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Bounce scenarios in the Sotiriou-Visser-Weinfurtner generalization of the projectable Horava-Lifshitz gravity

The occurrence of a bounce in the FRW cosmology requires modifications of General Relativity. An example of such a modification is the recently proposed Hořava-Lifshitz theory of gravity, which includes a "dark radiation" term with a negative coefficient in the analog of the Friedmann equation. A modification of the HL gravity, relaxing the "detailed balance" condition, brings additional terms to the equations of motion, corresponding to stiff matter. This paper presents comparison of the phase structure of the original and modified Hořava cosmology. Special attention is paid to the analysis of a wide range of bouncing solution, appearing in both versions of the Hořava theory.

Introduction

There have been many attempts to modify Einstein's theory of gravity to avoid an initial singularity. Some were made at the classical level, some involve quantum effects. Examples include the ekpyrotic/cyclic model ( [1,2,3,4,5,6]) and loop quantum cosmology ( [7,8,9]), which replace the Big Bang with a Big Bounce. Attempts to address these issues at the classical level include braneworld scenarios ( [10,11]), where the universe goes from an era of accelerated collapse to an expanding era without any divergences nor singular behavior. There are also higher order gravitational theories and theories with scalar fields (see [12] for a review of bouncing cosmologies). However it is fair to say that the issue of the initial singularity still remains one of the key questions of the early Universe cosmology.

Recently much effort has been devoted to studies of a proposal for a UV complete theory of gravity due to Hořava [13,14,15] and modifications of the theory [14,16,17,18,19] (for a recent review see [START_REF] Mukohyama | invited review for[END_REF]). Because in the UV the theory possesses a fixed point with an anisotropic, Lifshitz scaling between time and space, this theory is referred to as the Hořava-Lifshitz gravity. From the time at which the Hořava theory was presented, there is also quite much discussion of possible problems and instabilities of Hořava-Lifshitz gravity [21,22,23,24]. Numerous sophisticated versions contain new terms added to the original Lagrangian with attempt to make the proposal more general [19] and to solve the so called strong coupling problem [21,25,26,27,28]. Even so it is still tempting to investigate issues opened by this theory and its modifications.

Soon after this theory was proposed many specific solutions of this theory have been found, including cosmological ones ( [29,30,31,32,16,33,34,35,36,37]). It was also realized that the analog of the Friedmann equation in the HL gravity contains a term which scales in the same way as dark radiation in braneworld scenarios [29,30,31] and gives a negative contribution to the energy density. Thus, at least in principle it is possible to obtain non-singular cosmological evolution within Hořava theory, as it was pointed out in [29,31,32,40]. Such possibility may have dramatic consequences for potential histories of the Universe -other than avoiding the initial singularity. New imaginable scenarios of cosmological evolution include contraction from the infinite size, bounce and then expansion to infinite size again, or eternal cycles of contraction, bounce and expansion.
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Additional possibilities are brought by some interesting modifications modifications of HL gravity, either by softly breaking a detailed balance condition [14,16,17] or relaxing it completely [18,19]. In the latter works Sotiriou, Visser and Weinfurtner (SVW) in search for the more general renormalizable gravitational theory took a gravitational action containing terms non only up to quadratic in curvature, like in original HL formulation, but also cubic ones, as suggested earlier in [29,30]. Generalized Friedmann equation of this model include modified dark radiation term proportional to ∼ 1/a 4 (a is a scale factor) from the original HL formulation, and also additional 1/a 6 term. This new term, negligible at large scales, becomes significant at small ones and modifies bounce solutions. Specially, with the opposite sign (the value of a coupling constant is arbitrary) than the 1/a 4 term, it may compensate the dark radiation term at small distances and cancel the possibility of avoiding singularity, like in the HL gravity with the softly broken detailed balance condition and negative spacial curvature [39]. Thus one of the questions to be answered is how the additional terms in the generalized Friedmann equations of the SVW HL gravity influence the existence and stability of a cosmological bounce.

In this work we are going to investigate, with the help of the phase portrait techniques, how relaxing the detailed balance condition affects the dynamics of the system, and then compare the results to those in the standard HL theory. We will we focus on non flat cosmologies, with space curvature k = ±1, allowing non-singular solutions. Unlike in our previous paper [42], we are going to describe matter by a cosmological stress-energy tensor added to the gravitational field equations. Such analysis is more effective and avoids unneeded approximations and simplifications. In this hydrodynamical approach two quantities: density ρ and pressure p describe matter properties.

