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Abstract

We consider (2+1)-gravity with vanishing cosmological constant as a constrained
dynamical system. By applying Dirac’s gauge fixing procedure, we implement the
constraints and determine the Dirac bracket on the gauge-invariant phase space. The
chosen gauge fixing conditions have a natural physical interpretation and specify an
observer in the spacetime. We derive explicit expressions for the resulting Dirac brackets
and discuss their geometrical interpretation. In particular, we show that specifying an
observer with respect to two point particles gives rise to conical spacetimes, whose deficit
angle and time shift are determined, respectively, by the relative velocity and minimal
distance of the two particles.

1 Introduction

The diffeomorphism symmetry of general relativity has profound consequences for its
quantisation. Its physical implications, such as the equivalence of observers and the absence
of a fixed spacetime background, lead to conceptual problems in the construction of the
quantum theory. In the description of its phase space, the diffeomorphism symmetry
manifests itself through the presence of constraints. The implementation of these constraints
in a quantum theory of gravity remains one of the fundamental problems of quantum gravity.
As a consequence, investigations of the structure of “quantum spacetimes” tend to be based
on either phenomenological models or on a partially quantised version of the theory in
which the constraints are not fully implemented. The former have the draw-back that their
relation to the theory of general relativity is not immediately apparent. For the latter it
remains unclear whether results and conclusions that are drawn from an extended, not fully
diffeomorphism-invariant version of the theory remain valid after the full implementation of

1catherine.meusburger@uni-hamburg.de
2torsten.schoenfeld@uni-hamburg.de

1

mailto:catherine.meusburger@uni-hamburg.de
mailto:torsten.schoenfeld@uni-hamburg.de


the constraints. Although there are recent results on constraint implementation and gauge
fixing in Regge-Calculus [1, 2, 3, 4] and in state sum models of gravity (“spin foams”) [5], a
full implementation of the constraints in (3+1)-dimensional quantum gravity seems currently
not within reach.
In (2+1)-dimensions, the theory simplifies considerably, while the conceptual issues and the
problems related to constraint implementation are still present. Gravity in (2+1)-dimensions
therefore serves as a toy model that allows one to investigate these issues in a fully quantised
version of the theory. Important progress in the quantisation of the theory was achieved
with quantisation formalisms based on the representation theory of quantum groups such as
the combinatorial quantisation formalism [6, 7, 8], the Turaev-Viro model [9, 10] and the
Reshetikhin-Turaev-Witten invariants [11, 12] arising in the Chern-Simons formulation of
the theory.
As these formalisms achieve constraint implementation via the representation theory of
quantum groups, they enjoyed great success in the applications where the relevant quantum
groups are compact. However, except for Euclidean (2+1)-gravity with positive cosmological
constant, the quantum groups arising in (2+1)-gravity are non-compact. The resulting
difficulties in the combinatorial quantisation formalism were resolved for Lorentzian gravity
with positive cosmological constant [13] and partially for the case of vanishing cosmological
constant [14, 15]. However, the representation-theoretical complications that arise in these
cases suggest that it could be advantageous to first implement the constraints in the classical
theory via gauge fixing and quantise the theory afterwards. For the cases in which a
“constraint implementation after quantisation” approach is possible, this is also of interest, as
it would allow one to compare the two approaches and determine if the resulting quantum
theories are equivalent.
A further motivation to investigate gauge fixing is an improved understanding of the interplay
between gauge fixing and quantum group symmetry in (2+1)-gravity. With the exception of
[16], which investigates quantum group symmetries in a gauge-invariant quantised SL(2,C)-
Chern-Simons theory with punctures, most investigations of quantum group symmetries
in quantum gravity focus on extended, not fully diffeomorphism-invariant versions of the
quantum theory. It therefore remains unclear if these quantum group symmetries are
compatible with diffeomorphism invariance and survive the implementation of constraints.
As the presence of quantum group symmetries manifests itself through the associated Poisson-
Lie symmetries in the classical theory, constructing the Dirac bracket for (2+1)-gravity
should allow one to draw conclusions about the presence of quantum group symmetries in a
fully gauge-invariant quantum theory.
Independently of its role in quantisation, gauge fixing in classical (2+1)-gravity is of interest
with respect to its physical implications. In particular, there are strong indications that it is
directly related to the inclusion of observers into the theory [17], which is a fundamental
problem in quantum gravity. Constructing the Dirac bracket should therefore lead to a
formulation of the classical theory which includes observers. This would be helpful for its
physical interpretation and could be used to include observers in the associated quantum
theory
In this article, we apply Dirac’s gauge fixing procedure to the Chern-Simons formulation of
Lorentzian (2+1)-gravity with vanishing cosmological constant. We consider spacetimes of
topology R × Sg,n, where Sg,n is a compact oriented surface of genus g with n punctures
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that represent massive point particles with spin3. The gauge-invariant (reduced) phase
space of these models is a moduli space of flat connections on the spatial surface Sg,n. The
Poisson structure on the moduli space of flat connections can be described in terms of a
Poisson structure on an enlarged ambient space from which it is obtained by imposing six
first-class constraints [18, 19]. The parameters used in this description have a direct physical
interpretation and can be related to measurements by observers in a spacetime [17].
We determine the Dirac bracket associated to this Poisson structure and construct the
gauge-invariant (reduced) phase space. Our starting point is the observation that the gauge
transformations generated by these six first-class constraints correspond to transformations
that relate different inertial observers in the spacetime. Eliminating this gauge freedom via
gauge fixing conditions thus amounts to fixing an observer in the spacetime. We consider
two different types of gauge fixing conditions. The first specifies an observer with respect to
the motion of two particles in the spacetime. The second characterises an observer with
respect to the geometry of a handle of the surface Sg,n.
We show that the resulting Dirac bracket has a direct physical interpretation in terms of
spacetime geometry. For the first gauge fixing condition, it leads to a spacetime which is
effectively conical. The opening angle and the time shift of the associated cone are given,
respectively, by the relative velocity and the minimal distance of the particles. For the
second gauge fixing condition, we obtain an effectively Minkowskian spacetime whose global
degrees of freedom are determined by the geometry of the handles.
We then give a detailed analysis of the Dirac bracket and its physical interpretation. In
particular, we show that the Dirac bracket can be obtained from the non-gauge-fixed Poisson
bracket for a spacetime with, respectively, n − 2 particles or g − 1 handles via a global
translation. For the gauge fixing conditions based on point particles, this allows one to
continue the bracket beyond the constraint surface.
Our paper is structured as follows. In Section 2 we give a brief introduction to the geometry
of (2+1)-dimensional spacetimes and their description in terms of a Chern-Simons gauge
theory. We summarise the relevant results for their phase space and Poisson structure and
introduce Fock and Rosly’s Poisson structure [18], which describes the Poisson structure on
the moduli space of flat connections in terms of an enlarged ambient space.
In Section 3 we investigate this Poisson structure from the viewpoint of constrained systems.
We discuss the constraints arising in this description and the associated gauge transformations
and show that the latter can be interpreted as transformations that relate different inertial
observers in the spacetime. In Section 4, we motivate and define our gauge fixing conditions
and show that they correspond to specifying an observer in the spacetime.
Sections 5 and 6 contain the main results of our paper. In Section 5, we implement the
constraints and gauge fixing conditions and derive explicit expressions for the associated
Dirac bracket. Section 6 gives a detailed analysis of the resulting Poisson structure and
its implications in terms of spacetime geometry. We show that the gauge fixing based on
two point particles leads to an effectively conical spacetime and the gauge fixing based on
handles to a spacetime that is effectively Minkowskian. For both cases, we show how the
Dirac bracket can be obtained from the original Poisson bracket for a reduced system via a
global translation. Section 7 contains our outlook and conclusions.

3The spacetimes are also subject to certain geometrical restrictions that are detailed in Section 4
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2 Gravity in (2+1) dimensions

2.1 Notation and conventions

Throughout the paper, we employ Einstein’s summation convention. Unless stated otherwise,
all indices run from 0 to 2 and are raised and lowered with the Minkowski metric η =
diag(1,−1,−1). We denote by εabc the totally antisymmetric tensor in three dimensions with
the convention ε012 = 1. For three-vectors x,y ∈ R3, we use the notation x · y = ηabx

ayb,
and we denote by x ∧ y the three-vector with components (x ∧ y)a = εabcxbyc.
The proper orthochronous Lorentz group in three dimensions is the group SO(2, 1)+ ∼=
PSL(2,R). We fix a set of generators Ja, a = 0, 1, 2, of its Lie algebra so(2, 1) ∼= sl(2,R)
such that the Lie bracket takes the form

[Ja, Jb] = ε c
ab Jc. (2.1)

In the representation by sl(2,R) matrices, such a set of generators is given by

J0 = 1
2

(
0 1
−1 0

)
, J1 = 1

2

(
1 0
0 −1

)
, J2 = 1

2

(
0 1
1 0

)
. (2.2)

As the generators satisfy the relation Ja · Jb = −1
4ηab1 + 1

2ε
c

ab Jc, the exponential map
exp : sl(2,R)→ SL(2,R) takes the form

exp(paJa) =


cos µ2 1+ 2 sin µ

2 p̂
aJa if p2 > 0,

cosh µ
2 1+ 2 sinh µ

2 p̂
aJa if p2 < 0,

1+ paJa if p2 = 0,
(2.3)

where

µ :=
√∣∣p2

∣∣, p̂ :=
{
p/µ if p2 6= 0,
p if p2 = 0.

(2.4)

Introducing the notation

cp(µ) :=


cosµ if p2 > 0,
coshµ if p2 < 0,
1 if p2 = 0,

sp(µ) :=


sinµ if p2 > 0,
sinhµ if p2 < 0,
0 if p2 = 0,

(2.5)

we can rewrite (2.3) as

exp(paJa) = cp(µ2 )1+ sp(µ/2)
µ/2

paJa, (2.6)

where the expression for lightlike vectors p is given by the limit limp2→0
sp(µ/2)
µ/2 = 1.

