 0, ad e 23 w 210 = 0 and ad e 34 w 210 = 0. Using the application s, the highest weight vector of the module Γ 012 is v s 210 or : w 012 = e 34 .e 13 .e 24e 34 .e 23 .e 14e 14 .e 21 .e 14 + e 24 .e 12 .e 24 + (e 11e 22 ).e 24 .e 14 .

It remains the modules Γ 101 and Γ 000 which appear in the tensorial product Γ 101 ⊗ Γ 101 . The first factor is in S 2 (sl(4, R)), the second is in sl(4, R).

There is a basis for the first factor defined by the following vectors : Recall that, in the previous section, we calculated the 8 highest weight vectors of the decomposition of S 3 (sl(4, R)), i.e the free system (w 1 , . . . , w 8 ) = (w 303 , w 121 , w 202 , w 210 , w 012 , w 101 , w ′ 101 , w 000 ).

e ′ ij =
Let M the matrix with 8 rows and 12 columns whose entries are the numbers T i (w k ), (w k ) t (i = 1, . . . , 12, k = 1, . . . , 8) where the vector e j 1 i 1 .e j 2 i 2 .e j 3 i 3 of S 3 (sl(4, R)) is noted (e i 1 j 1 .e i 2 j 2 .e i 3 j 3 ) t . We obtain, by using a symbolic computation program, the following matrix: 0 0 0 36 0 0 0 36 0 0 0 36 0 0 0 0 0 0 0 4 0 0 0 12 0 1 1 3 0 1 0 4 0 1 0 6 0 0 4 0 0 4 0 4 0 0 0 6 0 1 0 0 0 1 0 2 0 0 0 6 1 1 2 0 2 3 2 2 0 0 4 6 1 0 0 0 0 2 0 0 0 0 0 6 3 0 0 0 0 3 0 0 9 0 0 6

M =           
          
The rank of this matrix is 8.

We extract the columns 1, 2, 3, 4, 5, 8, 10, 9, so we obtain the following intertwining. The notation 'Sym' means that the expression is symmetrical in ξ, η, ζ.

If N is the sub-matrix of M, with 8 rows and 8 columns whose entries are P i (w k ), (w k ) t , i = 1, . . . , 8, then

N =           
0 0 0 36 0 36 0 0 0 0 0 0 0 4 0 0 0 1 1 3 0 4 1 0 0 0 4 0 0 4 0 0 0 1 0 0 0 2 0 0 1 1 2 0 2 2 0 0 1 0 0 0 0 0 0 0 3 0 0 0 0 0 0 9

          
The rank of this matrix is also 8. Thus (P 1 , P 2 , P 3 , P 4 , P 5 , P 6 , P 7 , P 8 ) are independent. Therefore: Lemma 6.1.

The applications P i : S 3 (sl(4, R) ⋆ ) -→ S 3 (sl(4, R)) ⋆ defined above, form a basis of the space of intertwining of the module S 3 (sl(4, R)).

But we consider, for 0 < t < 1, the matrices

ξ t =     √ 1 + t - √ 1 + t √ 1 -t - √ 1 -t     .
ξ t is an element of Ω for all t, T r(ξ 2 t ) = 4 and T r(ξ 3 t ) = 0 for all t. Although, det(ξ t ) = (1t 2 ) 2 . Therefore, with the same argument as in a previous section, we have, for all t, Conv (Φ(Coad SL(4, R)ξ t )) = (sl(4, R)) ⋆ × {U + X.Y + X ′ .Y ′ .Z ′ → 4a 4 T r(XY )}.

But, if t = 1 2 , ξ t is not in the orbit Coad SL(4, R)ξ 1 2 .

Thus, sl(4, R) does not admit an overalgebra almost separating of degree 3.

In fact, we think that the following conjecture is always true : Conjecture 6.3. For all n, sl(n, R) does not admit an overalgebra almost separating of degree n -1, but it admits an overalgebra almost separating of degree n.

More generally, if g is a real and deployed semi simple Lie algebra and if k is the greatest degree of the generators of the algebra of invariant functions on g, then g admits an overalgebra almost separating of degree k. But g does not admit an overalgebra almost separating of degree k -1.

The hypothesis 'g deployed' is necessary. Indeed, we remark that sl(2, R) does not admit an overalgebra almost separating of degree 1, but the Lie algebra su(2) admits an overalgebra almost separating of degree 1 since its adjoint orbits are spheres which are characterized by the closure of their convex hull.