Nonetheless, constant parameter w of the equation of state is of course an idealization, hard to avoid at this level of research. It would be better to have history of the SVW HL Universe constructed in a similar way as in the standard ΛCDM model, with phases and epochs of different matter/radiation contents. Yet unless a rich structure of the original and the generalized HL theory, with additional coupling constants whose range of values is not fully understood thus far, is investigated deeper, we shall use simpler tools. Thus in this paper, within limited physical understanding of the theory and its parameters, we would rather present lists of possibilities than likely physical solutions. With the progress of research in this field and better understanding of the nature of these parameters, it will be possible to assign more physical interpretation to a set of solutions/scenarios found.

Related analysis of the generalized Hořava-Lifshitz cosmology have recently appeared in [43] and [44], which we become aware of while this work was being typed. Those papers address a somewhat different set of issues, i.e. static solutions of the HL universe. Here we are interested in stable and unstable solutions leading to cosmological bounce, and focus on both cases of non flat universe (k = -1 and k = 1) with the value of a HL constant λ arbitrary. We agree on the regions of overlap. General discussion of the full phase space of the original HL cosmology is contained e.g. in [45,46].

The structure of a paper is following: in Section 2. we briefly sketch the Hořava-Lifshitz gravity and cosmology. In Section 3. the possibility of bounce in theory with detailed balance condition is discussed. In Section 4 we discuss phase portraits of the HL universe with condition of detailed balance relaxed.

Hořava-Lifshitz cosmology

The metric of Hořava-Lifshitz theory, due to anisotropy in UV, is written in the (3+1)-dimensional ADM formalism:

ds 2 = -N 2 dt 2 + g ij (dx i -N i dt)(dx j -N j dt), (1) 
where N , N i and g ij are dynamical variables.

Detailed balance

The action of Hořava-Lifshitz theory is [14] 

I = dt d 3 x(L 0 + L 1 ), (2) 
L 0 = √ gN 2 κ 2 (K ij K ij -λK 2 ) + κ 2 µ 2 (Λ W R -3Λ 2 W ) 8(1 -3λ) , L 1 = √ gN κ 2 µ 2 (1 -4λ) 32(1 -3λ) R 2 - κ 2 2ω 4 Z ij Z ij , where K ij = 1 N 1 2 ġij -∇ (i N j)
is extrinsic curvature of a space-like hypersurface with a fixed time, a dot denotes a derivative with respect to the time t and covariant derivatives are defined with respect to the spatial metric g ij . Moreover

Z ij = C ij - µω 2 2 R ij . (3) 
κ 2 , λ, µ, ω and Λ W are constant parameters and the Cotton tensor, C ij , is defined by

C ij = ikl ∇ k R j l - 1 4 Rδ j l = ikl ∇ k R j l - 1 4 ikj ∂ k R. (4) 
In ( 2), L 0 is the kinetic part of the action, while L 1 gives the potential of the theory in the so-called "detailed-balance" form.

Matter may be added by inserting a cosmological stress-energy tensor in gravitational field equation. Within such framework we approximate the stress-energy tensor by two quantities: density ρ and pressure p, then simply add them to the vacuum equations by demanding the correct limit as one approaches General Relativity -the low energy limit of the HL theory. Relation between ρ and p is given by the equation p = wρ, with w being the equation of state parameter.

Comparing the action of the Hořava-Lifshitz theory in the IR limit to the Einstein-Hilbert action of General Relativity, one can see that the speed of light c, Newton's constant G and the effective cosmological constant Λ are

c = κ 2 µ 4 Λ W 1 -3λ , G = κ 2 c 32π , Λ = - 3κ 4 µ 2 3λ -1 Λ 2 W 32 = 3c 2 2 Λ W , (5) 
respectively. To have real value of speed of light c emerging, the HL cosmological constant Λ W has to be negative for λ > 1/3 and positive for λ < 1/3. It is possible to obtain a positive cosmological constant Λ W in the IR limit λ = 1 if one performs in (2) an analytic continuation of constant parameters µ → iµ and ω 2 → -iω 2 . The equations for Hořava-Lifshitz cosmology are obtained by imposing conditions of homogeneity and isotropy of the metric. The associated ansatz is N = N (t), N i = 0, g ij = a 2 (t)γ ij where a(t) is a scale factor and γ ij is a maximally symmetric constant curvature metric, with a curvature k = {-1, 0, 1}. On this background

