
HAL Id: hal-00710519
https://hal.science/hal-00710519

Submitted on 21 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Collision Culling in Large-Scale Environments
Using GPU Mapping Function

Quentin Avril, Valérie Gouranton, Bruno Arnaldi

To cite this version:
Quentin Avril, Valérie Gouranton, Bruno Arnaldi. Fast Collision Culling in Large-Scale Environments
Using GPU Mapping Function. EGPGV 2012 - Eurographics Symposium on Parallel Graphics and
Visualization, May 2012, Cagliari, Italy. pp.71-80. �hal-00710519�

https://hal.science/hal-00710519
https://hal.archives-ouvertes.fr

Eurographics Symposium on Parallel Graphics and Visualization (2012)
H. Childs and T. Kuhlen (Editors)

Fast Collision Culling in Large-Scale Environments Using
GPU Mapping Function

Q. Avril1 and V. Gouranton2 and B. Arnaldi2

1University of Rennes 1
2INSA of Rennes

Abstract
This paper presents a novel and efficient GPU-based parallel algorithm to cull non-colliding object pairs in
very large-scale dynamic simulations. It allows to cull objects in less than 25ms with more than 100K objects.
It is designed for many-core GPU and fully exploits multi-threaded capabilities and data-parallelism. In order
to take advantage of the high number of cores, a new mapping function is defined that enables GPU threads
to determine the objects pair to compute without any global memory access. These new optimized GPU kernel
functions use the thread indexes and turn them into a unique pair of objects to test. A square root approximation
technique is used based on Newton’s estimation, enabling the threads to only perform a few atomic operations.
A first characterization of the approximation errors is presented, enabling the fixing of incorrect computations.
The I/O GPU streams are optimized using binary masks. The implementation and evaluation is made on large-
scale dynamic rigid body simulations. The increase in speed is highlighted over other recently proposed CPU and
GPU-based techniques. The comparison shows that our system is, in most cases, faster than previous approaches.

1. Introduction

Collision detection is a well-studied and active research field
where the main problem is to determine how and if one
or more objects collide in a 3D virtual environment. Col-
lision detection is an issue affecting many different fields
of study, including physical-based simulation, computer an-
imation, robotics, haptic applications and video games. In
these applications, real-time performance, efficiency and ro-
bustness are key issues. In the field of Virtual Reality, phys-
ical virtual environments in digital mock-ups and industrial
applications are now commonplace, and are of increasing
complexity. The expected level of real time performance is
becoming harder to ensure in such large-scale virtual envi-
ronments. Unsurprisingly, collision detection has been an in-
tegral part of virtual reality bottlenecks for over thirty years.

The use of parallel processing has become necessary to
take advantage of recent gains in Moore’s Law. Over the past
several years, processor specialists have provided clock fre-
quency increases and parallelism improvements in instruc-
tion sets. Now, to better manage power consumption, they
promote multi-core architectures. It is no longer possible
to rely on the evolution of processing power to overcome
the problem of real-time collision detection. The impressive

Figure 1: 250K cubes, 100K spheres or 75K rectangles. Us-
ing the GPU mapping function, culling non-colliding pairs is
performed in less than 25ms on a Nvidia Quadro FX3600M
in the spheres environment.

evolution of graphics hardware and multi-GPU platforms
have provided programmers with better processing tools.
With these new tools it is now essential to take into account

c© The Eurographics Association 2012.

Q. Avril & V. Gouranton & B. Arnaldi / Fast Collision Culling in Large-Scale Environments Using GPU Mapping Function

run-time architectures to improve collision detection perfor-
mance in large-scale virtual environments.

Main Results: A fast and novel approach to cull non-
colliding object pairs in large-scale environments is pro-
posed. The approach is based on the use of new semi brute-
force GPU mapping function used during the broad phase
step. New access functions are proposed to optimize execu-
tion time of the GPU kernel reducing global GPU memory
accesses. The kernel time is also reduced using square root
approximation based on Newton’s approximation where a
first way to characterize and fix errors is presented. Input
and output data transfers are optimized using binary masks
to fully use the entire binary stream. This new broad phase
algorithm enables to get an "interactive" computation time
(<25ms) with more than 100K objects.

Organization: The rest of the paper is organized as fol-
lows: in Section 2 related work on parallel collision detec-
tion and broad phase techniques is reported. Section 3 de-
scribes the new brute force broad phase algorithm and Sec-
tion 4 gives details on the dynamic spatial subdivision tech-
nique adapted to a GPU use. The implementation and perfor-
mance measurements are described in Section 5. The com-
parison and analysis, over major CPU and GPU-based tech-
niques, are done in Section 6. Then, the conclusion and the
opening on future work end the paper.

2. Related Work

A brief overview is presented on parallel solutions for col-
lision detection focusing on the broad phase step. For more
details on the collision detection field, the reader may refer
to surveys on the topic [LG98, TKH∗05].

2.1. Broad Phase Collision Detection

The collision detection process is organized and built as
a pipeline [Hub95] composed by two main parts: broad
and narrow phase. The broad phase step is in charge of
a quick and efficient removal of object pairs that are not
in collision. In the bounding volume family many models
have been proposed such as spheres [Hub95], Axis-Aligned-
Bounding-Box (AABB) [Ber97], Oriented-Bounding-Box
(OBB) [GLM96], discrete oriented polytopes (k-DOP) and
many others. Other methods have been proposed to use spa-
tial partitioning and divide space into unit cells: regular
grid [Ove92] or non-regular [Mir97, EG07], quadtree, oc-
tree [BT95], Binary Space Partitioning (BSP) or k-d tree
structure. Topological approach is based on the positions
of objects (Sweep and Prune (SaP) [CLMP95]). There are
two related but different concepts on the way the SaP oper-
ates internally: starting from scratch each time (brute force)
or updating internal structures (persistent). The persistent
algorithm has been enhanced by using a segmented inter-
val list combined with subdivision [TBW09]. It provides
faster sequential execution in large-scale environments. The

brute-force SaP has been paralyzed on multi-core architec-
ture [AGA11] and it was shown that, according to the num-
ber of objects and the number of CPU cores, the paralleliza-
tion of the brute force method may become more efficient
than the persistent one. Luque et al. [LCF05] proposed a
new structure called "Semi-Adjusting BSP-tree" to represent
scenes consisting of thousands of objects. They showed that
the tree does not require a complete restructuring even for
highly dynamic scenes.