Note that the exponential map exp : sl(2,R)→ SL(2,R) is neither surjective nor injective.
The exponential map exp : sl(2,R)→ PSL(2,R) is surjective, but not injective. Elements
M ∈ SL(2,R) are called hyperbolic, elliptic and parabolic, respectively, if the matrix trace
satisfies |Tr(M)| > 2, |Tr(M)| < 2 and |TrM | = 2. For elements in the image of the
exponential map this corresponds to p2 < 0 (p spacelike), p2 > 0 (p timelike) and p2 = 0
(p lightlike).
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The representation by SO+(2, 1) matrices coincides with the adjoint action of SL(2,R) on
its Lie algebra which is given by

Ad(g)caJc := g · Ja · g−1 ∀g ∈ SL(2,R), ad(Ja)cbJc := ad(Ja)(Jb) := [Ja, Jb]. (2.7)

Formula (2.1) for the Lie bracket then implies ad(Ja)bc = −εabc, and the exponential map
exp : so(2, 1)→ SO+(2, 1) takes the form

exp(ad(pcJc))bc = Ad
(
exp(paJa)

)
bc

=


p̂bp̂c + cosµ (ηbc − p̂bp̂c)− sinµ εbcd p̂d if p2 > 0,
−p̂bp̂c + coshµ (ηbc + p̂bp̂c)− sinhµ εbcd p̂d if p2 < 0,
ηbc + 1

2pbpc − εbcd p
d if p2 = 0.

(2.8)

The Poincaré group in three dimensions is the semidirect product P3 = SO+(2, 1) n R3. In
the following, we will also work with its double cover P̃3 = SL(2,R) n R3, where SL(2,R)
acts on R3 via the adjoint representation (2.7). We parametrise their elements as

(u,a) =
(
u,−Ad(u)j

)
with a, j ∈ R3, u ∈ SO+(2, 1) or u ∈ SL(2,R). (2.9)

Their group multiplication laws then take the form

(u1,a1) · (u2,a2) =
(
u1u2,a1 + Ad(u1)a2

)
=
(
u1u2,−Ad(u1u2)[j2 + Ad(u−1

2 )j1]
)
. (2.10)

A basis of its Lie algebra iso(2, 1) is given by the basis {Ja}a=0,1,2 of so(2, 1) together with a
basis {Pa}a=0,1,2 of the abelian Lie algebra R3. In this basis, the Lie bracket takes the form

[Ja, Jb] = ε c
ab Jc, [Ja, Pb] = ε c

ab Pc, [Pa, Pb] = 0. (2.11)

The Lie algebra iso(2, 1) has two quadratic Casimir elements which are given by

M = Pa · P a, S = Pa · Ja + Ja · P a. (2.12)

In the parametrisation (2.9), the exponential map expP3 : iso(2, 1)→ P3 is given by

expP3(p
aJa + kaPa) =

(
exp(pcJc), j

)
with j = T (p)k, (2.13)

where T (p) : R3 → R3 is the invertible linear map

T (p)±1
ab =


p̂ap̂b +

( 2
µ sin µ

2
)±1[cos µ2 (ηab − p̂ap̂b)∓ sin µ

2 εabcp̂
c] if p2 > 0,

−p̂ap̂b +
( 2
µ sinh µ

2
)±1[cosh µ

2 (ηab + p̂ap̂b)∓ sinh µ
2 εabcp̂

c] if p2 < 0,
ηab ∓ 1

2εabcp
c if p2 = 0.

(2.14)

2.2 Spacetime geometry in (2+1) dimensions

In the following we consider (2+1)-dimensional gravity with vanishing cosmological constant
on manifolds of topology M ≈ I × Sg,n, where I ⊂ R is an interval and Sg,n an orientable
surface of genus g ≥ 0 with n punctures. The punctures represent massive point particles
with spin.

5



As the Ricci curvature tensor of a Lorentzian or Riemannian three-dimensional manifold
determines its Riemann curvature tensor, solutions of the vacuum Einstein equations are of
constant curvature given by the cosmological constant. For the case of vanishing cosmological
constant this implies that any solution of the vacuum Einstein equations is flat and locally
isometric to three-dimensional Minkowski space M3. The theory has no local gravitational
degrees of freedom but a finite number of global degrees of freedom which arise from the
topology and matter content of the spacetime.

Vacuum spacetimes Spacetimes that are solutions of the Einstein equations without
matter are referred to as vacuum spacetimes, and their mathematical properties are rather
well-understood. The simplest spacetimes of this type are maximal globally hyperbolic
spacetimes whose Cauchy surface is an orientable, compact surface Sg of genus g ≥ 2. These
spacetimes have been classified completely in [20], for an overview over their geometrical
properties see also [21, 22]. They are of topology M ≈ R× Sg and are most easily described
in terms of their universal cover.
In this description, the spacetimes are obtained as quotients of open, convex, future complete
regions in Minkowski space by a free and properly discontinuous action of the fundamental
group π1(Sg). This action of the fundamental group is given by a group homomorphism
h : π1(Sg)→ P3 which is such that the Lorentzian components of its image form a cocompact
Fuchsian group Γ ⊂ PSL(2,R) of genus g. In particular, this implies that the Lorentzian
components of all holonomies are hyperbolic. The action of the fundamental group induces
a foliation of the universal cover by surfaces of constant geodesic distance from the initial
singularity of its spacetime, which are preserved by the action of π1(Sg). The spacetime is
then obtained by identifying on each surface the points that are related by this action of
the fundamental group. It is shown in [20] that the group homomorphism h : π1(Sg)→ P3
characterises the spacetime completely and that two spacetimes constructed in this way are
isometric if and only if the associated group homomorphisms are related by conjugation with
P3. This implies that the physical (gauge-invariant) phase space of the theory is given by

P = Hom0(π1(Sg), P3)/P3, (2.15)

where the index 0 indicates the restriction to group homomorphisms whose Lorentzian
component h : π1(Sg)→ PSL(2,R) defines a cocompact Fuchsian group of genus g.

Point particles A second class of well-known (2+1)-spacetimes are those with particles.
They were first investigated in the Euclidean context by Staruszkiewicz [23] and for Lorentzian
signature by Deser, Jackiw and ’t Hooft [24], see also the later work [25, 26, 27, 28, 29].
The simplest model is a spacetime containing a single point particle in R3 that is at rest
at the origin. The corresponding metric was constructed in [24]. In cylindrical coordinates
(τ, ρ, φ) it takes the form

ds2 = (dτ + s
2π dφ)2 − 1

(1− µ
2π )2dρ

2 − ρ2dφ2, (2.16)

where s ∈ R and µ ∈ [0, 2π). The parameter µ can be interpreted as the mass of the particle
in units of the gravitational constant, while the parameter s describes an internal angular
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r

φ

t

s

µ

Figure 1: Spacetime for a single particle. The metric for the spacetime with a point particle
is obtained by cutting out a wedge in Minkowski space and identifying its boundary via
a rotation by an angle µ and a translation s. The figure shows the wedge and a surface
(τ = const, ρ, φ).

momentum or spin in units of ~. It is shown in [24] that in terms of a new set of coordinates
(t, r, ϕ) that are related to the cylindrical coordinates (τ, ρ, φ) via

t(τ, ρ, φ) = τ + s
2π φ, r(τ, ρ, φ) = ρ

1− µ
2π
, ϕ(τ, ρ, φ) = (1− µ

2π )φ, (2.17)

the metric (2.16) takes the form of the Minkowski metric

ds2 = dt2 − dr2 − r2dϕ2. (2.18)

However, the range of the coordinate ϕ is no longer [0, 2π) but [0, 2π− µ). This implies that
the resulting spacetime is locally, but not globally isometric to Minkowski space. Instead of
Minkowski space, the metric (2.16) describes a conical spacetime that is obtained by cutting
out a wedge of Minkowski space as shown in Figure 1 and identifying its boundary according
to the prescription (t, r, 0) ∼ (t+ s, r, µ). This identification of the boundary is given by a
rotation around the t-axis by an angle µ combined with a translation in the direction of the
t-axis by a distance s. The spacetime therefore has the geometry of a cone whose deficit
angle ∆ϕ = µ and time shift ∆t = s are given by the mass and spin of the particle. It
should be noted that in the case of non-vanishing spin the spacetime exhibits closed timelike
curves. However, these curves are no longer present if a small region around each particle is
excised from the spacetime [24, 30].
The construction generalises straightforwardly to a point particle moving in Minkowski
space, whose worldline is a future directed, timelike geodesic. This geodesic takes the form

g(T ) = T p̂+ x, x · p = 0, (2.19)

where T is the eigentime associated with the particle, p̂ is a timelike unit vector that
describes its velocity and x is the offset of its worldline from the origin. In this case, the
spacetime is obtained by cutting out a wedge formed by two half-planes that intersect in
the particle’s worldline. The identification of the boundary is given by the unique Poincaré
transformation M ∈ P3 that preserves the geodesic g, whose Lorentzian component is a
rotation by an angle µ around p̂ and whose translation component in the direction of p̂ is a
translation by a distance s. In terms of the parametrisation (2.9), it takes the form

M = (u,−Ad(u)j) = (v,x) · (exp(−µJ0),−s e0) · (v,x)−1, (2.20)
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with u, v ∈ SO+(2, 1) and j,x ∈ R3. The relation between the variables u, j and v,x is
given by

u = v exp(−µJ0)v−1 = exp(−µ p̂cJc), j = sp̂+
(
1−Ad(u−1)

)
x. (2.21)

The spacetimes associated with a particle of given mass µ and spin s can therefore be
identified with a P3-conjugacy class

Cµ,s = {g · (exp(−µJ0), se0) · g−1 | g ∈ P3}, (2.22)

or, equivalently, with an element (p̂,x) ∈ T ∗H2 of the cotangent bundle of two-dimensional
hyperbolic space.
The three-vector p = µ p̂ = µAd(v)e0 is the momentum three-vector associated with the
particle. It describes the particle’s momentum and energy. The three-vector x describes
the position of the origin in the momentum rest frame of the particle. The three-vector
j can be interpreted as a generalised angular momentum three-vector. Its component in
the direction of p describes the internal angular momentum or spin s of the particle. Its
components orthogonal to p describe an orbital angular momentum arising from its motion
in Minkowski space.
It is instructive to compare expression (2.21) for the angular momentum j in terms of the
momentum and position variables p, x with the standard expression for a particle moving
in Minkowski space. The latter is given by

k = sp̂+ x ∧ p. (2.23)

A short calculation shows that the relation between the angular momenta j, k is given by
the map T (p) : R3 → R3 defined in (2.14). We have j = T (p)k, and the expression (2.21)
for j reduces to (2.23) in the limit µ → 0. A detailed discussion of this relation and its
physical interpretation is given in [19].
For the following, it will be useful to consider generalised cones associated with spacelike or
timelike geodesics. The construction is analogous to the timelike case. Again, the associated
spacetimes are obtained by removing a wedge from Minkowski space and identifying the
boundary of the resulting region. The geodesic that describes the intersection of the
associated planes takes the form (2.19), but the vector p̂ is replaced by a spacelike unit
vector or by a lightlike vector. The Poincaré transformation that describes the identification
of points of the boundary takes the form

M = (exp(−pcJc),−Ad(exp(−pcJc))j) (2.24)

with p, j ∈ R3. In the spacelike case, the vector p describes a Lorentz boost with rapidity
µ =

√
|p2|, in the lightlike case it describes a parabolic element of PSL(2,R).