K ij = H N g ij , R ij = 2k a 2 g ij , C ij = 0 , (6) 
where H ≡ ȧ/a is the Hubble parameter. The gravitational action (2) becomes:

S FRW = dt d 3 x Na 3 3(1 -3λ) 2κ 2 H 2 N 2 + 3κ 2 µ 2 Λ W 4(1 -3λ) k a 2 - Λ W 3 - κ 2 µ 2 8(1 -3λ) k 2 a 4 . (7) 
The equations of motion are obtained by varying the action (7) with respect to N , a and ϕ, setting N = 1 at the end of the calculations and adding terms with density ρ and pressure p, leading to

H 2 = κ 2 ρ 6(3λ -1) ± κ 4 µ 2 8(3λ -1) 2 kΛ W a 2 - Λ 2 W 2 - k 2 2a 4 , (8) 
Ḣ = - κ 2 (ρ + p) 4(3λ -1) ∓ κ 4 µ 2 8(3λ -1) 2 kΛ W a 2 + k 2 4a 4 , (9) 
and the continuity equation:

ρ + 3H(ρ + p) = 0, (10) 
The upper sign denotes the Λ W < 0 case, the lower one the analytic continuation µ → iµ with a positive Λ W . The significant new terms in the above equations of motion are the (1/a 4 )-terms on the righthand sides of ( 8) and (9). They are reminiscent of the dark radiation term in the braneworld cosmology [47] and are present only if the spatial curvature of the metric is non-vanishing.

Values of constant parameters κ 2 and µ may be expressed in terms of cosmological constants according to (5). We will also work in units such that 8πG = 1 and c = 1. Then

κ 2 = 32πGc = 4, Λ = 3 2 Λ W , (11) 
and

µ 2 1 -3λ = ± 3 2Λ . ( 12 
)
Substituting the above expressions and the equation of state p = wρ to (8-9) leads to

H 2 = 2 3λ -1 ρ 3 ± Λ 3 - k a 2 + 3 4Λ k 2 a 4 (13) 
Ḣ = 2 3λ -1 - (1 + w) 2 ρ ± k a 2 - 3 2Λ k 2 a 4 . ( 14 
)

Beyond detailed balance

The gravitational action written in the "detailed balance" form (2) ( [14]) contains terms up to quadratic in the curvature. However the most general renormalizable theory contains also cubic terms, as it was pointed out in [29,30]. Thus Sotiriou, Visser and Weinfurtner ( [18,19]) built a theory with projectability condition N = N (t), as in original Hořava theory, but without the detailed balance condition. This led to Friedmann equations with an additional term ∼ 1/a 6 and uncoupled coefficients:

H 2 = 2 (3λ -1) ρ 3 + σ 1 + σ 2 k a 2 + σ 3 k 2 a 4 + σ 4 k a 6 , (15) 
Ḣ = 2 (3λ -1) - p 2 - ρ 2 -σ 2 k a 2 -2σ 3 k 2 a 4 -3σ 4 k a 6 . (16) 
Values of constants σ 3 , σ 4 are arbitrary. In order to coincide with the Friedmann equations in the IR limit λ = 1 and for large a (terms proportional to 1/a 4 and to 1/a 6 are then neglible) one has to set σ 1 = Λ/3 and σ 2 = -1. Thus the above equations take the following forms:

H 2 = 2 (3λ -1) ρ 3 + Λ 3 - k a 2 + σ 3 k 2 a 4 + σ 4 k a 6 , (17) 
Ḣ = 2 (3λ -1) - ρ(1 + w) 2 + k a 2 -2σ 3 k 2 a 4 -3σ 4 k a 6 , (18) 
where we have used the equation of state p = wρ. Density parameter follows the standard evolution equation (10). New terms, proportional to 1/a 6 , appearing in the analogs of Friedmann equations, mimic stiff matter (e.g. such that ρ = p and ρ stiff ∼ 1/a 6 ). These terms are negligibly small at large scales, but may play a significant role at small values of a scale parameter.

Bounce stability in the original HL theory

In order to investigate the appearance of a bounce in the original HL gravity, we are going first to simplify the equations of motion (8)(9) and then to reduce them with respect to (8). In this way we will obtain the two dimensional dynamical system describing the evolution of a and H.