2.2. Parallel Solution for Collision Detection

The parallel solution of collision detection algorithms is a re-
cently explored and active field in high performance comput-
ing. There are three different families of algorithms, namely
CPU, GPU and hybrid-based solutions.

A new task splitting approach for implicit time integration
and collision handling on multi-core architecture has been
proposed [TPB08]. Tang et al. [TMT09] propose to use a
hierarchical representation to accelerate collision detection
queries and an incremental algorithm exploiting temporal
coherence. The overall is distributed among multiple cores.
They obtained a 4X-6X speed-up on an 8-core processor
based on several deformable models. Kim et al. [KHeY08]
propose to use a feature-based bounding volume hierarchy
(BVH) to improve performances of continuous collision de-
tection. They also propose a new method of task decompo-
sition for their BVH-based collision detection and dynamic
task assignment methods. They obtained a 7X-8X speed-up
using an 8-core architecture compared to a single-core. Her-
mann et al. [HRF09] propose a parallelization of interactive
physical simulations. They obtain a 14X-16X speed-up on
a 16-core architecture compared to a single-core. Tang et
al. [TLW11] proposed a new parallel approach based on a
new concept of filters into subspaces. They propose a new
phase between the broad and narrow phase where they apply
two successive filters (linear and planar filters). This tech-
nique enables to widely prune elementary tests and signifi-
cantly reduce the computation time.

Cinder [KP03] is an algorithm exploiting the GPU to im-
plement a ray-casting method to detect collision. GPU-based
algorithms for self-collision and cloth animation have also
been introduced by Govindaraju et al. [GLM05]. A solution
using image-space visibility queries has been proposed for
the broad phase [GRLM03]. Le Grand [LG07] has presented
a GPU implementation of the SaP broad phase algorithm
based on CUDA faster than the CPU implementation. He de-
scribed how to implement a spatial subdivision method for
GPU between particles. Liu et al. [LHLK10] recently pre-
sented a new GPU-based SaP. They propose to reduce the
density of intervals along the sweep axis by using princi-
pal component analysis to choose the best sweep direction.
They couple it with spatial subdivisions to further reduce the
number of false positive overlaps. Recent works use thread
and data parallelism on a single GPU to perform fast hierar-

c© The Eurographics Association 2012.

Q. Avril & V. Gouranton & B. Arnaldi / Fast Collision Culling in Large-Scale Environments Using GPU Mapping Function

chy construction, updating, and traversal using tight-fitting
bounding volumes such as oriented bounding boxes (OBB)
and rectangular swept spheres (RSS) [LMM10]. Tang et al.
[TMLT11] proposed a new GPU-based streaming method to
reduce access time and computation for the calculation of
intersection between primitives.

Kim and al. [KHH∗09] presented a hybrid parallel contin-
uous method (HPCCD) based on a bounding volume hierar-
chy. Recently, Pabst and al. [PKS10] have presented a new
hybrid CPU/GPU method for rigid and deformable objects
based on spatial subdivision. The broad and narrow phases
are both executed on multi-GPU architecture.

The total number of objects in recent virtual environments
and games increase and become more dynamic. The perfor-
mance of the most-used algorithms for the broad phase step
is becoming a serious issue. The Sweep and Prune algorithm
does not scale very well and its performance decreases in
very large scale environments. More precisely, the insertion
and sorting of new objects as well as the interaction with far
away objects is very time-consuming.

3. Optimized Broad Phase

In a n-body simulation, a semi-brute force algorithm per-
forms n2−n

2 computations at each loop (cf. Table 1). The
pairs that look like a (x,x) form are not tested (Deletion of
the matrix diagonal). The symmetrical pairs are only com-
puted once , i.e. (a,b) is tested but (b,a) is not. It is there-
fore a right upper triangular matrix. The computation made
on each pair consists in determining if two bounding vol-
umes overlap or not. As AABBs are used, each object has
6 values: its minimal and maximal positions on the 3 axis.
To detect overlaps, an algorithm is used to determine if one
of the maximum borders of an object is inferior to the min-
imum border of the other object on the same axis. If so, it
means that there is a max−min space between both bound-
ing volumes and there is no collision.

3.1. The GPU Mapping Function

In order to parallelize computations on GPU, each thread is
in charge of one object pair. For a n-body simulation, n2−n

2
threads will be created. It is necessary to supply in every
thread the pair of objects which it has to compute. Each ob-
ject consists in 2 vectors (min and max) and each of them
consist in three values (x,y and z) so 12 values must be trans-
mitted to each of the threads. The accuracy of these values
is essential to ensure a consistent result for the presence or
absence of a collision, it is thus essential that each of these
12 values must be coded on 4 bytes (floating point number).
12∗4 = 48 bytes have to be transmitted to each thread. With
one or ten thousand of objects, the transfer size would be re-
spectively 23MB or 2.3GB. It is quite obvious that the trans-
fer size quickly grows not linearly.

Each GPU thread has its own unique ID, the thread 0

deals with the pair 0 until the thread n2−n
2 dealing with the

(n2−n
2)th pair. As the CPU-GPU transfer occurs at each time

step, the data should not be as big as shown previously. The
main goal is to minimize the transfer size while preserving
the quality of the information. In the previous example, each
object was transmitted n− 1 times to the GPU at each time
step, it is possible to consider sending each object only once
per step that would significantly reduce the transfer size. For
a simulation with 1K objects, the size would be: 23KB.