Multi-particle spacetimes Spacetimes with multiple point particles were first intro-
duced in [23, 24, 25]. Their physical properties are well-understood and have been studied
extensively in the physics literature [23, 24, 25, 26, 27, 28, 29], for an overview see [30].
However, their mathematical structure is considerably more involved than that of vacuum
spacetimes, and a systematic investigation of their mathematical features has been initiated
only recently [31, 32, 33].
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m1

mi

mn

c

a1

aj
an

b1bj

bn

Figure 2: Generators of the fundamental group for an n-punctured genus g surface Sg,n. The
generators of the fundamental group π1(Sg,n) are the homotopy equivalence classes of the
curves m1, . . . ,mn, a1, b1, . . . , an, bn. The defining relation of π1(Sg,n) states that the curve
c is contractible. The short wavy line indicates the cilium that defines a linear ordering of
the incident edges at the basepoint as explained in Section 2.4.

Spacetimes with particles define manifolds with conical singularities or, in the case where
the masses of all particles are rational multiples of 2π, orbifolds. With the exception of the
orbifold case, they cannot be obtained as quotients of regions in three-dimensional Minkowski
space. This is due to the fact that the elliptic elements of PSL(2,R) associated with the
particles do not give rise to a free and properly discontinuous action of the fundamental
group on hyperbolic space H2 and the developing map is no longer an embedding [32, 33].
Although a classification and explicit description of such spacetimes is still missing, examples
can be constructed by gluing the boundary of certain regions D ⊂ M3 in Minkowski
space. The boundary of the region D ⊂ M3 can be divided into components which are
identified pairwise by certain Poincaré transformations. This identification is given by a
group homomorphism h : π1(Sg,n)→ P3 from the fundamental group of the spatial surface
Sg,n into the Poincaré group and can be specified through the images of a set of generators.
The fundamental group π1(Sg,n) of a genus g surface with n punctures is generated by the
homotopy equivalence classes of loops mi, i = 1, . . . , n, around each puncture and by the a-
and b-cycles aj , bj , j = 1, . . . , g, associated to each handle as depicted in Figure 2. It has a
single defining relation, which states that the curve c depicted in Figure 2 is contractible:

[bg, a−1
g ] ◦ . . . ◦ [b1, a

−1
1 ] ◦mn ◦ . . . ◦m1 = 1, [bg, a−1

g ] := bg ◦ a−1
g ◦ b−1

g ◦ ag. (2.25)

The identification of the boundary of D ⊂M3 is thus given by a set of Poincaré elements
Mi, Aj , Bj ∈ P3 that satisfy a relation analogous to (2.25) and which are such that the
elements Mi are restricted to fixed P3 conjugacy classes (2.22). They identify the boundary
components of the region pairwise as shown in Figure 3. The Poincaré elements Mi ∈ Cµi,si
identify two adjacent segments that intersect in a timelike geodesic stabilised by Mi. This
geodesic corresponds to the worldline of the associated particle. The Lorentzian components
of the elements Mi are therefore elliptic. The elements Aj , Bj identify the remaining sides
as shown in Figure 3. They correspond to the handles on the surface Sg,n. Their Lorentzian
components are therefore hyperbolic.
As the Poincaré group P3 is the group of orientation and time orientation preserving
isometries of Minkowski space, the resulting three-manifold with singularities inherits a flat
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g1

g2

g3

g4

x1

s1
µ1 h(m1)

h(m2)

h(m3)

h(m4)

h(a1)

h(b1)

h(a2)
h(b2)

Figure 3: Identification of the boundary for a region D ⊂ M3 for a surface S2,4 with four
punctures and two handles.

Lorentz metric induced by the Minkowski metric. As it is an isometry, applying a global
Poincaré transformation to the associated region D ⊂ M3 does not affect the geometry
of the resulting spacetime. This corresponds to a transformation of the associated group
homomorphism h : π1(Sg,n) → P3 by conjugation. In terms of the variables p and j
defined in (2.24), conjugation of a holonomy by a Poincaré element (w,y) corresponds to a
transformation

p→ Ad(w)p, j → Ad(w)j + [1−Ad(w exp(pcJc)w−1)]y. (2.26)

The transformation of the variables p, j under a Lorentz transformation w ∈ PSL(2,R) is
therefore given by

p→ Ad(w)p, j → Ad(w)j, (2.27)

and their transformation under a translation y ∈ R3 takes the form

p→ p, j → j + [1−Ad(exp(paJa))]y. (2.28)

As in the vacuum case, spacetimes whose associated group homomorphisms are related by
global conjugation therefore should be identified. However, in contrast to the vacuum case,
little is known about the properties of the associated regions D ⊂M3. For instance, for the
case of point particles on a sphere, there exist non-isometric spacetimes that correspond
to the same group homomorphism h : π1(Sg,n)→ P3 [34, 22]. This phenomenon is known
under the name of “holonomy failure” in mathematics.
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In the following we focus on the formulation of (2+1)-gravity as a Chern-Simons gauge
theory [35, 36]. This is a closely related, but non-equivalent formulation of the theory whose
phase space structure is well-understood. Our results do therefore not make use of the
geometrical description of these spacetimes in terms of the universal cover and do not rely on
geometrical classification results. However, the geometrical description will provide us with
physical intuition about the spacetimes and act as a guideline for the physical interpretation
of our results.

2.3 The Chern-Simons formulation of (2+1)-gravity

The Chern-Simons formulation of (2+1)-gravity [35, 36] is derived from Cartan’s formulation
of the theory in terms of a triad e = eµdx

µ and spin connection ω = ωµdx
µ on a smooth three-

manifold M . It is obtained by combining the triad and spin connection into a Chern-Simons
gauge field

A = ωaJa + eaPa, (2.29)

where Ja, Pa denote the generators (2.11) of iso(2, 1). The gauge field is a connection 1-form
of a P3 principal bundle on M . It determines the metric via

gµν = ηabe
a
µe
b
ν . (2.30)

It is shown in [36] that the Einstein-Hilbert action associated with Cartan’s formulation of
the theory can be expressed as a Chern-Simons action

S[A] = k

4π

∫
M

Tr(A ∧ dA+ 2
3A ∧A ∧A), (2.31)

where k = 1/4G and where the trace Tr(ST ) = 〈S, T 〉 is given in terms of the Ad-invariant
symmetric bilinear form on iso(2, 1) defined by

〈Ja, Jb〉 = 〈Pa, Pb〉 = 0, 〈Ja, Pb〉 = ηab. (2.32)

It is shown in [36] that the transformations of triad and spin connection under infinitesimal
diffeomorphisms are on-shell equivalent to infinitesimal Chern-Simons gauge transformations

A 7→ γAγ−1 + γ dγ−1, γ : M → P3. (2.33)

Note, however, that this equivalence between gauge transformations and diffeomorphisms
does not hold for large, i.e. not infinitesimally generated, gauge transformations and diffeo-
morphisms. Moreover, to define a non-degenerate metric via (2.30), the triad is required
to be non-degenerate in Cartan’s formulation, whereas no such condition is imposed in the
Chern-Simons formulation. It is shown in [34] (for a discussion of the two-dimensional case
see also [37]) that this leads to discrepancies between the phase spaces of the two theories.
Point particles are included into the formalism via minimal coupling to the Chern-Simons
gauge field [26]. This requires the choice of a coadjoint orbit of the gauge group for each of
the punctures which are determined by elliptic elements

Dµi,si = µiJ0 + siP0 ∈ iso(2, 1). (2.34)

As suggested by the notation, the parameters µi, si define the masses and spins of the
associated particles. The Chern-Simons action with point particles then depends on these
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parameters as well as dynamical variables hi ∈ P3, i = 1, . . . , n, associated to each puncture.
The equations of motion derived from this action are a condition on the curvature and on
the value of the gauge field at the punctures:

F = dA+A ∧A = k

4π

n∑
i=1

hiDµi,sih
−1
i δ(x− x(i)),

A(x(i)) = hiDµisih
−1
i + hidh−1

i ,

(2.35)

where the coordinate x(i) parametrises the worldline of the puncture on M . This condition
forces the gauge field A to be flat everywhere outside the worldlines of the particles and to
take a fixed form in the vicinity of these worldlines. As the curvature in (2.35) combines the
curvature and the torsion from Cartan’s formulation

F = F aωJa + T aPa with F aω = dωa + 1
2ε
abcωbωc, T a = dea + εabcωbec, (2.36)

the masses µi appear as sources of curvature and the spins si as sources of torsion.
On manifolds of topology I ×Sg,n, where I ⊂ R is an interval and Sg,n a compact orientable
surface with punctures, one can give a Hamiltonian formulation of the theory which is
obtained by splitting the gauge field as A = A0(x0, xS)dx0 +As(x0, xS), where xS = (x1, x2)
are the coordinates that parametrise the surface Sg,n and x0 parametrises I. The associated
equations of motion are a flatness condition similar to (2.35) on the spatial gauge field As
and a set of evolution equations, which state that the evolution of the system with respect
to the parameter x0 is pure gauge.
It follows from these considerations [36, 26] that the gauge-invariant phase space of the
theory is the moduli space of flat P3-connections modulo gauge transformations on the
(punctured) surface Sg,n. It is is given as the set of conjugation equivalence classes

P = Hom(µ1,s1),...,(µn,sn)(π1(Sg,n), P3)/P3 (2.37)

of group homomorphisms h : π1(Sg,n)→ P3 which map the images of the loops around each
puncture to fixed conjugacy classes