Solving Eq. ( 13) for ρ gives

ρ = 3(3λ -1) 2 H 2 ∓ Λ -3 k a 2 + 9 4Λ k 2 a 4 . (19) 
Inserting the above formula to ( 14) leads to

Ḣ = ±1 3λ -1 (1 + w) Λ -(3w + 1) k a 2 + 3 (3w -1) 4Λ k 2 a 4 - 3 2 (1 + w) H 2 . ( 20 
)
Equation ( 20) and the definition of the Hubble parameter:

ȧ = aH, (21) 
provide the two dimensional dynamical system for variables a and H.

To find the finite critical points we set all right-hand-sides of equations [START_REF] Mukohyama | invited review for[END_REF](21) to zero. This gives two points:

P 1 : a 2 = 3k 2Λ , H= 0, ( 22 
)
P 2 : a 2 = (3w -1)k (1 + w)2Λ , H = 0. ( 23 
)
These points are finite, unless w = -1. In the latter case point P 2 is moved to infinity. Point P 1 exists for k/Λ > 0. Point P 2 exists for w > 1/3 and k/Λ > 0 or w < 1/3 and k/Λ < 0. Thus those two points exist both at the same time for w > 1/3. Stability properties of the critical points are determined by the eigenvalues of the Jacobian of the system [START_REF] Mukohyama | invited review for[END_REF](21). More precisely, one has to linearize transformed equations (20-21) at each point. Inserting x = x 0 + δ x, where x = (a, H), and keeping terms up to 1st order in δ x leads to an evolution equation of the form δ ˙ x = Aδ x. Eigenvalues of A describe stability properties at the given point. Critical points at which all the eigenvalues have real parts different from zero are called hyperbolic. Among them one can distinguish sources (unstable) for positive real parts, saddle for real parts of different sign and sinks (stable) for negative real parts. If at least one eigenvalue has a zero real part (non-hyperbolic critical point) it is not possible to obtain conclusive information about the stability from just linearization and needs to resort to other tools like e.g. numerical simulation [START_REF] Arrowsmith | An introduc-tion to Dynamical Systems[END_REF].

Eigenvalues at P 1 are following:

-2 ∓2Λ 3(1 -3λ) , 2 ∓2Λ 3(1 -3λ) ,
For all admitted values of Λ and λ, expression ∓Λ/(1 -3λ) is negative, thus P 1 is a center (both eigenvalues of A are purely imaginary at this point).

Eigenvalues at the second finite critical point P 2 read as:

-2 ∓2Λ(1 + w) (1 -3λ)(1 -3w) , 2 ∓2Λ(1 + w) (1 -3λ)(1 -3w) .
Depending on the value of parameter w the point P 2 may be a center or a saddle (two real numbers with opposite signs). Precisely, P 2 is a linear center (non-hyperbolic center with one eigenvector) for w = -1 (k/Λ < 0), a center for -1 < w < 1/3 (k/Λ < 0) and a saddle for w > 1/3 (k/Λ > 0). Properties of the critical points P 1 and P 2 in dependence on the values of Λ, k, w are gathered in the Table 1. Λ < 0 corresponds to solutions of ( 20)-( 21) with the upper sign, the case of Λ > 0 to the lower sign in (20)- (21).

To find critical points that occur at infinite values of the parameters we rescale the infinite space (a, H) into a finite Poincaré sphere (as in [START_REF] Felder | [END_REF]50]) in such a way that the new coordinates

k/Λ w P 1 stability P 2 stability > 1 3 + center + saddle > 0 -1 < w < 1 3 + center - -1 + center - > 1 3 - - < 0 -1 < w < 1 3 - + center -1 - moves to ∞ linear center Table 1.
Properties of finite critical points in the HL theory. The plus sign stands for "exists" and the minus sign stands for "does not exists".