But it is no longer possible for a thread to know which
pair it has to compute. The first idea would be to allocate
n2−n

2 locations in the GPU memory. They would correspond
to the pairs’ ID that each thread has to compute. Working
with simulations with a fixed number of objects, it is possible
to create and to store the list of the pairs’ identifiers during
an initialization phase. For example, let pairs_memory be
the allocated memory containing pairs of objects’ ID. The
thread k accesses on the kth location of pairs_memory and
reads two values ob ject1ID and ob ject2ID. These two IDs
are then used to localize the objects in the global memory
in order to get their bounding volume’s coordinates. In this
case, each thread does two global memory accesses to deter-
mine which objects it has to compute, followed by two other
global memory accesses to get bounding volume’s coordi-
nates. Each thread performs four memory accesses before
performing its computations.

To reduce the number of memory accesses, a novel ap-
proach is proposed to determine the pair (a,b) that a thread
has to compute without any memory access only with the
number of objects n and the identifier of the thread k.

Example: In a simulation with 1000 objects, the pairs to
handle are: (1,2),(1,3),(1,4), ... , (998,1000),(999,1000). The
goal is to find a method to determine, without memory ac-
cess, that the thread 71452 has to handle the pair (75,303)
and the thread 46108, the pair (48,285).

1 2 3 ... n-1 n
1 X 0 1 ... n−3 n−2
2 X X n-1 ... 2n−5 2n−4
3 X X X ... 3n−8 3n−7
...

n-1 X X X ... X n2−n
2

n X X X ... X X

Table 1: The pairs matrix in a simulation of n objects.

3.2. Linear Function of Access

As per Table 1, it is possible to determine the objects identi-
fiers for a given pair number, using computation loops based
on mathematical series. But more the identifier of the pair
is high and more the number of computation loops will be
important. If each GPU kernel function has a different com-
putation time due to an evolutionary number of loops, the

c© The Eurographics Association 2012.

Q. Avril & V. Gouranton & B. Arnaldi / Fast Collision Culling in Large-Scale Environments Using GPU Mapping Function

global computation time will be impacted by the slowest
thread. The computation time in GPU kernels has to be ho-
mogeneous regardless of the pair identifier to handle.

3.2.1. Turn the Index Into Unique Pair

The numbering of the matrix rows and columns is done from
1 to n (from the top left to the bottom left). Let a be the index
of the row and b the column one. In this case, the first line
contains (n−1) numbers, the second one (n−2), ..., the kth

(n− k),... and the nth 0. From line 1 to line a−1 there is:

Sa = (n−1)+(n−2)+ ...+(n− (a−1)) elements

As the pairs numbering starts at 0, Sa is the first number
of the line a (0,n−1, ..., n2−n

2 on Table 1). Sa is a series, the
operation can be simplified:

Sa =
(a−1)(2n−a)

2

As this first number is in the column a+ 1, the number
that is in the column b is thus Sa + b− (a + 1). With the
identifier k of the thread and the number of objects n, the a
and b values that correspond to objects to compute have to
be determined. The inequality to solve is the following:

Sa ≤ k ≤ Sa+1

(a−1)(2n−a)
2 ≤ k ≤ ((a+1)−1)(2n−(a+1))

2

But, to solve Sa ≤ k≤ Sa+1, it is not necessary to use both
inequalities because it is enough to say that:

• a is the larger integer such as Sa ≤ k
• or that a is the smaller integer such as k ≤ Sa+1

Which, in both cases, leads to seek for the real solution of
the equation and then to take the integer part. Starting from
the special case where the number of the thread corresponds
to the beginning of one line of the matrix (k = Sn):

k =
(a−1)(2n−a)

2 →−a2 +a(2n+1)−2n−2k = 0

This second degree polynomial equation has two roots:

X1 =
−(2n+1)+

√
∆

−2 X2 =
−(2n+1)−

√
∆

−2

with ∆ = 4n2−4n−8k+1.

During the roots resolution, only X1 is located between
the borders 1 and n. X2 is out of bounds of the solution and
leads to a wrong coordinate in the matrix (up to the number
of objects), which has no meaning. X1 needs to be solved in
order to get the y coordinate of the matrix. The integer part
of the root X1 enables to get the matrix coordinate.

a = b−(2n+1)+
√

4n2−4n−8k+1
−2

c (1)

To get b, the following equation needs to be solved:

b = (a+1)+ k−Sa = (a+1)+ k− (a−1)(2n−a)
2

(2)

Figure 2: General overview of our approach that reduces
the GPU global memory accesses done by the threads.

where Sa is the first value of line a. With this polynomial
resolution, it is now possible for each thread to determine
(using n (number of objects) and its index k) the two objects
it has to deal. It is no longer necessary to allocate the pairs
in the GPU memory, which saves four memory accesses per
thread and a fairly substantial area of memory. The only data
to transfer at each time step is the two Min and Max vectors
of each object. Which, for a n objects simulation is n∗2∗3∗
4= 24∗n bytes. With 10K objects, the size of data to transfer
is 234Kb and the transfer can be performed in less than 50 µs
(0.050 ms) on recent GPU architectures. This time is almost
negligible compared to our problem.

3.2.2. Comparison with Lazy Way

It could have been possible to use a simpler way to re-
trieve the pairs with the IDs that consists in generating pairs
without computing any square roots and checking if they
are valid. The algorithm is for a given ID k and N objects,
a = int(k/N) and b = k%N. Then the result is tested before
handing this thread ID number back: if a≥ b, then this is an
invalid ID that has generated an already existing pair. The
calculations are stopped for this thread. While if a < b, then
the pair is valid and the calculation on the potential overlap
of objects is pursued. The point is, for a large N, about half of
the IDs are thrown away in the 0 to n2−n

2 list of numbers and
pass the other half on. It is therefore necessary to test n2−n
IDs at the cost of an additional "if", integer divide and mod-
ulo operation. When comparing this approach on sequential
CPU with the previously detailed method, it quickly appears
that, in a sequential CPU context, it is better suited than the
previous approach. In spite of the twice higher number of
loops, the atomic functions are simpler and without comput-
ing the square root, the algorithm is four times faster when
running both on sequential CPU. But with 10K objects, it
takes 4.51s to compute on CPU... Thus the parallel optimiza-
tion becomes necessary. When comparing both techniques
on GPU, the results are inversed. The Table 2 shows results
obtained on a Nvidia Quadro FX 3600M. Performing twice
as more computations in parallel on GPU, even if the atomic
operations are simpler, may be less efficient. That shows the
inconsistency of the lazy way in a parallel context.

c© The Eurographics Association 2012.