4.

  Overalgebra almost separating of degree p of a Lie algebra g Definition 4.1. (Semi direct product)

v

  00...00 = 2n 1≤i<j≤n e ij .e ji + 1≤i<j≤n (e iie jj ).(e iie jj )

ξ 2

 2 = 0, ξX = e 11 + e 22 , ξXξ = e 1n + e 2(n-1) , [X, ξXξ] = -e 11e 22 + e (n-1)(n-1) + e nn , T r(ξX) = 2, [X, ξ] = -e 11e 22 + e (n-1)(n-1) + e nn .Therefore t ψ X.X (φ(ξ)) = (4a 1 + 8a 2 )(-e 11e 22 + e (n-1)(n-1) + e nn )

  (sl(4, R)) ⋆ = sl(4, R), and X, Y , Z elements in sl(4, R). The trace forms are the following :T 1 = T r(ξηζXY Z), T 2 = T r(ξηXζY Z), T 3 = T r(ξηXY ζZ), T 4 = T r(ξXηY ζZ), T 5 = T r(ξηζX)T r(Y Z), T 6 = T r(ξηXY )T r(ζZ), T 7 = T r(ξXY Z)T r(ηζ), T 8 = T r(ξXηY )T r(ζZ),T 9 = T r(ξηζ)T r(XY Z), T 10 = T r(ξηX)T r(ζY Z), T 11 = T r(ξη)T r(ζX)T r(Y Z), T 12 = T r(ξX)T r(ηY )T r(ζZ).

  Explicitly : P 1 (ξηζ), XY Z = Sym(T r(ξηζXY Z)), P 2 (ξηζ), XY Z = Sym(T r(ξηXζY Z)), P 3 (ξηζ), XY Z = Sym(T r(ξηXY ζZ)), P 4 (ξηζ), XY Z = Sym(T r(ξXηY ζZ)), P 5 (ξηζ), XY Z = Sym(T r(ξηζX)T r(Y Z)), P 6 (ξηζ), XY Z = Sym(T r(ξXηY )T r(ζZ)), P 7 (ξηζ), XY Z = Sym(T r(ξηX)T r(ζY Z)), P 8 (ξηζ), XY Z = Sym(T r(ξηζ)T r(XY Z)).

  highest weight vectors w 303 , w 121 , w 202 and w 101 are: w 303 = e 14 .e 14 .e 14 , w 121 = e 24 .e 13 .e 14e 23 .e 14 .e 14 , w 202 = e 12 .e 24 .e 14 + e 13 .e 34 .e 14 + 1 2 ((e 11e 22 ) -(e 33e 44 )).e 14 .e 14 , w 101 = 8(e 12 .e 21 .e 14 + e 13 .e 31 .e 14 + e 14 .e 41 .e 14 + e 23 .e 32 .e 14 + e 34 .e 43 .e 14 )+ + 3(e 11 .e 11 .e 14 + e 22 .e 22 .e 14 + e 33 .e 33 .e 14 + e 44 .e 44 .e 14 )--2(e 11 .e 22 .e 14 + e 11 .e 33 .e 14 + e 11 .e 44 .e 14 + e 22 .e 33 .e 14 + e 22 .e 44 .e 14 + e 33 .e 44 .e 14 ).

  e i1 .e 1j + e i2 .e 2j + e i3 .e 3j + e i4 .e 4j -1 2 (e 11 + e 22 + e 33 + e 44 ).e ij . In S 2 (sl(4, R)) ⊂ Γ 101 ⊗ Γ 101 , we have seen that the corresponding highest weight vectors are: v 101 = e 12 .e 24 + e 13 .e 34 + 1 2 ((e 11e 22 ) -(e 33e 44 )).e 14 , iie jj ).(e iie jj ). replacing the first factor e ij by the factor e ′ ij , we obtain the highest weight vectors w ′ 101 and w 000 ( w 000 is not developed) : w ′ 101 = 2e 12 (2e 23 .e 34 + 2e 21 .e 14 + (e 22e 11 ).e 24 -(e 33e 44 ).e 24 )+ + 2e 13 (2e 32 .e 24 + 2e 31 .e 14 + (e 33e 11 ).e 34 + (e 44e 22 ).e 34 )+ + (e 11e 22 )(2e 12 .e 24 + 2e 13 .e 34 + (e 11e 22 ).e 14 --(e 33e 44 ).e 14 ) -(e 33e 44 )(2e 12 .e 24 + 2e 13 .e 34 + (e 11e 22 ).e 14 -(e 33e 44 ).e 14 ), w 000 = 4(e 12 .e ′ 21 + e ′ 12 .e 21 + e 13 .e ′ 31 + e ′ 13 .e 31 + e 14 .e ′ 41 + e ′ 14 .e 41 + + e 23 .e ′ 32 + e ′ 23 .e 32 + e 24 .e ′ 42 + e ′ 24 .e 42 + e 34 .e ′