(ã, H) are written in polar coordinates r, φ: ã = r cos φ and H = r sin φ and:

a = r 1 -r cos φ, (24) 
H = r 1 -r sin φ, (25) 
We also rescale the time parameter t by defining the new time parameter T such that: dT = dt/(1 -r). In these coordinates our phase space is contained within a sphere of radius oneinfinity corresponds to r = 1. More precisely, semi-sphere, as a scale factor a may take only nonnegative values. This leads to the dynamical equations in terms of r, φ and their derivatives with respect to new time T . Taking limit r = 1 we obtain:

r (T ) = 0, (26) 
φ (T ) = - 5 + 3w 2 cos φ sin 2 φ. (27) 
Putting r.h.s. of the above equations to zero, we find 4 solutions:

P 3 = (1, 0) P 4 = (1, π/2) P 5 = (1, π) P 6 = (1, 3π/2)
in polar coordinates (r, φ). Point P 5 is nonphysical (a negative a) and shall be removed from further discussions. Eigenvalues of the Jacobian matrix at the above points are following:

(0, 0) at

P 3 : 5 + 3w 2 , 3 1 + w 2 at P 4 - 5 + 3w 2 , -3 1 + w 2 at P 6
The point P 3 is non-hyperbolic and we determine its properties by numerical simulations for each set of parameters. Unless w = -1 points P 4 and P 6 are respectively a repelling and an attracting node. For w = -1 the finite fixed point P 2 is moved to (∞, 0) becoming P 3 , which is then a linear center. For this value of w points P 4 and P 6 are non-hyperbolic. It follows from numerical simulations that they are saddles then and ends of a separatrice. Fig. 1 shows the phase portrait of HL universe containing matter with equation of state parameter w > 1/3, k/Λ > 0, Figure 2. shows phase portrait for -1 < w < 1/3, k/Λ < 0 and Fig. 3 for w = -1, k/Λ < 0. One has to note that these figures contain the deformed phase space, scaled to fit on the finite Poincaré sphere. One may have the impression that they describe regions in which e.g. the scale factor a increases although the Hubble parameter H is negative. However it is the parameter ã that is increasing on the diagram, not the scale factor a.

Bounce scenarios are thus possible when critical points exists. If these point are centers then there are closed orbits around them and the Universe goes through eternal oscillations: expansion, collapse to a finite size, expansion etc. Point P 1 may be a center (for certain values of parameters), but then ρ = 0, which is physically not interesting. More interesting case is when P 2 is a center, then there are closed orbits with a non-zero density ρ. The third bounce scenario is around the linear center P 2 (moved to ∞ and coinciding with P 3 ). In this case there are onefold closed trajectories: universe starts from a static one (H = 0) and infinite (a = ∞), goes through a period of collapsing to a finite size, then after a bounce starts expansion and finishes as a static infinite universe.

Bounce stability in the SVW generalization

Relaxing detailed balance condition leads to the generalized Friedmann equations (17-18) with additional term ∼ 1/a 6 and uncoupled coefficients. We may solve eq. ( 17) for ρ obtaining:

ρ = 3 (3λ -1) 2 H 2 -Λ -3 k a 2 -3 σ 3 k 2 a 4 - 3σ 4 k a 6 . ( 28 
)
Substituting this expression on ρ into (18) and using the equation of state p = wρ leads to

Ḣ = 2 3λ -1 Λ(1 + w) 2 - k(1 + 3w) 2a 2 + σ 3 (-1 + 3w)k 2 2a 4 + 3σ 4 (1 + w)k 2a 6 - 3(1 + w) 2 H 2 . ( 29 
)
The above equation, together with the definition of the Hubble parameter provides the two dimensional dynamical system for variables a and H. Finite critical points are solutions of the equations ( 21) and ( 29) with r.h.s. set to zero. Hence these points fulfill H = 0 and:

Λ(1 + w)a 6 -k(1 + 3w)a 4 + σ 3 (-1 + 3w)k 2 a 2 + 3σ 4 (-1 + w)k = 0 ( 30 
)
The latter one is a bicubic equation, which may be simplified in few special cases.

Cosmological constant w = -1

For w = -1 equation ( 30) reduces to a biquadratic equation:

ka 4 -2σ 3 k 2 a 2 -3σ 4 k = 0. ( 31 
)
Solutions of ( 31) are following:

P 1 : a 2 = kσ 3 -σ 2 3 + 3σ 4 , (32) 
P 2 : a 2 = kσ 3 + σ 2 3 + 3σ 4 . ( 33 
)
Point P 1 exists when {(kσ

3 > 0, σ 4 < 0); (|σ 4 | < σ 2 3 /3)}. Point P 2 exists for: (kσ 3 > 0, σ 4 > 0); (kσ 3 > 0, σ 4 < 0, |σ 4 | < σ 2 3 /3); (kσ 3 < 0, σ 4 > 0) . ( 34 
)
Stability properties of the critical points found are given by eigenvalues of the Jacobian matrix A of the system ( 21), (29). Eigenvalues of A at P 1 are following:

± -kC 1 3λ -1 , ∓ -kC 1 3λ -1 , ( 35 
)
where C 1 denotes expression in k, σ 3 , σ 4 , positive when the point P 1 exists. Similarly, eigenvalues of A at the point P 2 read as:

± kC 2 3λ -1 , ∓ kC 2 3λ -1 , (36) 
where C 2 denotes expression in k, σ 3 , σ 4 being positive when the point P 2 exist. Thus for k/(3λ -1) > 0 the point P 1 is a center and P 2 an unstable saddle, for k/(3λ -1) < 0 P 1 is a saddle and P 2 a center -provided that the values of k, σ 3 , σ 4 allow their physical existence (a 2 > 0). Density ρ at those points is equal to

ρ = - 2σ 3 3 + 9σ 3 σ 3 + 9Lσ 2 4 ± 2kσ 2 3 σ 2 3 + 3σ 4 ± 6kσ 4 σ 2 3 + 3σ 4 9σ 2 4 , (37) 
where '+' corresponds to the point P 1 and '-' to P 2 . Thus at P 1 density ρ > 0 if this point exists and (k < 0, σ 3 < 0, 0 > Λ > 1/σ 3 ). At the point P 2 density is positive if (k < 0, σ 3 < 0, Λ < 0).

Radiation w = 1/3

When w = 1/3 equation ( 30) reduces to the following one:

2Λ 3 x 3 -kx 2 -kσ 4 = 0, ( 38 
)
where x = a 2 . The discriminant of the cubic polynomial a 3 y 3 + a 2 y 2 + a 1 y + a 0 is of the following form: ∆ = 18a 0 a 1 a 2 a 3 -4a 3 2 a 0 + a 2 2 a 2 1 -4a 3 a 3 1 -27a 2 3 a 3 0 . Discriminant of the equation ( 38) reads as:

∆ = -4k 2 σ 4 (k 2 + 3Λ 2 σ 4 ). ( 39 
)
For ∆ > 0 the cubic equation ( 38) has three real solutions. Condition ∆ > 0 is fulfilled for a nonflat universe (k = 0) when σ 4 < 0 and |σ 4 | < 1/(3Λ 2 ). Otherwise (38) -the equation with real coefficients -has one real solution and two nonreal complex conjugate roots (∆ < 0) or multiple real roots (∆ = 0). Physical points exist if real solutions x = a 2 > 0. Equation (38) cannot have three real positive roots, as it is implied by Viète's formulas -precisely, by the second formula of the following ones:

3k 2Λ = x 1 + x 2 + x 3 , (40) 
0 =x 1 x 2 + x 2 x 3 + x 3 x 1 , (41) 
3kσ 4 2Λ = x 1 x 2 x 3 . (42) 
If there are three real solutions (∆ > 0), one or two of them may be also positive. There is one positive solution if k/Λ < 0 and two positive solution if k/Λ > 0.

Multiple real solutions exist when ∆ = 0 hence when σ 4 = 0 or σ 4 = -k 2 /(3Λ 2 ). The former case corresponds to HL theory with the detailed balance condition, the latter case implies solutions:

Q 1 : a 2 = -k/(2Λ), (43) 
Q 2 : a 2 = k/Λ (double root), (44) 
and H = 0. Depending on the sign of k/Λ one of the two solutions has physical meaning. One real solution (∆ < 0), i.e. when σ 4 > 0 or σ 4 < -1/(3Λ 2 ), has positive value if kσ 4 /Λ > 0.

Eigenvalues of the Jacobian matrix at the critical points a x are following:

- 2 a 3 x k(3σ 4 + a 4 x ) 3λ -1 , 2 a 3 x k(3σ 4 + a 4 x ) 3λ -1 . (45) 
Thus they may be saddles or centers, depending on the sign of k/(3λ -1) and 3σ 4 + a 4

x . We can describe more precisely the case when σ 4 = -k 2 /(3Λ 2 ) (σ 4 = 0 case is described within original HL cosmology) and critical points are

a 2 x = -k/(2Λ) (Q 1 ) or a 2 x = k/Λ (Q 2 )
. Then the eigenvalues of Jacobian matrix read as:

2 √ 6 Λ 3λ -1 , -2 √ 6 Λ 3λ -1 at Q 1 , (46) 
and

(0, 0) at Q 2 . (47) 
Therefore the point Q 1 may be a saddle or a center, depending on the sign of Λ/(3λ -1). The points Q 2 is non-hyperbolic, numerical simulations (Fig. 5) show that it is a cusp. Comparing the neighborhood of Q 2 on both this figures, one can see the difference between the deformed phase space and the non-deformed one. At the former one there are regions in which the parameter ã increases although the parameter H is negative, whereas this behavior is absent at the latter one. This is due to the fact that parameters ã and H are geometric objects without the same physical meaning as the scale factor a and the Hubble parameter H.