Q. Avril & V. Gouranton & B. Arnaldi / Fast Collision Culling in Large-Scale Environments Using GPU Mapping Function

Nb objects With sqrt (ms) Without (ms)
1K 0.21 0.25

10K 2.25 4.28
100K 29.66 58.24

Table 2: The comparison of our approach and the use of no
square root to determine the objects pair with an ID.

3.3. Square Root Optimization

Computing the square root of a floating point number is
essential in many 3D applications. The new formulas used
by the threads that have been proposed use square roots. A
brief overview on the study on different possible optimiza-
tions for the square root computation is presented. Square
root functions are very time consuming on most CPU even
with particular instructions. That is why the GPU have ded-
icated hardware to perform such functions faster. But it still
remains an important time consuming operation even on
GPU. In 2005, id Software(www.idsoftware.com) released
the source code of the Quake III engine under GPL license.
In this code, two methods were found by engineers and as-
signed to the programmer John Carmack (Few investigations
showed that the code had older roots in the hardware and
software side of the computer graphics community). One of
these functions is designed to compute the square root of a
floating point number without any loop, only using linear
elementary computations. This function is based on a very
rapid Newton’s-method-based approximation to the square
root. The C code was essentially (without original com-
ments):

1 float SquareRootFloat(float nb) {
2 float nb_half = nb * 0.5F;
3 float y = nb;
4 long i = * (long *) &y;
5 i = 0x5f3759df - (i >> 1);
6 y = * (float *) &i;
7 //Repetitions increase accuracy(6)
8 y = y * (1.5f - (nb_half * y * y));
9 return number * y;}

This method does not contain any loop thanks to the use of
the "magic number" 0x5f3759df. This hexadecimal constant
is used as a first approximation and significantly reduces the
iterations number needed to obtain a satisfactory approxi-
mation. This code is based on the fact that the IEEE 754-
2008 floating point format approximates base-2 logarithm.
The Carmack’s constant was then studied and improved, first
by Chris Lomont [Lom03] followed by Charles McEniry
[McE07]. Lomont has proposed a new constant 0x5f375a86
which appears to perform slightly better than the previous
one. McEniry obtained the same constant that Lomont de-
termined but he has proved that a constant R can be used to
approximate the integer value of the inverse square root of a
floating point number but he has not proved that this constant
R assumes the value used in the code itself.

Lomont and McEniry reported that this square root ap-
proximation can lead to errors. As shown previously, in both
formulas 1 and 2, the square root is only used with integers
and the decimal part of the value is useless. In preliminary
tests it has been found that for very high values of n (num-
ber of objects), errors persist and lead in our case to a wrong
result. An error means that two threads with a consecutive
identifier will compute the same pair which means that one
pair will not be processed. To avoid getting errors in the com-
putation of the pairs of objects, we analyzed them and suc-
cessfully manage to characterize them. The square root in
the GPU kernel function is

√
4n2−4n+8k+1 with n, the

number of objects in the simulation and k, the thread identi-
fier. Errors can only occur in only two different situations of
bad approximation of the square root. These two situations
give a wrong pair (a,b) that looks like:

• b > Nb_ob j
• or a > b

In both cases, there is a way to fix it. In the first case, the
rule to apply to get the exact pairs coordinates is:

1 if(b > Nb_obj){
2 a++;
3 b = a+(b-Nb_obj);

Whereas in the second case, the rule to apply is:

1 if(a >= b){
2 b = nb_obj - (a - b);
3 a--;}

The next Table 3 shows the % of errors of the Carmack’s
and Lomont’s approximation without correcting errors. Two
different tests were performed with respectively two and
three accuracy steps. An error occurs when the lower inte-
gral part of the computed square root and the approximated
square root are different. The percentage of error with 4 ac-
curacy steps is exactly the same than the 3 step’s one.

2 accuracy steps 3 accuracy steps
Nb Tests Carmack Lomont Carmack Lomont

1K 2.9% 2.9% 0.7% 0.7%
10K 0.89% 0.89% 0.12% 0.12%
100K 0.27% 0.27% 0.035% 0.035%
1M 0.1800% 0.1803% 0.0110% 0.0111%
10M 0.3681% 0.3685% 0.0040% 0.0057%

100M 0.9847% 0.9855% 0.0134% 0.0142%

Table 3: Percentage of errors of the Carmack’s and
Lomont’s square root approximation when using two or
three accuracy steps without correcting errors.

From 1K to 100M tests, a 0% of error is obtained, when
applying the conditions (cf. above) after the computation of
the square root approximation to fix the errors leading to bad
pairs. It is now possible to use the method of the approxima-
tion of the square root in the kernel function being sure of
the consistency of the result.

c© The Eurographics Association 2012.

Q. Avril & V. Gouranton & B. Arnaldi / Fast Collision Culling in Large-Scale Environments Using GPU Mapping Function

The Table 4 presents the results obtained by comparing
normal CUDA square root (sqrt()) with the Carmack’s and
Lomont’s approximation techniques.

Nb tests Carmack Lomont CUDA γ

1M 0.042ms 0.042ms 0.048ms 12.6%
10M 0.409ms 0.409ms 0.478ms 14.7%
100M 4.102ms 4.102ms 4.722ms 13.2%

1B 41.01ms 41.01ms 48.01ms 14.6%

Table 4: GPU Computation time (in ms) of the Carmack’s
and Lomont’s approximation compared to the CUDA square
root function. The tests were made from 1 million to 1 billion
sqrts to compute. The value in bold is the shortest computa-
tion time. The γ value correspond to the % of computation
time reduction obtained with the square root approximation.