Cµi,si = {h · exp(µiJ0 + siP0) · h−1 | h ∈ P3}. (2.38)

Using the set of generators of the fundamental group π1(Sg,n) introduced in Section 2.2,
we can characterise a group homomorphism h : π1(Sg,n) → P3 through the images of the
generators mi, aj , bj . The set of group homomorphisms h : π1(Sg,n) → P3 which is such
that the images of the loops mi lie in the conjugacy classes (2.38) can then be identified
with the submanifold

{(M1, . . . ,Mn, A1, B1, . . . , Ag, Bg) ∈ Pn+2g
3 |

Mi ∈ Cµi,si , [Bg, A−1
g ] · [B1, A

−1
1 ] ·Mn · · ·M1 = 1} ⊂ Pn+2g

3 , (2.39)

and the gauge-invariant phase space P in (2.37) is obtained from this manifold by identifying
points which are related by global conjugation with P3:

P = {(M1, . . . , Bg) ∈ Pn+2g
3 |Mi ∈ Cµi,si , [Bg, A−1

g ] · [B1, A
−1
1 ] ·Mn · · ·M1 = 1}/P3. (2.40)

In the Chern-Simons formalism, the images of elements of the fundamental group under
such group homomorphisms are obtained as the path-ordered exponential of the gauge field
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along closed loops on Sg,n. As the gauge field satisfies the flatness condition (2.35), the
value of such path-ordered exponentials depends only on the homotopy equivalence class of
the loop, and it transforms by conjugation under a change of the basepoint. In the following
we will refer to these path-ordered exponentials as holonomies.
Note that the holonomies are directly related to the corresponding group homomorphisms in
the geometrical picture (cf. Section 2.2). The restriction of the holonomies associated with
loops around the particles to conjugacy classes (2.38) mirrors the corresponding condition
(2.22) in the geometrical description. For the case without punctures, expression (2.37) for
the phase space in the Chern-Simons formalism is directly related to the corresponding
expression (2.15) in the metric formulation. Note, however, that the restriction to group
homomorphisms that define cocompact Fuchsian groups of genus g is absent in the Chern-
Simons formulation. This reflects the presence of configurations corresponding to degenerate
metrics.

2.4 Phase space and Poisson structure

The moduli space of flat connections (2.37) is equipped with a canonical symplectic structure
obtained via symplectic reduction from the canonical symplectic structure associated with
the Chern-Simons action. The description (2.37) of the phase space in terms of group
homomorphisms h : π1(Sg,n)→ P3 has the advantage that it gives rise to an efficient and
explicit parametrisation of this canonical symplectic structure on an ambient space. This
description is due to Alekseev and Malkin [38] and Fock and Rosly [18] and has served as
a central ingredient of the combinatorial quantisation formalism for Chern-Simons gauge
theory [6, 7, 8] and in its application to (2+1)-gravity [13, 39, 40, 14, 15].
In the following, we will work with Fock and Rosly’s description [18] of the moduli space. It
describes the canonical symplectic structure on P in (2.37) in terms of an auxiliary Poisson
structure on the group Pn+2g

3 , where the different copies of P3 stand for the holonomies
along a set of generators of the fundamental group π1(Sg,n) as in (2.39).
This Poisson structure is non-canonical, as it requires two additional ingredients in addition
to the underlying gauge theory: The first is a linear ordering of the edge ends incident at
the basepoint of the fundamental group π1(Sg,n). As the orientation of the surface induces
a cyclic ordering of these edges, a linear ordering is obtained by inserting a cilium that
separates the edges of maximal and minimal order as shown in Figure 2.
The second ingredient is a classical r-matrix for the group P3, i.e. a solution of the classical
Yang-Baxter equation, whose symmetric component is dual to the Ad-invariant symmetric
bilinear form (2.32) in the Chern-Simons action. It is shown in [18] that, when reduced to
the moduli space of flat connections (2.40), this Poisson structure induces the canonical
symplectic structure on P for all choices of classical r-matrices and of the ordering.
In the following, we use the presentation of the fundamental group given in Section 2.2 and
the set of representatives depicted in Figure 2. Our choice of ordering of edge ends at the
basepoint is the one depicted in Figure 2. It defines the following partial ordering of the
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holonomies M1, . . . ,Mn, A1, B1, . . . , Ag, Bg:

X < Y ⇔


X = Mi, Y = Mj with i < j, or
X ∈ {M1, . . . ,Mn}, Y ∈ {A1, B1, . . . , Ag, Bg}, or
X ∈ {Ai, Bi}, Y ∈ {Aj , Bj} with i < j.

(2.41)

Our choice of the classical r-matrix is the one that corresponds to the Drinfel’d double
DSO(2, 1) and is given in terms of the generators Pa, Ja in (2.11) as r = Pa ⊗ Ja. Fock and
Rosly’s Poisson structure [18] for these conventions has been derived in [19], see also [14].
The resulting description is summarised in the following theorem.

Theorem 2.1 ([19]). In terms of the coordinates

pb : (exp(−qcJc),a) 7→ qb, jb : (exp(−qcJc),a) 7→ −Ad(exp(+qcJc))bd ad, (2.42)

on the different copies of P3, Fock and Rosly’s Poisson structure [18] on Pn+2g
3 is given by

{paMi , p
b
Mi} = 0

{jaMi , p
b
Mi} = −εabc pcMi

{jaMi , j
b
Mi} = −εabc jcMi

 i = 1, . . . , n, (2.43a)

{jaX , pbY } = −
(
1−Ad(u−1

X )
)a
d
εdbc p

c
Y

{jaX , jbY } = −
(
1−Ad(u−1

X )
)a
d
εdbc j

c
Y

{paX , jbY } = 0
{paX , pbY } = 0


X < Y, (2.43b)

{paAi , p
b
Ai} = 0

{jaAi , p
b
Ai} = −εabc pcAi

{jaAi , j
b
Ai} = −εabc jcAi

{paBi , p
b
Bi} = 0

{jaBi , p
b
Bi} = −εabc pcBi

{jaBi , j
b
Bi} = −εabc jcBi

{jaAi , j
b
Bi} = −εabc jcBi

{pAi , pBi} = 0

{jaAi , p
b
Bi} = −εabc pcBi + Ad(u−1

Ai
)ac T−1(pBi)

cb

{jaBi , p
b
Ai} = −T−1(pAi)

ab



i = 1, . . . , g, (2.43c)

where the linear map T (p) : R3 → R3 and its inverse T (p)−1 are given by (2.14) and the
notation X < Y refers to the partial ordering (2.41).

It is shown in [19, 39] that Fock and Rosly’s Poisson algebra can be identified with the Poisson
algebra spanned by functions and vector fields on n+2g copies of SO+(2, 1) ∼= PSL(2,R). For
this, one labels the components of PSL(2,R)n+2g with uM1 , . . . , uMn , uA1 , uB1 , . . . , uAg , uBg
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and denotes for X ∈ {M1, . . . ,Mn, A1, B1, . . . , Ag, Bg} by RaX , LaX the associated left- and
right-invariant vector fields on PSL(2,R)n+2g,

RaXf(uM1 , . . . , uMn , uA1 , . . . , uBg) = d
dt

∣∣∣∣
t=0

f(uM1 , . . . , uX · etJa , . . . , uBg),

LaXf(uM1 , . . . , uMn , uA1 , . . . , uBg) = d
dt

∣∣∣∣
t=0

f(uM1 , . . . , e
−tJa · uX , . . . , uBg).

(2.44)

The variables jaX can then be identified with the following vector fields on PSL(2,R)n+2g:

jaMi = −(RaMi + LaMi)−
(
1−Ad(uMi)

)a
b

∑
X>Mi

(
LbX +RbX

)
, (2.45)

jbAi = −(RaAi + LaAi)− (RaBi + LaBi)−Ad(u−1
Ai
uBi)abRbBi −

(
1−Ad(uAi)

)a
b

∑
X>Ai

(
LbX +RbX

)
,

jbBi = −(RaBi + LaBi)− L
a
Ai −

(
1−Ad(uBi)

)a
b

∑
X>Bi

(
LbX +RbX

)
,

where the expressions X > Mi, X > Ai, X > Bi refer to the partial ordering (2.41). The
variables paX correspond to functions on SL(2,R)n+2g. The Poisson brackets of variables
jaX and pbY describe the action of the associated vector fields on functions and the Poisson
brackets between variables jaX , jbY are given by the Lie bracket of the associated vector fields.
A detailed analysis of Fock and Rosly’s Poisson structure for the group P3 is given in
[19, 39]. It is shown there that it restricts to a symplectic structure on the submanifold
Cµ1,s1 × · · · × Cµn,sn × P

2g
3 . Moreover, the results of [41] demonstrate that the mapping

class group Map(Sg,n \D) of the associated surface Sg,n \D with a disc removed acts on
this Poisson manifold by Poisson isomorphisms. As different orderings of the particles and
handles are related by the action of elements of the mapping class group, this implies in
particular that Fock and Rosly’s auxiliary bracket [18] depends only trivially on the choice
of the ordering.