Density ρ is following:

ρ = -3Λ(5 + 4Λσ 3 ) at Q 1 , (48) ρ 
= -3Λ(-1 + Λσ 3 ) at Q 2 . ( 49 
) Density at Q 1 is positive if {(Λ < 0, σ 3 < 0); (Λ > 0, 5/(4Λ) > σ 3 )}. At Q 2 , ρ is positive for {(Λ < 0, Λσ 3 > 1); (Λ > 0, σ 3 < 1/Λ),
plus conditions for existence: 

Q 1 has physical meaning if k/Λ < 0 and Q 2 if k/Λ > 0.

General case

In general critical points of the system ( 21) and ( 29) are of the following form: (a x , 0), where a 2

x is a root of the equation:

Λ(1 + w)x 3 -k(1 + 3w)x 2 + σ 3 (-1 + 3w)k 2 x + 3σ 4 (-1 + w)k = 0. ( 50 
)
Depending on the sign of the discriminant ∆ = 18a 0 a 1 a 2 a 3 -4a 3 2 a 0 + a 2 2 a 2 1 -4a 3 a 3 1 -27a 2 3 a 3 0 , where a 0 = Λ(1 + w), a 1 = -k(1 + 3w), a 2 = σ 3 (-1 + 3w)k 2 , a 2 = 3σ 4 (-1 + w)k, the above equation has one, two or three real solutions. Namely, for ∆ > 0, there are three real roots, for ∆ < 0 there is one real root and two complex conjugates, for ∆ = 0 those conjugates become a real double root.

The eigenvalues of Jacobian matrix at those critical points read as:

- 2D 1 k a 6
x (3λ -1)

, 2D 1 k a 6
x (3λ -1)

, ( 51 
)
where

D 1 = (1 + 3w)a 4 + 2kσ 3 (1 -3w)a 2 -9σ 4 (w -1). ( 52 
)
For w < -1/3 and -σ 4 > σ 2 3 (1 -3w) 2 /((3w + 1)(w -1) expression D 1 is always negative and it is always positive for w > -1/3 and σ 4 > σ 2 3 (1 -3w) 2 /((3w + 1)(1 -w). Thus depending on the sign of k/(3λ -1) the critical points, if exist, are either always stable or always unstable. Nature of their stability depends on the values of a x , Λ, σ 3 and σ 4 .

Stability properties of critical points at infinity is the same as for the detailed balance case. After the Poincarè transformation ( 24) and ( 25) the whole phase space is contained within a semi-circle (a ≥ 0) of radius one.

Points at r = 1 and φ = π/2, 3π/2 are repelling and attracting node, respectively. Point r = 1, φ = 0 is non-hyperbolic, and its stability properties can be obtained e.g. from numerical simulations. Figure 6. shows the phase space of system with three finite critical points. Points S 1 and S 3 are centers, point S 2 is a saddle.

In Table 2. we have gathered properties of the finite critical points in the SVW generalization of the Hořava cosmology.

Conclusions

In this work we have performed a detailed analysis of a phase structure of the HL cosmology with and without detailed balance condition. Both this models contain a dark radiation term 1/a 4 in the analogs of the Friedmann equations. Thus it is possible for a nonflat universe (k = 0) that the Hubble parameter H = 0 at some moment of time, which is a necessary condition for the realization of the bounce. Comparing phase trajectories obtained in those models we have attempted to answer the question how the generalization of Hořava gravity (breaking the detailed balance condition) impacts the occurrence and behavior of bouncing solutions. Additional term 1/a 6 that appears in the Friedmann equations of SVW model, is of either sign, and thus it may possibly compensate the 1/a 4 term (generic for HL gravity) leading to the singular solution.

Indeed, it occurred that the biggest difference between the Hořava theory and its generalization arrives for the small values of a scale parameter a and a Hubble parameter H. This is not surprising, as the SVW gravity term 1/a 6 plays role only for the small values of a and becomes insignificant for the bigger ones.