The Carmack’s and Lomont’s square root approximations
outperform the standard CUDA sqrt. The difference is not as
significant as expected but is still a time reduction. On aver-
age, the percentage of obtained computation time is 13.7%.

3.4. Output Transfer Optimization

It is also essential to optimize as much as possible the out-
put transfer time (from the GPU to the CPU). This step is
made at each time step so shorter it is and better it is. Each
thread is in charge of determining if two bounding volumes
of objects are in collision or not. The answer "yes" or "no"
can be represented with only one bit (1 or 0). For n objects
in the simulation, there are n2−n

2 pairs to compute, as many
bits have just to be allocated in the memory. If the bit num-
ber X is 1, it means that the bounding volumes of the objects
of the pair number X are in collision. In the CUDA/C++ pro-
gramming context, it is not possible to directly manipulate 1
bit parameters or attributes. Even a character or a Boolean
value is coded on 1 byte (8 bits). Allocate a character per
pair would be 8 times more important than just one bit and
the transfer time would also be longer.

The 8 bits of one character are used to store the colli-
sion test result of 8 pairs. The GPU memory allocation can
only be made in bytes so the number of needed bytes is
nb_Bytes= dN/8e. Thus, (N/8 + (1 or 0)) bytes are allocated
to store results. When the collision test is positive, the thread
creates a character equal to 1 and then proceeds to a binary
shift of (ID%8) bits into the character (ID is the thread iden-
tifier). Then it has to write this character in the (ID/8)th

memory location (previously allocated). But 8 threads will
write to the same memory location so the result information
has to be maintained in the same character. To do so, before
writing on the memory, each thread has to read the (ID/8)th

memory location and apply an OR logical function of the two
binary strings. This elementary operation enables to do the
union of the results from the 8 threads in the same character.

The read of this binary string transmitted to the CPU is

Figure 3: The output transfer and kernel times between us-
ing 1-byte or 1-bit per objects pair. Time was measured in
milliseconds from 100 to 7500 objects.

made with the other logical operation AND. If the user wants
to know if the 19th object pair contains a collision, he creates
a character equal to 1, then he performs three binary shifts
(19%8 = 3) and applies the mask on the third character in
the memory (19/8 = 2 but it starts at 0). If the result is more
or equal to one, the bounding volumes of the objects pair
(2∗8)+3 = 19 are in collision.

But if 8 threads write at the same memory location, they
cannot write it in parallel. These accesses are serialized. The
differences between 8 parallel writings in the global GPU
memory (using a 1-byte data type) and 8 serialized writings
(using a 1-bit data type) were evaluated. Table 5 presents
the results of these performance measurements from 100 to
7500 objects in the simulation. The kernel execution time
and the output transfer time were measured. The input trans-
fer was not controlled because the choice between 1-bit or
1-byte does not impact it. The Figure 3 shows the difference
between both configurations. The kernel execution time is
exactly the same between using 1-byte or 1-bit so between
parallel or serialized accesses on the global memory of the
GPU. While the output transfer time is significantly longer
when using 1-byte per pair.

1 byte per pair 1 bit per pair
Nb obj Kernel(ms) Output(µs) Kernel Output

100 0.03 14.35 0.03 7.75
1000 2.70 842.75 2.72 111.18
5000 73.95 21428 74.14 2612.42
7500 163.60 45865.94 162.03 5687.20

Table 5: Kernel and output with 1-byte or 1-bit per pair.

3.5. Intermediate Results

Intermediate results obtained by the new broad phase algo-
rithm based on a semi-brute force approach are presented.
The graph shown on Figure 4 summarizes the evolution of
the GPU kernel time according to the number of objects and
the changes in the input/output data size. These results show

c© The Eurographics Association 2012.

Q. Avril & V. Gouranton & B. Arnaldi / Fast Collision Culling in Large-Scale Environments Using GPU Mapping Function

Figure 4: GPU Kernel time, input and output data size of
our model from 100 to 5000 objects.

that the transfer time is negligible in relation to the computa-
tion time of the threads within the kernel. Data transfer from
CPU to GPU increases linearly in relation to the number of
objects. The output one (from the GPU to the CPU) is more
important.

3.5.1. Intermediate Comparison

For the simulations with less than 3000 objects, the new
model outperforms the latest approaches. If we compare
the simulation results from 2500 objects with Liu et al.
[LHLK10], our approach is 20% faster. Their approach is
based on a standard GPU SaP coupled with an algorithm to
choose the best projection axis. Compared with the approach
of Pabst et al. [PKS10] and Kim et al. [KHH∗09] that test
their hybrid model with the n-body benchmark of the UNC
(http ://gamma.cs.unc.edu/), our broad phase algorithm is,
respectively, 5 and 3 times faster. Kim’s approach is based
on a tree parallel traversal and the Pabst’s one is based on
a uniform spatial subdivision coupled with a non-optimized
for triangles brute force SaP.

3.5.2. Intermediate Synthesis

The initial objective was to show that a very simple algo-
rithm (brute force) properly optimized, could be very pow-
erful. It is partly achieved. The new proposed algorithm is
more efficient than existing approaches for scenes less than
3000 objects but as expected, given the combinatorial na-
ture of the algorithm with a quadratic complexity in O(n2),
the results collapse when the number of objects increases.
The objective is clearly the simulation of large-scale virtual
environments, so it is necessary to revise this model to add
conditions to prune the number of pairs to test. To do so this
combinatorial effect is removed by coupling this approach
with a spatial subdivision technique. The optimizations on
the size and transfer time and the GPU mapping function that
enables the threads to compute their current pair without any
memory access are still used with the spatial subdivision.