3 Gauge fixing in (2+1)-gravity

3.1 Constrained systems and gauge fixing

In the following, we will consider Fock and Rosly’s Poisson algebra as a constrained mechanical
system and construct the associated Dirac bracket. We start by summarising the relevant
concepts from the theory of constrained systems [42, 43, 44] following [45]. (For a pedagogical
introduction, see also [46] and [47].)
A constrained mechanical system is given by a Poisson manifold (Pext, { }) together with
a set of constraint functions {φi}i=1,...,k ⊂ C∞(Pext). The manifold (Pext, { }) is called the
extended phase space of the theory. The constraint surface Σ is defined by the condition
Σ := {q ∈ Pext | φi(q) = 0 ∀i = 1, . . . , k}.
Constraints can be classified via the concept of weak equality. Two functions F,G ∈ C∞(Pext)
are said to agree weakly, F ≈ G, if they are equal on the constraint surface: F (p) = G(p) for
all p ∈ Σ. This property implies that they differ by a linear combination of the constraints
with C∞(Pext)-valued coefficients:

F ≈ G⇐⇒ F −G = ciφi for some ci ∈ C∞(Pext). (3.1)
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First-class constraints are constraints whose Poisson bracket with all other constraints
vanishes weakly:

φi first-class :⇔ {φi, φj} ≈ 0 ∀j ∈ {1, . . . , k}. (3.2)

Constraints which are not first-class are called second-class. Via the Poisson bracket, a
first-class constraint φi generates a gauge transformation

δiF := {F, φi} = d
dt

∣∣∣∣
t=0

F ◦ ϕti ∀F ∈ C∞(Pext), (3.3)

where ϕi : R×Pext → Pext denotes the flow generated by φi. Formally, Casimir functions, i.e.
functions whose Poisson bracket with all functions in C∞(Pext) vanishes, are also first-class.
However, as the associated gauge transformations are trivial, we will not consider them to
be first-class constraints in the following.
Functions O ∈ C∞(Σ) on the constraint surface that are weakly invariant under gauge
transformations are called observables:

O ∈ C∞(Σ) observable :⇔ δiO ≈ 0 ∀i ∈ {1, . . . , l}. (3.4)

Observables can also be thought of as equivalence classes of gauge-invariant smooth functions
on the extended phase space Pext, with the equivalence relation given by F ∼ G :⇔ F ≈ G.
Since for any representative O′ in the equivalence class of O we have δiO′ ≈ δiO, the
condition (3.4) is still well-defined in this picture.
Observables encode the physical degrees of freedom of the system and describe possible
outcomes of measurements. In contrast, the description of the system in terms of the
extended phase space and the constraint surface is redundant. Both contain unphysical
(“gauge”) degrees of freedom. This redundancy of the description is encoded in the gauge
transformations. Any two points of the constraint surface which are related by the flows
as in (3.3) describe the same physical state. A physical state thus corresponds to a gauge
equivalence class of points on the constraint surface, and the outcome of measurements is
described by gauge equivalence classes of functions on the extended phase space.
The physical content of the theory can therefore be described unambiguously by restricting
attention to the gauge-invariant observables. However, in practice this is often not feasible
as the resulting Poisson algebra can be complicated. (For the case of (2+1)-gravity, see
[48, 49, 50]). An alternative approach is to construct a set of representatives for the gauge
equivalence classes of functions on the extended phase space Pext. This is done via a
gauge fixing procedure. It amounts to imposing an additional set of constraints χj ≈ 0,
χj ∈ C∞(Pext), called gauge fixing conditions, such that the gauge freedom generated by
first-class constraints is eliminated.
For simplicity, we restrict our discussion of the gauge fixing procedure to constrained systems
with only first-class constraints. Moreover, we suppose that the constraint functions are
non-redundant, i.e. that the constraint surface Σ is a submanifold of the n-dimensional
manifold Pext of dimension m = n − k and that the gradients grad(φi) of the constraint
functions are linearly independent everywhere on Σ. In this setting, a good set of gauge
fixing conditions must have two properties:

1. It must be accessible without changing the values of observables, i.e. it must be possible
to map any point q ∈ Σ on the constraint surface to one that satisfies the gauge fixing
conditions by using the flows associated to the gauge transformations (3.3).
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Σ

gauge fixing conditions

gauge orbits

Figure 4: The constraint surface Σ inside the extended phase space Pext. The gauge fixing
conditions must be such that the associated submanifold of Σ intersects each gauge orbit
exactly once.

2. It needs to eliminate the gauge freedom completely, i.e. no gauge transformation
may preserve all the gauge fixing conditions. In other words, the number of gauge
fixing conditions must agree with the number of constraints, and the matrix C =
({χj , φi})i,j=1,...,k must be invertible everywhere on the constraint surface.

These conditions imply that the gauge fixing conditions {χj}j=1,...,k together with the original
constraints {φi}i=1,...,k can be viewed as a set {Ci}i=1,...,2k of second-class constraints, for
which the matrix ({Ci, Cj})i,j=1,...,2k is invertible anywhere on the constraint surface.
Geometrically, this approach corresponds to defining an (m− k)-dimensional submanifold of
the m-dimensional constraint surface Σ which intersects every gauge orbit exactly once. It
is equivalent to taking the quotient C∞(Σ)/G of functions C∞(Σ) on the constraint surface
by gauge transformations G.4

By adding the gauge fixing conditions, one thus replaces the original constrained system
by a constrained system with second-class constraints only. In the latter, every phase
space function represents an observable, but we need to identify functions that agree on
the gauge-invariant phase space P := {q ∈ Pext | Ci(q) = 0 ∀i = 1, . . . , 2k}. To ensure
consistency of the constraints and gauge fixing conditions with the Poisson structure, the
Poisson structure needs to be altered in such a way that the constraint functions and gauge
fixing conditions weakly Poisson-commute with all functions on the extended phase space
and that the new Poisson structure agrees with the original one for all observables. Such a
way of altering the Poisson structure is provided by Dirac’s gauge fixing procedure which
results in the Dirac bracket [42, 43, 44].
To implement Dirac’s gauge fixing procedure, one considers the Dirac matrix

Dij := {Ci, Cj}, i, j = 1, . . . , 2k. (3.5)

By construction it is invertible on the constraint surface Σ. This implies that there is a
matrix Dij , unique up to functions of the constraints, that satisfies DijD

jk ≈ δki . The Dirac
bracket of functions F,G ∈ C∞(Pext) is defined in terms of this matrix as

{F,G}D := {F,G} −
2k∑

i,j=1
{F,Ci}Dij{Cj , G}. (3.6)

4Note that the geometry of the constraint surface may make it impossible to choose one gauge orbit that
globally fixes the gauge completely. This is known as the Gribov obstruction [45]. In our case, however, this
problem does not occur.
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It is shown in [44] that the Dirac bracket defines a Poisson structure on the constraint
surface. It follows directly from formula (3.6) that the Dirac bracket {O,O′}D weakly agrees
with the original Poisson bracket for all observables O,O′ ∈ C∞(Pext) and that the Dirac
bracket of any constraint or gauge fixing condition with a function F ∈ C∞(Pext) vanishes
weakly, i.e.

{F,Ci}D ≈ 0 ∀F ∈ C∞(Pext), i ∈ {1, . . . , 2k}. (3.7)

This allows one to impose the constraints as identities without obtaining contradictions
with the Poisson structure. In other words: it ensures that the Dirac bracket, unlike the
original Poisson bracket, gives a well-defined Poisson structure on observables, i.e. on classes
of functions on Σ whose values agree on the gauge-invariant phase space P.

3.2 Gauge fixing and reference frames in (2+1)-gravity

We will now consider the gauge-invariant phase space (2.37) in the Chern-Simons formulation
of (2+1)-gravity as a constrained dynamical system whose extended phase space is given
by Fock and Rosly’s Poisson structure on Pn+2g

3 . As discussed in Section 2.3, the moduli
space of flat P3-connections (2.37) is obtained from the manifold P3 by restricting the
holonomies associated with the punctures to fixed P3-conjugacy classes (2.38), by imposing
an additional relation that mirrors the defining relation of the fundamental group π1(Sg,n)
and by identifying points that are related by global conjugation with P3.
The extended phase space is therefore given by the group Pn+2g

3 , in which the different
components represent the holonomies along a set of generators of the fundamental group
π1(Sg,n). The system exhibits two types of constraints.

Mass and spin constraints for the particles The first set of constraints are two
constraints for each particle, which restrict the associated holonomy Mi to the conjugacy
class Cµi,si defined via (2.38) by its mass µi and spin si. In the following, we will refer to
these constraints as mass and spin constraints for particles. In terms of the variables in
Theorem 2.1, they take the form

p2
Mi − µ

2
i ≈ 0, pMi · jMi − µisi ≈ 0 ∀i = 1, . . . , n. (3.8)

A short calculation shows that the mass and spin constraints for the particles are Casimir
functions of Fock and Rosly’s Poisson algebra. They are therefore not associated with gauge
transformations and their implementation does not pose any difficulties.

Closing constraints The second set of constraints arises from the defining relation of the
fundamental group (2.25) and restricts the holonomy along the curve c in Figure 2 to the
identity. Parametrising this holonomy as

(exp(pdCJd), jC) := M−1
1 · · ·M−1

n [A−1
1 , B1] · · · [A−1

g , Bg], (3.9)

we can reformulate these constraints as

jaC ≈ 0, paC ≈ 0 ∀a ∈ {0, 1, 2}, (3.10)
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where the three-vectors pC , jC are defined as functions of the holonomies of different particles
and handles by

uC = exp(−paCJa) = uKg · · ·uK1uMn · · ·uM1 ,

jC =
n∑
i=1

Ad(u−1
M1
· · ·u−1

Mi−1
)jMi +

g∑
i=1

Ad(u−1
M1
· · ·u−1

Mn
u−1
K1
· · ·u−1

Ki
)jKi ,

(3.11)

with

uKi := uBiu
−1
Ai
u−1
Bi
uAi , jKi := [Ad(uBi)−Ad(uBiu

−1
Ai

)]jBi−[Ad(uBi)−Ad(uKi)]jAi . (3.12)

In the following, we will refer to these constraints as closing constraints. It is is shown in
[19] that the Poisson brackets of the six closing constraints coincide with the Lie bracket of
the Poincaré algebra:

{paC , pbC} = 0, {jaC , pbC} = −εabd pdC , {jaC , jbC} = −εabd jdC . (3.13)

The closing constraints thus form a set of first-class constraints in the terminology of Dirac.
Their Poisson brackets with the momentum and angular momentum three-vectors of different
particles and handles take the form

{jaC , pbX} = −εabd pdX , {paC , pbX} = 0,

{jaC , jbX} = −εabd jdX , {paC , jbX} =
(
1−Ad(u−1

X )
)b
c
T−1(pC)ca,

(3.14)

for all X ∈ {M1, . . . ,Mn, A1, B1, . . . , Ag, Bg}. The angular momentum jC thus generates
global Lorentz transformations which act on the holonomies by simultaneous conjugation
with elements of PSL(2,R). The momentum pC generates global translations. Note that
the last formula in (3.14) does not correspond to the infinitesimal version of the standard
expression (2.28) for translations. Instead, these translations are deformed with the invertible
map T−1(pC) defined in (2.14). The impact of this deformation is discussed in detail in
[19]. For the following, it will be sufficient to note that this map is invertible and that the
components of the three-vector pC therefore generate the full set of translations in R3.
To summarise, the extended phase space is given by the manifold Pn+2g