In the original Hořava formulation there may be two finite critical points, one of them a center and one a saddle. They are of the type (a x , 0) in the (a, H) space, thus strictly connected to bounce solutions. These pairs of points exist both only for matter with w > 1/3. Around a center there are closed orbits corresponding to the oscillating universe, i.e. going through eternal cycles of contraction, bounce and expansion. These orbits resemble bounce solution described by Brandenberger [32] or quasi-stationary solutions presented in our previous work [42] based on a field approach. Such solutions are physically interesting (density ρ > 0) for w < 1/3 and k/Λ < 0 -so either for a closed universe with a positive cosmological constant, or an open universe with k = 1 and a negative cosmological constant Λ. The second class of oscillating solutions, with vanishing density ρ = 0, appears when k/Λ > 0. Additionally, there is a third bounce scenario around a linear center P 2 (moved to ∞ and coinciding with P 3 ). Here there are onefold closed trajectories: universe starts from a static one (H = 0) and infinite (a = ∞), goes through a period of contraction to a finite size, then after a bounce starts expanding and again ends as a static infinite universe. Moreover, for some values of parameters, i.e. k/Λ < 0 and w > 1/3 there are no finite critical points, thus no bouncing solutions. In the SVW HL cosmology, with additional term appearing in the analogs of Friedmann equations, there may exist 0,1,2 or 3 finite critical points. They are also of the type (a x , 0) in (a, H) space. Here a x is the solution of the bicubic equation. In general there exists at least one real solution of the cubic equation with real coefficients, but physical points correspond only to positive values of these roots. Critical points might be stable centers -surrounded by closed orbits, describing oscillating universes, or unstable saddles. There also exist solutions with orbits around a linear center at (∞, 0), where similarly as in the original HL theory, a universe starts from a static infinite the, collapses to a finite size, undergoes a bounce and then expands to a static infinite state. Thus there is one cycle only, without further oscillations. There are also sets of parameters, much wider than in the original HL theory, that do not allow the existence of finite critical points, leading only to singular solutions.

The most significant feature of oscillating (and bouncing) solutions in the SVW formulation is the existence of two centers, with a saddle between them (three finite critical points) for some values of parameters. We present such a solution at the Fig. 6. In a more realistic situation, that includes dynamical change of state parameter, it would be possible to go from one oscillating bouncing solution to another. Present framework does not allow such evolution as it describes Point w Existence Stability ρ positive P 1 -1 (kσ 3 > 0, σ 4 < 0) center for k < 0, σ 3 < 0 k/(3λ -1) > 0 saddle for 0 > Λ > 1/σ 3 k/(3λ -1) < 0 P 2 -1 (kσ 3 > 0, center for k < 0, σ 3 < 0 0 > σ 4 > -σ 2 3 /3) k/(3λ -1) < 0 (kσ 3 < 0, σ 4 > 0) saddle for Λ < 0 k/(3λ -1) > 0 Q 1 1/3 (σ 4 = -k 2 /3Λ 2 , center for (Λ < 0, σ 3 < 0) k/Λ < 0) Λ/(3λ -1) < 0 saddle for (Λ > 0, σ 3 < -5/(4Λ)) Λ/(3λ -1) > 0 ∆ and of the roots: k/(3λ -1) < 0 0,1,2 or 3 points saddle for k/(3λ -1) > 0 matter as hydrodynamical fluid with a constant w. We expect that the field approach, with a more complete dynamics, may be suitable for further investigation of this interesting scenario.

Q 2 1/3 (σ 4 = -k 2 /3Λ
The phase structure at infinity is the same at both formulations. Except bouncing solutions around finite critical points, there are also solutions leading to Big Bang, Big Crunch or eternal expansion. It is worth to stress that in both models, the original HL gravity and the SVW generalization, there are classes of parameters that do not allow a non singular evolution. Physical interpretation of some of these parameters (coupling constants σ 3 and σ 4 in SVW model) still remains an open question.
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 123 Projected phase space of HL universe with kΛ > 0 and w > 1/3. Projected phase space of HL universe with k/Λ < 0 and -1 < w < 1/3. Projected phase space of HL universe with k/Λ < 0 and w = -1.
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 45 Figure 5. Phase trajectories around the non-hyperbolic critical point Q 2 .
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