	v 000 = 8	e ij .e ji +
	1≤i<j≤4	
	By 43 + e ′ 34 .e 43 )+
	+ (e 11 -e 22 )(e ′ 11 -e ′ 22 ) + (e 11 -e 33 )(e ′ 11 -e ′ 33 ) + (e 11 -e 44 )(e ′ 11 -e ′ 44 )+ + (e 22 -e 33 )(e ′ 22 -e ′ 33 ) + (e 22 -e 44 )(e ′ 22 -e ′ 44 ) + (e 33 -e 44 )(e ′ 33 -e ′ 44 ).

1≤i<j≤4 (e 6.2. Trace forms and intertwining of S 3 (sl(4, R)).

As for S 2 (sl(n, R), we know 12 trace forms. Denote by ξ, η and ζ elements in
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6.3. sl(4, R) does not admit an overalgebra almost separating of degree 3. Theorem 6.2.

The algebra sl(4, R) does not admit an overalgebra almost separating of degree 3.

Proof.

We have seen that if sl(4, R) admits an overalgebra of degree 3, then sl(4, R) admits an overalgebra of the form

Then, we choose v = X.X.X in S 3 (sl(4, R)) and we calculate t ψ v (P j (ξ.ξ.ξ)). Explicitly:

t ψ v (P 8 (ξ.ξ.ξ)) = 0.

Let ξ = e 14 , then ξ 2 = 0 and t ψ v (P j (ξ.ξ.ξ)) = 0, for j = 1, 2, 3, 5, 7.

Let now X = e 14 + e 41 , then ξX = e 11 and XξXξX = Xξ = e 41 .

So, we obtain t ψ v (P 4 (ξ.ξ.ξ)) = -3(e 11e 44 ) and t ψ v (P 6 (ξ.ξ.ξ)) = 3(e 11e 44 ). Thus, with same notations as above,

We deduce the relation c 6c 4 = 0.

On the other hand, let X = e 14e 41 , then : Thus, we get t ψ v (P 6 (ξ.ξ.ξ)) = 3(e 11e 44 ) and t ψ v (P 4 (ξ.ξ.ξ)) = 3(e 11e 44 ). Therefore

then c 6 + c 4 = 0. This shows that c 6 = c 4 = 0.

We choose now ξ = e 13 + e 34 , and X = t ξ = e 31 + e 43 . Then:

We deduce that t ψ v (P 2 (ξ.ξ.ξ)) = e 11 + e 33 -2e 44 and t ψ v (P 3 (ξ.ξ.ξ)) = 2e 11e 33e 44 . Therefore,

Hence, the spectrum of ζ is the same as ξ, i.e {0} implies c 2 + 2c 3 = 0, c 2c 3 = 0, and 2c 2 + c 3 = 0, so c 2 = c 3 = 0. 

Therefore, the spectrum of ζ is the same as ξ, i.e {0} implies c 7 = 0.

Later, we choose ξ = e 12 + e 23 + e 34 and X = t ξ. Then, ξ 2 = e 13 + e 24 , ξ 3 = e 14 , X 3 = e 41 . Thus t ψ v (P 1 (ξ.ξ.ξ)) = e 11e 44 and the spectrum of

Finally, we choose another X = e 14 + e 41 and we allowed ξ = e 12 + e 23 + e 34 . Then X 2 = e 11 + e 44 and ξ 3 = e 11e 44 . Therefore, t ψ v (P 5 (ξ.ξ.ξ)) = 2(e 11e 44 ) and det(ζ -λI) = λ 4 implies c 5 = 0.

We finally get:
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