3 with the Poisson
structure from Theorem 2.1. The constraint functions are the 2n mass and spin constraints
(3.8) which act as Casimir functions, and the six closing constraints (3.10) which are first-class
and generate six global Poincaré transformations.
In the geometrical picture that describes the construction of spacetimes from regions
D ⊂ M3 in Minkowski space, the Poincaré transformations that are generated by the
first-class constraints correspond to global Poincaré transformations acting on D. As they
are isometries of Minkowski space, they do not affect the metric on the spacetime obtained
by gluing the boundary of D. Global Poincaré transformations therefore relate different
descriptions of the same spacetime. However, they change the momentum and angular
momentum variables associated with the different particles and handles.
As discussed in Section 2.2, the momentum and angular momentum variables associated
with the particles and handles characterise the geometry of the spacetime with respect to an
arbitrarily chosen reference frame, namely an observer at rest at the origin. Their change
under a global Poincaré transformation can therefore be interpreted as a transition between
two observers.
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Two sets of holonomies that are related by global conjugation thus give different descriptions
of the same spacetime with respect to two different observers. As there is no preferred
observer, these two descriptions are physically equivalent. The two sets of holonomies
therefore give equivalent descriptions of the same physical state, and the global Poincaré
transformations relating them have the interpretation of gauge transformations.
Eliminating this gauge freedom through gauge fixing thus amounts to choosing an observer.
As there is no external or preferred reference frame, this observer must be specified with
respect to the geometry of the spacetime itself, which is given by the holonomies. This
amounts to imposing a condition on certain holonomies which is not preserved under global
conjugation with P3. In the next section, we will give two specific preocedures in which
an observer is specified either with respect to point particles in the spacetime or to the
geometry of one of its handles.

4 Gauge fixing conditions

4.1 Gauge fixing with respect to particles

We start by considering spacetimes M ≈ I × Sg,n with non-trivial physical degrees of
freedom (12g + 4n ≥ 12) that contain at least two particles (n ≥ 2) and impose a gauge
fixing condition that specifies a reference frame with respect to two particles. For simplicity,
we assume that the two particles under consideration are the ones associated with the
holonomies M1 and M2. As different orderings of the particles are related by the action of
the mapping class group, which acts on Fock and Rosly’s Poisson algebra (2.43) by Poisson
isomorphisms [41], this does not affect the generality of the result.
We restrict attention to spacetimes for which there are at least two particles whose associated
worldlines in Minkowski space are not parallel, i.e. whose momentum three-vectors are linearly
independent. This restricts generality, as it excludes a certain sector of the gauge-invariant
phase space (2.37). Note, however, that spacetimes in which all particle worldlines are
parallel have a preferred direction and differ in their geometrical properties from the generic
case. We expect that they could be treated in a similar fashion. However, they will require
different gauge fixing conditions and for this reason we will not consider them in this article.
To determine a gauge fixing condition, we note that a physical system consisting of two
point particles in Minkowski space has eight parameters, but only two Poincaré-invariant
degrees of freedom. The first is the relative velocity of the particles, or, equivalently, the
rapidity of the Lorentz boost relating their momentum vectors. The second is the minimal
distance of their worldlines in Minkowski space. All other parameters can be eliminated by
applying a global Poincaré transformation to the system. A natural condition for defining a
reference frame with respect to a two-particle system is given as follows:

1. One imposes that the first particle, i.e. the particle associated with M1, is at rest
at the origin. This fixes the reference frame up to rotations around the x0-axis and
translations in the direction of the x0-axis.

2. One imposes that the second particle, i.e. the particle associated withM2, moves in the
direction of increasing x1-coordinate and that the distance of its worldline from the one
for M1 is minimal at x0 = 0. This condition implies that the timelike, future-directed
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x0

x1
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gM2(t)
sinhψ

α

Figure 5: Gauge fixing condition for particles. The geodesic gM1 associated with the first
particle coincides with the x0-axis, while the geodesic gM2 associated with the second particle
lies in an affine plane parallel to the x0-x1plane.

geodesic associated with M2 intersects the x1-x2-plane on the x2-axis. It eliminates
the residual gauge freedom of rotations around and translations in the direction of the
x0-axis.

Clearly, these gauge fixing conditions define a preferred reference frame and hence an observer.
The momentum rest frame of this observer coincides with the momentum rest frame of the
first particle. His x1-axis coincides with the direction of motion of the second particle, and
his position is such that the first particle is at rest at the origin, while the second particle is
closest to the first at eigentime t = 0.
These gauge fixing conditions imply that the associated timelike geodesics in Minkowski
space take the form shown in Figure 5. They can be parametrised as

gM1(t) = (t, 0, 0), gM2(t) = (0, 0, α) + t (coshψ, sinhψ, 0), α ∈ R, ψ > 0, (4.1)

where tanhψ(0, 1, 0) is the velocity of the second particle with respect to the observer and
α(0, 0, 1) is its position at the point of minimal distance from the observer. Note that ψ is a
positive real number, since the particle moves along the x1-axis in the direction of increasing
x1-coordinate, while α can take any real value, including zero.
The associated particle holonomies M1, M2 are determined by the condition that they
preserve the particle geodesics (4.1) and that they lie in a fixed P3-conjugacy class specified
by the masses µ1, µ2 and the spins s1, s2 of the particles. With the parametrisation

M−1
i =

(
exp(pcMiJc), jMi

)
∀i = 1, 2, (4.2)

one finds that that they are given by the following conditions on the particle’s momentum
and angular momentum vectors:

pM1 = µ1ġM1(t) = µ1

1
0
0

 , jM1 = s1

1
0
0

 , (4.3a)

pM2 = µ2ġM2(t) = µ2

coshψ
sinhψ

0

 , jM2 = s2

coshψ
sinhψ

0

+ α

− sinhψ sinµ2
− coshψ sinµ2

1− cosµ2

 . (4.3b)
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The holonomies associated with the two particles are thus determined uniquely by the choice
of a reference frame together with the relative velocity ψ and the minimum distance α, and
this choice eliminates the gauge freedom of applying global Poincaré transformations. It can
be expressed in terms of the following six gauge fixing conditions:

p1
M1 ≈ 0, p2

M1 ≈ 0, p2
M2 ≈ 0,

j1
M1 ≈ 0, j2

M1 ≈ 0, p̂1
M2j

2
M2 + tan µ2

2
(
p̂0
M2 p̂

1
M2j

1
M2 − p̂

1
M2 p̂

1
M2j

0
M2

)
≈ 0,

(4.4)

where the last and most complicated condition encodes the identity xM2 ≈ (0, 0, α).
In the following, it will be useful to give an explicit parametrisation of the momentum and
angular momentum vector associated with the two gauge-fixed particles. Parametrising the
product of the associated holonomies as(

exp(pcRJc), jR
)

:= M2M1, (4.5)

we obtain an expression for the momentum three-vector pR = µR p̂R in terms of the
dynamical parameters α and ψ and of the masses and spins of the gauge-fixed particles:

cpR(µR2 ) = cos µ1
2 cos µ2

2 − sin µ1
2 sin µ2

2 coshψ, (4.6a)

spR(µR2 )
µR

pR = −sin µ1
2 sin µ2

2

cot µ2
2 + cot µ1

2 coshψ
cot µ1

2 sinhψ
− sinhψ

 , (4.6b)

where the functions sp, cp are defined as in (2.5). The variable µR defines the opening
angle of the generalised cone associated with the two-particle system and the vector p̂R the
direction of its axis. Similarly, the angular momentum vector jR defines the time shift of
the cone, which is given by the spin sR, and the cone’s offset xR orthogonal to its axis:

jR = sR p̂R + [1−Ad(exp(−pcRJc))]xR, xR · p̂R = 0. (4.7)

In terms of the variables α,ψ and the masses and spins of the gauge-fixed particles, these
quantities take the form

jR=s1

sinh2 ψ cosµ2 − cosh2 ψ
− sinh(2ψ) sin2 µ2

2
sinµ2 sinhψ

− s2

coshψ
sinhψ

0

+ α

sinµ2 sinhψ
sinµ2 coshψ
1− cosµ2

 , (4.8a)

sR=
sin µ1

2 sin µ2
2

sin µr
2

[
s1(cot µ2

2 +cot µ1
2 coshψ)+s2(cot µ1

2 +cot µ2
2 coshψ)−2α sinhψ

]
, (4.8b)

xR=−
s1 sin2 µ2

2 sinhψ
2 sin2 µR

2

 sinhψ
coshψ
−cot µ2

2

− s2 sin2 µ1
2 sinhψ

2 sin2 µR
2

 0
1

cot µ1
2


+

2α sin2 µ1
2 sin2 µ2

2 (cot µ1
2 + cot µ2

2 coshψ)
2 sin2 µR

2

 0
1

cot µ1
2

 . (4.8c)

4.2 Gauge fixing with respect to handles

In addition to the particle gauge fixing conditions, we also consider two gauge fixing conditions
that specify a frame of reference with respect to the geometry of a handle. For simplicity, we
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restrict attention to spacetimes M ≈ I×Sg,0 without particles and with at least two handles.
The case of genus g = 1 and no particles is the torus universe, for which the constraints can
be solved explicitly (for an overview over the torus universe, see [30]). The case of genus
g ≥ 1 and with particles can be treated in similar fashion, but the ordering in Figure 2
should be adjusted accordingly to simplify the calculations.
We consider two gauge fixing conditions that specify a reference frame with respect to the
geometry of the first handle, which is given by the holonomies A1 and B1. In this case, the
Lorentzian components of the holonomies A1, B1 are hyperbolic. As the holonomies for the
handles are not restricted to fixed P3-conjugacy classes, the variables which generalise the
mass- and spin variables for particles are not Casimir functions of the Fock-Rosly bracket.
Each handle has six Poincaré-invariant degrees of freedom: the mass variables