4. Spatial Subdivision

To associate the broad phase algorithm with a spatial subdi-
vision has become necessary to continue the reduction of
the computation time by avoiding useless calculations of
overlapping [LHLK10]. To further reduce the computation
time and break the quadratic complexity, the new semi-brute
force approach is associated to spatial subdivision. Indeed, a
3D grid is proposed to reduce the number of pairs to com-
pute and to locally perform our brute force approach. This
approach can be compared to the Multi-SAP concept, first
proposed and thought by Erwin Coumans and Pierre Ter-
diman [Ter07] but still marked as experimental. It has been
previously shown that the strategy which consists only in ap-
plying the brute-force method was adapted well to "small en-
vironments" but totally unsuitable for larger environments. It
is therefore useful to widely prune the number of pairs. The
grid-type structure is perfectly suited to this type of prob-
lem. This grid is set at the beginning of the simulation and
then updated at each time step of the simulation. The number
of cells and their size depend on the number of objects and
their size. In the following, the establishment and the update
of the grid structure are presented. The construction of the
grid is done in two steps: (1) determining number and size
of the cells and (2) putting objects in the grid cells.

4.1. Cells Characteristics

To ensure uniformity and consistency, the density of objects
within the environment is considered in order to determine
the characteristics of the grid cells. The dimensions of the
environment and the number of objects are used in the con-
struction. First, the objects density is evaluated in the envi-
ronment, dividing the number of objects by the cubic volume
of the environment. Then, a X value is set in order to deter-
mine the ideal volume that a cell should have to contain X
objects. X is divided by the density of the environment for
the optimal volume of cell. Then the cubic root of this vol-
ume is computed in order to determine the size of the side
of a cell. In this approach the grid has cubic cells. After ob-
taining the size of a cell, the number of cells per axis can be
determined allowing refining the cell size for a perfect fit to
the size of the environment. The value X varies according to
simulations.

4.2. Grid Fill in

The goal is then to link the objects to their respective cells.
To do it the GPU is used to massively parallelize the compu-
tations. Each calculation has to determine in which grid cell
is an object. The computation for each object is totally inde-
pendent of the other computations, they can be performed in
parallel on the GPU. The cells to which belong objects are
determined. The cells’ identifiers of one object are computed
using the position of the object and the maximum and mini-
mum bounds of it in order to loop through all relevant cells

c© The Eurographics Association 2012.

Q. Avril & V. Gouranton & B. Arnaldi / Fast Collision Culling in Large-Scale Environments Using GPU Mapping Function

and mark these as occupied by that object. At the end of this
step, each grid cell is composed of a list of objects’ identi-
fiers. The semi-brute force algorithm presented previously is
then locally applied according to the cells of the grid. The
occupancy of the GPU is maximal to simultaneously run a
maximum of cells in parallel.

4.3. Grid Update

This update step is essential when using a grid-like structure.
The goal of the grid being roughly to prune candidate pairs
to compute during the brute force algorithm, the update of its
cells must therefore be fast. This step is also performed on
the GPU. The GPU kernel function computes the cell identi-
fier of each object in parallel. It thus takes into account their
new positions and assigns them to the corresponding cells.

5. Implementation and Performance

In this section, the performance measurements of the new
parallel broad phase algorithm is presented. In all tests, all
objects are moving in order to evaluate the performance in
the most extreme situations. The algorithm was developed
an tested on a Intel Core-Duo CPU X7900 of 2,8 GHz with
3 Gb of memory with a Nvidia Quadro FX 3600M. The op-
erating system is Windows XP 32 bits.

Nb Objects α(ms) β(ms) δ(ms) Total
1K 0.03 0.13 0.09 0.25ms

10K 0.31 1.45 0.59 2.35ms
100K 3.38 11.12 13.41 27.91ms
1M 14.26 134.91 142.72 291.89ms

Table 6: Computation time - α: AABB Update - β: GPU
Grid Update - δ: GPU Brute Force SAP

Nb Objects Without Grid With Grid
100 0.046ms 1.020ms
1K 0.872ms 1.840ms

10K 31.450ms 3.257ms

Table 7: Computation time with/without the grid use.

The second column of the Table 6 corresponds to the step
of the update of the bounding volumes (here AABBs). The
third column is the time spent to update the grid on the GPU.
The fourth column gives the computation time of the brute
force Sweep and Prune on GPU. This time includes the time
of the input and output transfers. The Table 7 shows a com-
parison of our approach with or without the use of the 3D
grid. The use of the grid is useless in "small" environments,
the execution time is better when not using it. These small
environments are those composed of less than 1000 objects.
Beyond these 1000 objects, using a 3D grid leads to obtain
more efficient results.

Figure 6: Evaluation of the objects movement’s impact on
the computation time.

6. Comparison and Analysis

In the following, a comparison is made between our ap-
proach and existing and most used algorithms from the re-
cent literature.

The approach is compared with the last releases of two
other broad phase algorithms of the Bullet library [Bul],
the 3D incremental sweep and prune (SAP) [CLMP95] (a
64 bits version has been developed to handle more objects)
and the btDbvt algorithm which is based on dynamic AABB
trees. Two different tests were performed. The first one is
to determine the impact of the objects’ movement on the
computation time because many broad phase algorithms are
optimized when many objects are static. Thus several per-
formance measurements with varying percentage of moving
objects are run. Results (cf. Figure 6) show that the approach
is not impacted by the fact that the objects are static or dy-
namic. Unlike other approaches, whatever the percentage of
moving object, our computation time remains constant. The
second test is to assess the robustness of the algorithms ac-
cording to an important number of objects. The algorithms
is evaluated from one thousand to one million of objects,
100% moving. These tests were made with the same scenario
where an object column of the same size falls on to a plan
(cf. Figure 1) with the same Nvidia Quadro FX 3600M and
a Intel Core2 CPU X7900 @ 2.8GHz. Results are illustrated
on the Figure 5. The algorithm significantly outperforms the
two existing methods with large-scale environments.

It is a bit difficult to compare results with the literature
because there are only few approaches that have tried to
compute the collision detection with more than a million
of objects only using one GPU. It is also difficult to com-
pare with other approaches because the GPU are different.
There are several works studying the particles-based simu-
lations with millions of elements but it goes away from our
domain. The works of Tracy and al. [TBW09] focused on
the improvement of the SaP on the CPU and their results
present only environments with a low percentage of moving

c© The Eurographics Association 2012.

Q. Avril & V. Gouranton & B. Arnaldi / Fast Collision Culling in Large-Scale Environments Using GPU Mapping Function

Figure 5: Tests performed from one thousand to one million of moving objects with three different algorithms. All objects are
the same size. The computation time remains interactive (<25ms) in an environment composed of 100,000 objects with a Nvidia
Quadro FX 3600M.

object. The unique result they indicate with 100% of moving
objects consists of 3000 Objects. Their algorithm takes 4ms
whereas ours takes 0,46ms (including transfer time). Liu and
al. [LHLK10] have tested their approach on an environment
consists of 960k spheres of three different sizes. However,
they do not give the exact numerical values of the compu-
tation time of their algorithm, which makes the compari-
son difficult. The only comparable data are those from three
measurements done on three different numbers of spheres:
64K, 128K and 256K. Their approach takes respectively
13.71ms, 48.16ms and 241ms to apply the algorithm dur-
ing the broad phase stage. Our algorithm takes respectively
15.67ms, 30.68ms and 50.33ms for the same conditions of
simulation. We are thus slightly below the performances for
the environment of 64K spheres, 1.5 times faster for the one
with 128K spheres and 5 times faster for the last one. Other
approaches such as Pabst and al. [PKS10] and Lauterbach
and al. [LMM10] are only tested on small n-body environ-
ments (300 Objects). The computation times of their algo-
rithms of broad and narrow phase are not differentiated, only
the total time is given. For a simulation of 300 spheres and 4
cones, the approach of Pabst takes 128.1ms to make the cal-
culations in discrete mode and 184.8ms in continuous mode.
It is always very difficult to estimate time made by the broad
phase in an approach. Taking a broad phase which would
represent 10%, 5%, 2% or 1 % of the total execution time,
theirs would be respectively 12.81ms, 6.40ms, 2.56ms and
1.28ms. If we cross our results, our algorithm of SaP-Grid on
GPU for the same type of environment takes exactly 0.41ms.
Even for a broad phase which would represent only 1% of
their total time, our algorithm would be three times faster.
The additional difficulty of comparison is that Lauterbach et
al. have carried out their tests on a Nvidia GTX 285 while
Pabst et al. have performed on a Nvidia GTX 295 and we
have done ours on a Nvidia Quadro FX 3600M which makes
it very tricky to compare.

7. Conclusion and Future Work

A novel and efficient GPU solution has been presented to
cull non-colliding object pairs. This new algorithm is based
on a grid-based spatial technique and a new GPU mapping
function that enables GPU threads to turn their ID into a
unique objects pair without any global memory access. This
paper brings new directions for the collision detection op-
timization. It has presented a different direction from recent
collision detection works by going back to a semi brute-force
approach. The novel approach enables to reduce the global
memory accesses done by threads and leads to a faster exe-
cution time. To break definitively with the combinatorial of
the algorithm, the approach is coupled with spatial subdivi-
sion. The kernel execution time is further reduced with the
use of the square root approximation where a first charac-
terization of the errors is presented. It enables the fixing of
wrong computations leading to incorrect object pairs. The
logical optimization with binary masks of the output data
transfer has minimized the size and the time of the GPU-
CPU transfer. Numerical and comparative results showed
that this new algorithm enables to cull objects in less than
25ms with more than 100K moving objects on a Quadro FX
3600M. The comparisons made with the last releases of the
well-known and most-used algorithms showed that this new
model enables to further reduce the collision detection time.
Compared to the literature, this model is, in most cases, as
or faster than other ones.

There are many ways for future work. The GPU mapping
function is fully scalable on multi-GPU platform so it could
be interesting to evaluate its performance on bigger plat-
form. The next step of our work will focus on the second
stage (narrow phase) of the collision detection pipeline in
order to know if it is possible to apply such a parallel spa-
tial brute force approach. Using this approach not only on
bounding volumes but also on triangles or polygons could be
an interesting way. The grid establishment and update can be
improved and better mapped on to the GPU architecture. A

c© The Eurographics Association 2012.

Q. Avril & V. Gouranton & B. Arnaldi / Fast Collision Culling in Large-Scale Environments Using GPU Mapping Function

study on the optimal number of cells into the grid is crucial
and also on the cell size. It is now essential to take into ac-
count the run-time architecture to speed-up collision detec-
tion algorithms. We think that the key challenge is in the es-
tablishment of mapping models between the algorithms and
the architectures.

8. Acknowledgments

The authors want to thank Alison Day and Colin Moore
(Wechsler-Reya Lab) for their help in the English review
process. This research was supported by Bretagne Region
under project GriRV No4295.

References
[AGA11] AVRIL Q., GOURANTON V., ARNALDI B.: Dynamic

adaptation of broad phase collision detection algorithms. In
VR Innovations (ISVRI) - IEEE International Symposium (March
2011), pp. 41–47. 2

[Ber97] BERGEN G. V. D.: Efficient collision detection of com-
plex deformable models using aabb trees. J. Graph. Tools 2, 4
(1997), 1–13. 2

[BT95] BANDI S., THALMANN D.: An adaptive spatial subdivi-
sion of the object space for fast collision detection of animated
rigid bodies. Comput. Graph. Forum 14, 3 (1995), 259–270. 2

[Bul] BULLET: http://bulletphysics.org/. 8

[CLMP95] COHEN J. D., LIN M. C., MANOCHA D., PONAMGI
M. K.: I-collide: An interactive and exact collision detection
system for large-scale environments. In SI3D (1995), pp. 189–
196, 218. 2, 8

[EG07] EITZ M., GU L.: Hierarchical spatial hashing for real-
time collision detection. In Shape Modeling International (2007),
IEEE Computer Society, pp. 61–70. 2

[GLM96] GOTTSCHALK S., LIN M., MANOCHA D.: Obbtree:
A hierarchical structure for rapid interference detection. In Pro-
ceedings of the ACM Conference on Computer Graphics (New
York, Aug. 4–9 1996), ACM, pp. 171–180. 2