µA1 =
√
|p2
A1
|, µB1 =

√
|p2
B1
|, (4.9)

the spin variables defined through

µA1sA1 = pA1 · jA1 , µB1sB1 = pB1 · jB1 , (4.10)

as well as two further parameters which specify the relative orientation and relative offset of
the geodesics that are stabilised by the holonomies A1 and B1.
This leads to two natural gauge fixing choices. The first one imposes that the geodesic in
Minkowski space stabilised by A1 is the x1-axis, while that geodesic stabilised by B1 lies in
an affine plane parallel to the x1-x2-plane. In this case, the intersection of the two planes
that are stabilised by the Lorentz components of the holonomies A1, B1 is the x0 axis and
hence a timelike geodesic in Minkowski space as shown in Figure 6. For this reason, we
will refer to this gauge fixing as the “timelike intersection” gauge fixing condition in the
following.
The second gauge fixing condition imposes again that the geodesic stabilised by A1 coincides
with the x1-axis. However, in this case the geodesic stabilised by B1 is required to lie in an
affine plane parallel to the x0-x1 plane. This condition implies that the two planes that are
stabilised by the Lorentzian components of the holonomies A1, B1 intersect in the x2-axis
as shown in Figure 6. For this reason, we will refer to this condition as the “spacelike
intersection” gauge fixing in the following.
One might also consider imposing a “lightlike intersection” gauge fixing condition, in which
the two planes stabilised by the holonomies A1, B1 intersect in a lightlike geodesic in
Minkowski space. Although such a condition could be imposed in principle, its geometrical
interpretation does not fit the case considered here, namely spacetimes of topology R× Sg,n,
where Sg,n is a compact surface with punctures representing particles. Imposing a lightlike
gauge fixing condition would imply that the geodesics in hyperbolic space that are stabilised
by the Lorentzian components of the holonomies A1, B1 meet at a point at its boundary.
This situation can arise for spacetimes whose spatial surfaces exhibit cusps, but not for
spacetimes with compact spatial surfaces that contain only punctures representing particles.
For this reason, we restrict attention to the “timelike intersection” and “spacelike intersection”
gauge fixing conditions defined above.
For the “timelike intersection” gauge fixing condition, the two geodesics that are stabilised
by the holonomies A1, B1 can be parametrised uniquely as

gA1(t) = (0, t, 0), gB1(t) = (α, 0, 0) + t (0, cosψ, sinψ), α ∈ R, ψ ∈ (0, π), (4.11)
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Figure 6: Gauge fixing conditions for handles. The geodesic gA1 stabilised by A1 coincides
with the x1-axis. For the “timelike intersection” gauge fixing on the left, the geodesic gB1

stabilised by B1 lies in an affine plane parallel to the x1-x2 plane. The two planes stabilised
by the Lorentzian components of A1 and B1 intersect in the x0-axis. For the “spacelike
intersection” gauge fixing pictured on the right, the geodesic gB1 stabilised by B1 lies in
an affine plane parallel to the x0-x1-plane. The two planes stabilised by the Lorentzian
components of A1 and B1 intersect in the x2-axis.

which implies that the holonomies are given by

pA1 = µA1

0
1
0

 , pB1 = µB1

 0
cosψ
sinψ

 ,
jA1 = sA1

 0
−1
0

 , jB1 = sB1

 0
− cosψ
− sinψ

+ α

 1− coshµB1

sinψ sinhµB1

− cosψ sinhµB1

 .
(4.12)

Note that we exclude the values ψ = 0, π, because they would imply that the Lorentzian
components of A1 and B1 stabilise the same geodesic in hyperbolic space. In this case, the
holonomies A1 and B1 would not describe the geometry of a handle.
Equivalently, this gauge fixing choice is given by the six constraints

p0
A1 ≈ 0, p2

A1 ≈ 0, p0
B1 ≈ 0,

j0
A1 ≈ 0, j2

A1 ≈ 0, − p̂1
B1j

0
B1 + tanh µB1

2
(
p̂1
B1 p̂

1
B1j

2
B1 − p̂

1
B1 p̂

2
B1j

1
B1

)
≈ 0.

(4.13)

For the “spacelike intersection” gauge fixing condition, the two geodesics that are stabilised
by the holonomies A1, B1 can be parametrised uniquely as

gA1(t) = (0, t, 0), gB1(t) = (0, 0, α) + t (sinhψ, coshψ, 0), α ∈ R, ψ > 0, (4.14)
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and the associated holonomies take the form

pA1 = µA1

0
1
0

 , pB1 = µB1

sinhψ
coshψ

0

 ,
jA1 = sA1

 0
−1
0

 , jB1 = sB1

− sinhψ
− coshψ

0

+ α

− coshψ sinhµB1

− sinhψ sinhµB1

1− coshµB1

 .
(4.15)

As in the “timelike intersection” gauge fixing, the value ψ = 0 is excluded, because it would
imply that the Lorentzian components of the holonomies A1, B1 stabilise the same geodesic
in hyperbolic space. Such a configuration would not describe the geometry of a handle.
The constraints that implement this condition can therefore be expressed as

p0
A1 ≈ 0, p2

A1 ≈ 0, p2
B1 ≈ 0,

j0
A1 ≈ 0, j2

A1 ≈ 0, − p̂1
B1j

2
B1 + tanh µB1

2
(
p̂1
B1 p̂

1
B1j

0
B1 − p̂

0
B1 p̂

1
B1j

1
B1

)
≈ 0.

(4.16)

For both gauge fixing choices, the total momentum vector and angular momentum vector of
the gauge-fixed handle are defined via the identity

(exp(paRJa), jR) = [B1, A
−1
1 ] (4.17)

=
(
[uB1 , u

−1
A1

] , −
[
Ad(uB1)−Ad(uB1u

−1
A1

)
]
jB1 +

[
Ad(uB1)−Ad([uB1 , u

−1
A1

])
]
jA1

)
.

The geometrical interpretation of these gauge fixing conditions is less immediate than in
the particle case. They specify the observer with respect to the geometry of the spacetime,
namely the holonomy variables A1, B1 which characterise the geometry of its first handle.
Similar conditions for fixing an observer are investigated in [17], which studies measurements
performed by observers by emitting and receiving returning lightrays. It is shown there that
the measurements of observers specified by such gauge fixing conditions take a particularly
simple form and that the conditions can be interpreted as defining an observer who is
“comoving” with respect to certain geodesics in the spacetime.

5 The Dirac bracket for (2+1)-gravity

5.1 The Dirac bracket for the particle gauge fixing condition

We are now ready to derive the central result of our paper, which is an explicit description of
the Dirac bracket associated with the gauge fixing conditions for particles and handles. We
start by considering the gauge fixing based on two particle holonomies with the first-class
constraints (3.10) and the gauge fixing conditions (4.4). We have the following theorem.

Theorem 5.1 (Dirac bracket for the particle gauge fixing).
In terms of the variables defined in Theorem 2.1 and in terms of the parametrisation (4.3)
by the variables ψ, α defined in (4.1), the Dirac bracket resulting from the gauge fixing
conditions (4.4) is given as follows.

1. The components of the vectors pM1, jM1 are Casimir functions for the Dirac bracket.
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2. The Dirac brackets of pM2 , jM2 with pM2 , jM2 vanish: {ψ, α}D ≈ 0. The Dirac
brackets of pM2 , jM2 with momenta and angular momenta pX , jX , X ∈ {M3, . . . ,Mn,
A1, . . . , Bg}, are given by the following brackets:

{ψ,pX}D ≈ 0, {ψ, jX}D≈−
(
1−Ad(u−1

X )
)
p̂R

p̂R · (∂jR/∂α)
, {α,pX}D≈

p̂R ∧ pX
p̂R · (∂jR/∂α)

,

{α, jX}D≈
p̂R ∧ jX

p̂R · (∂jR/∂α)
−
(
1−Ad(u−1

X )
)[
p̂R ∧ xR−ξR p̂R

]
p̂R · (∂jR/∂α)

, (5.1)

where ξR = 2 e2·(p̂R∧xR)
p̂R·(∂jR/∂α) .

3. For all X,Y ∈ {M3, . . . ,Mn, A1, . . . , Bg} the Dirac brackets of the associated momenta
and angular momenta take the form

{paX , pbY }D ≈ 0, (5.2a)

{jaX , pbY }D ≈ {jaX , pbY }+
(
1−Ad(u−1

X )
)a
c
V c
d ε

db
f p

f
Y , (5.2b)

{jaX , jbY }D ≈ {jaX , jbY }+
(
1−Ad(u−1

X )
)a
g
V g
d ε

db
f j
f
Y −

(
1−Ad(u−1

Y )
)b
g
V g
d ε

da
f j
f
X

+
(
1−Ad(u−1

X )
)ac(

1−Ad(u−1
Y )
)bd
εcdfm

f , (5.2c)

with
Vab = 1

2ηab + 1
2εabcw

c, (5.3)

and

w =

 cot µ1
2

cot µ1
2 cothψ
− cothψ

 , m =
s1(e2 ∧ p̂M2)

4 sin2 µ1
2 sinhψ

+ α

2
∂w

∂ψ
. (5.4)

Proof. To verify these relations for the Dirac bracket we need to calculate the Dirac matrix
and invert it on the constraint surface. As the number of constraints makes a brute-force
calculation very cumbersome, we exploit the structural features of Fock and Rosly’s Poisson
bracket to derive the result in a more direct way. Firstly, we recall that the variables paX ,
jaX , X ∈ {M1, ...,Mn, A1, ..., Bg}, can be identified, respectively, with functions and vector
fields on PSL(2,R)n+2g. This suggest grouping the constraints and gauge fixing conditions
into two sets depending on whether they contain angular momentum variables jaX or not.
We order our constraints correspondingly:

C1 = j0
C , C2 = j1

C , C3 = j2
C , (5.5)

C4 = j1
M1 , C5 = j2

M1 , C6 = p̂1
M2j

2
M2 + tan µ2

2
(
p̂0
M2 p̂

1
M2j

1
M2 − p̂

1
M2 p̂

1
M2j

0
M2

)
,

C7 = p0
C , C8 = p1

C , C9 = p2
C ,

C10 = p1
M1 , C11 = p2

M1 , C12 = p2
M2 .