[GLM05] GOVINDARAJU N. K., LIN M. C., MANOCHA D.:
Quick-cullide: fast inter- and intra-object collision culling using
graphics hardware. In SIGGRAPH ’05: ACM SIGGRAPH 2005
Courses (New York, NY, USA, 2005), ACM, p. 218. 2

[GRLM03] GOVINDARAJU N. K., REDON S., LIN M. C.,
MANOCHA D.: Cullide: Interactive collision detection between
complex models in large environments using graphics hardware.
In SIGGRAPH/Eurographics Workshop on Graphics Hardware
(2003), Doggett M., Heidrich W., Mark W., Schilling A., (Eds.),
Eurographics Association, pp. 025–032. 2

[HRF09] HERMANN E., RAFFIN B., FAURE F.: Interactive phys-
ical simulation on multicore architectures. In EGPGV (2009),
Debattista K., Weiskopf D., Comba J., (Eds.), Eurographics As-
sociation, pp. 1–8. 2

[Hub95] HUBBARD P. M.: Collision detection for interactive
graphics applications. IEEE Transactions on Visualization and
Computer Graphics 1, 3 (1995), 218–230. ISSN 1077-2626. 2

[KHeY08] KIM D., HEO J.-P., EUI YOON S.: PCCD: Parallel
Continuous Collision Detection. Tech. rep., Dept. of CS, KAIST,
2008. 2

[KHH∗09] KIM D., HEO J.-P., HUH J., KIM J., YOON S.-E.:
HPCCD: Hybrid parallel continuous collision detection using

CPUs and GPUs. Comput. Graph. Forum 28, 7 (2009), 1791–
1800. 3, 7

[KP03] KNOTT D., PAI D. K.: Cinder: Collision and interfer-
ence detection in real-time using graphics hardware. In Graphics
Interface (2003), pp. 73–80. 2

[LCF05] LUQUE R. G., COMBA J. L. D., FREITAS C. M. D. S.:
Broad-phase collision detection using semi-adjusting BSP-trees.
In SI3D (2005), Lastra A., Olano M., Luebke D. P., Pfister H.,
(Eds.), ACM, pp. 179–186. 2

[LG98] LIN M. C., GOTTSCHALK S.: Collision detection be-
tween geometric models: a survey. In Proceedings of the 8th IMA
Conference on the Mathematics of Surfaces (IMA-98) (Winch-
ester, UK, Sept. 1998), Cripps R., (Ed.), vol. VIII of Mathematics
of Surfaces, Information Geometers, pp. 37–56. 2

[LG07] LE GRAND S.: Broad-phase collision detection with
cuda. GPU Gems 3 - Nvidia Corporation (2007). 2

[LHLK10] LIU F., HARADA T., LEE Y., KIM Y. J.: Real-time
collision culling of a million bodies on graphics processing units.
ACM Trans. Graph 29, 6 (2010), 154. 2, 7, 9

[LMM10] LAUTERBACH C., MO Q., MANOCHA D.: gproxim-
ity: Hierarchical gpu-based operations for collision and distance
queries. In Computer Graphics Forum (EUROGRAPHICS Pro-
ceedings) (June 2010), vol. 29, pp. 419–428. 3, 9

[Lom03] LOMONT C.: Fast Inverse Square Root. Tech. rep., Dpt
of Mathematics - Purdue University, Indiana, 2003. 5

[McE07] MCENIRY C.: The Mathematics Behind the Fast Inverse
Square Root Function Code. Tech. rep., 2007. 5

[Mir97] MIRTICH B.: Efficient Algorithms for Two-Phase Colli-
sion Detection. Tech. rep., Mitsubishi Electric Research Labora-
tories, Dec. 1997. 2

[Ove92] OVERMARS M. H.: Point location in fat subdivisions.
IPL: Information Processing Letters 44 (1992). 2

[PKS10] PABST S., KOCH A., STRAβER W.: Fast and scalable
cpu/gpu collision detection for rigid and deformable surfaces. In
Comput. Graph. Forum (2010), vol. 29, pp. 1605–16212. 3, 7, 9

[TBW09] TRACY D. J., BUSS S. R., WOODS B. M.: Efficient
large-scale sweep and prune methods with AABB insertion and
removal. In VR (2009), IEEE, pp. 191–198. 2, 8

[Ter07] TERDIMAN P.: Sweep-and-prune: Multi-sap /
http://www.codercorner.com/sap.pdf, 2007. 7

[TKH∗05] TESCHNER M., KIMMERLE S., HEIDELBERGER B.,
ZACHMANN G., RAGHUPATHI L., FUHRMANN A., CANI M.-
P., FAURE F., MAGNENAT-THALMANN N., STRASSER W.,
VOLINO P.: Collision detection for deformable objects. Com-
put. Graph. Forum 24, 1 (2005), 61–81. 2

[TLW11] TANG C., LI S., WANG G.: Fast continuous collision
detection using parallel filter in subspace. In Symposium on In-
teractive 3D Graphics and Games (New York, NY, USA, 2011),
I3D ’11, ACM, pp. 71–80. 2

[TMLT11] TANG M., MANOCHA D., LIN J., TONG R.:
Collision-streams: fast gpu-based collision detection for de-
formable models. In Symposium on Interactive 3D Graphics and
Games (2011), I3D ’11, ACM, pp. 63–70. 3

[TMT09] TANG M., MANOCHA D., TONG R.: Multi-core col-
lision detection between deformable models. In Symposium on
Solid and Physical Modeling (2009), Bronsvoort W. F., Gonsor
D., Regli W. C., Grandine T. A., Vandenbrande J. H., Gravesen
J., Keyser J., (Eds.), ACM, pp. 355–360. 2

[TPB08] THOMASZEWSKI B., PABST S., BLOCHINGER W.:
Parallel techniques for physically based simulation on multi-core
processor architectures. Computers & Graphics 32, 1 (2008),
25–40. 2

c© The Eurographics Association 2012.