With this ordering of the constraints, the Dirac matrix takes the form

D =
(

J P
−P T 0

)
, J := ({Ci, Cj})i,j=1,...,6, P := ({Ci, Cj+6})i,j=1,...,6. (5.6)

As suggested by the notation, the 6× 6-matrix J contains the brackets which involve two
angular momenta. Its entries are therefore linear combinations of angular momenta with
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momentum-dependent coefficients. The 6× 6-matrix P contains the brackets of momenta
with angular momenta. Its entries therefore depend only on the momenta. On the constraint
surface, the matrices J and P take the form

J ≈
(

0 H
−HT G

)
, P ≈

(
0 A
B C

)
, (5.7)

with 3× 3-matrices A,B,C,G,H given by

Aij := {Ci, Cj+9}, Bij := {Ci+3, Cj+6}, Cij := {Ci+3, Cj+9},
Gij := {Ci+3, Cj+3}, Hij := {Ci, Cj+3},

}
i, j = 1, 2, 3. (5.8)

As the lower-right block of D and the upper-left blocks of J and P vanish there, we obtain

D−1 ≈
(

0 −(P−1)T
P−1 P−1J(P−1)T

)
, P−1 ≈

(
−B−1CA−1 B−1

A−1 0

)
, (5.9)

P−1J(P−1)T ≈
(
B−1[G− CA−1H + (CA−1H)T

]
(B−1)T −B−1HT (A−1)T

A−1H(B−1)T 0

)
.

The task of inverting the Dirac matrix on the constraint surface thus reduces to inverting
the 3× 3-matrices A and B, and for all X,Y ∈ {M1, . . . , Bg} the Dirac bracket takes the
form

{paX , pbY }D ≈ 0, (5.10a)

{jaX , pbY }D ≈ {jaX , pbY }+
3∑

i,j=1

[
{jaX , Ci+6}(B−1)ij{pbY , Cj+3}+ {jaX , Ci+9}(A−1)ij{pbY , Cj}

− {jaX , Ci+6}(B−1CA−1)ij{pbY , Cj}
]
, (5.10b)

{jaX , jbY }D ≈ {jaX , jbY }+
6∑
i=1

12∑
j=7
{jaX , Ci}(D−1)ij{jbY , Cj}+

12∑
i=7

6∑
j=1
{jaX , Ci}(D−1)ij{jbY , Cj}

+
12∑
i=7

12∑
j=7
{jaX , Ci}(D−1)ij{jbY , Cj}. (5.10c)

We are now ready to prove the specific claims:

1. That the components p1
M1

, p2
M1

, j1
M1

and j2
M1

are Casimir functions of the Dirac
bracket follows directly because they are gauge fixing conditions. The components
p0
M1
≈ µ1 and j0

M1
≈ s1 have this property since µ1 and s1 are Casimir functions of

the Fock-Rosly Poisson structure.

2. The first equation in (5.1) follows because the parameter ψ is determined by pM2 . To
obtain the bracket {ψ, jX}D, we need to compute {p0

M2
, jX}D from (5.10b) and then

use the chain rule. For this, we note that we have pC ≈ 0 and hence T−1(pC) ≈ 1

which implies
{jaX , Ci+6} ≈ −

(
1−Ad(u−1

X )
)a,i−1 ∀i = 1, 2, 3. (5.11)

Note that the index i plays the role of a label on the left hand side of (5.11), while it
is interpreted as a Lorentz index on the right hand side. Using (5.11), we obtain

{ψ, jaX}D ≈
sin µR

2
(
1−Ad(u−1

X )
)a
b
p̂bR

2 sin µ1
2 sin µ2

2 sinhψ
= −

(
1−Ad(u−1

X )
)a
b
p̂bR

p̂R · (∂jR/∂α)
. (5.12)
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The relations for {α,pX}D and {α, jX}D can be verified in a similar fashion. The
bracket {α,ψ}D can be derived analogously from the bracket {jaM2

, pbM2
}D.

3. Relation (5.2a) follows directly from the form of the matrix D−1. To prove equation
(5.2b), we note that for X ∈ {M3, . . . , Bg} we have {jaX , Ci+9} = 0. Using again (5.11)
and the specific form of the constraints C4, C5 and C6, we can simplify expression
(5.10b) to

{jaX , pbY }D ≈ {jaX , pbY }+
(
1−Ad(u−1

X )
)ae

Ved ε
db
c p

c
Y , (5.13)

Ved = (B−1CA−1)e+1,d+1 −
3∑
j=1

(B−1)e+1,j
∑

X∈{M1,M2}
θXj,a

(
1−Ad(uX)

) a

d
∀e, d = 0, 1, 2,

where the coefficients θXj,a are defined by the equation

Cj+3 =
∑

X∈{M1,M2}
θXj,a j

a
X ∀j = 1, 2, 3, (5.14)

and can be read off from (5.5). Inserting the expressions for the matrices A,B,C and
the parameters θXj,a, we obtain expressions (5.3) and (5.4).

4. To show relation (5.2c) for the Dirac bracket of two angular momenta, we make use of
equation (5.11) and of the identity {jaX , Ci+9} = 0 for all X ∈ {M3, . . . , Bg}. Moreover,
we note that for i = 1, . . . , 6 and X ∈ {M3, . . . , Bg} we have

{paX , Ci} = fab,i p
b
X , {jaX , Ci} = fab,i j

b
X , (5.15)

with coefficient functions fab,i ∈ C∞(PSL(2,R)2n+g). We can therefore use the results
that led to (5.13) to simplify equation (5.10c):

{jaX , jbY }D ≈ {jaX , jbY }+
(
1−Ad(u−1

X )
)ad

Vdg ε
gb
f j
f
Y (5.16)

−
(
1−Ad(u−1

Y )
)bd

Vdg ε
ga
f j
f
X +

(
1−Ad(u−1

X )
)ac(

1−Ad(u−1
Y )
)bd(D−1)c+7,d+7.

As the matrix G and, consequently, the matrix (D−1)c+7,d+7 is anti-symmetric, it is
of the form (D−1)c+7,d+7 = εcdfm

f with a three-vector m that depends only on α,ψ
and on the parameters µ1, µ2, s1, s2. Using the explicit expression for the matrix D−1,
we find that m takes the form (5.4).

The Dirac brackets derived in Theorem 5.1 have a direct physical interpretation. The gauge
fixing condition (4.4) restricts the motion of the particle associated with the holonomy M1
completely. As the mass and spin variables µ1, s1 are external parameters, i.e. Casimir
functions of the Poisson bracket, there are no longer any physical degrees of freedom
associated with this particle. This is reflected in the fact that the Dirac brackets of the
variables pM1 , jM1 with all other variables vanish.
In contrast, the motion of the particle associated with the holonomy M2 is not determined
completely by the gauge fixing condition (4.4). It is characterised by two residual physical
degrees of freedom. The first is its relative velocity with respect to the first particle, which
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is given by the parameter ψ. The second is its minimal distance from the first particle,
which is encoded in the parameter α. It follows from (5.1) that the parameter ψ generates
via the Dirac bracket a global translation (2.28) in the direction of p̂R that acts on all
non-gauge-fixed holonomies. Similarly, the parameter α generates via the Dirac bracket a
combination of a rotation (2.27) around p̂R and a translation (2.28) in the direction of p̂R.
The Poisson brackets of the momenta and angular momenta pX , jX , X ∈ {M3, . . . , Mn,
A1, . . . , Bg} of the non-gauge-fixed variables are modified with terms involving a matrix V
and the vector m defined in (5.3), (5.4). As in the case of the Fock-Rosly Poisson structure,
the Dirac brackets of two momenta vanish. Moreover, the matrix V , which appears in
the bracket of momenta with angular momenta, depends only on the external parameters
µ1, µ2 and the dynamical parameter ψ. It is a function of the Lorentzian components of the
holonomies only. This implies that we can again identify the momenta of the non-gauge-fixed
holonomies with functions on the product of n + 2g − 2 copies of the Lorentz group and
define the parameter ψ as a function on PSL(2,R)n+2g−2 through (4.6).
However, the Poisson brackets of two angular momentum variables are no longer linear
combinations of angular momentum variables with momentum-dependent coefficients. This
is due to the fact that the vector m defined in (5.4) has a component which depends on the
parameters µ1, s1 and ψ only. In contrast to the Fock-Rosly bracket, the angular momentum
variables of the non-gauge-fixed holonomies can therefore not be identified with vector fields
on the manifold PSL(2,R)n+2g−2. Instead, they are given as a sum of such vector fields
and of functions on PSL(2,R)n+2g−2. We will show in Section 6.1 that the Dirac bracket
on the constraint surface can be obtained from the Fock-Rosly bracket on Pn+2g−2

3 via a
global translation.

5.2 The Dirac bracket for the handle gauge fixing conditions

For comparison with the gauge fixing condition based on the particle holonomies and to
treat the case without particles, we will now derive the Dirac bracket for the two gauge
fixing conditions (4.13) and (4.16) associated with the handles. The corresponding Dirac
bracket is obtained along the same lines as the one for the particle gauge fixing condition
in Theorem 5.1. The only difference is the concrete form of the matrices A,B,C,D,G,H
in the proof of Theorem 5.1 and the fact that the mass and spin variables for the a- and
b-cycle of the gauge-fixed handle are dynamical variables instead of external parameters.
After a direct calculation repeating the steps in the proof of Theorem 5.1, we obtain the
following theorem.

Theorem 5.2 (Dirac bracket for the handle gauge fixing).
1. In terms of the variables defined in Theorem 2.1 and in equation (4.12), the Dirac bracket
resulting from the “timelike intersection” gauge fixing conditions (4.13) is given as follows.

a) The brackets of the mass and spin variables µA1 , µB1 , sA1 , sB1 of the gauge-fixed handle

29



and the variables ψ, α take the form

{µA1 , sA1}D≈{µB1 , sB1}D≈{µA1 , µB1}D≈{ψ, µA1}D≈{ψ, µB1}D≈{α,ψ}D≈0, (5.17)
{µA1 , sB1}D ≈ {sA1 , µB1}D ≈ cosψ, {sA1 , sB1}D ≈ −α sinψ,
{ψ, sA1}D≈ 1

2 sinψ coth µB1
2 , {ψ, sB1}D≈−1

2 sinψ coth µA1
2 ,

{α, sA1}D≈ α
2 cosψ coth µB1

2 −
sB1

4 sinψ (sin µB1
2 )−2, {α, µA1}D≈ 1

2 sinψ coth µB1
2 ,

{α, sB1}D≈−α
2 cosψ coth µA1

2 + sA1
4 sinψ (sin µA1

2 )−2, {α, µB1}D≈−1
2 sinψ coth µA1

2 .

b) The Dirac brackets of the variables µA1 , sA1 , µB1 , sB1 , α, ψ with the momentum and
angular momentum variables paX , jaX (X 6= {A1, B1}) of the remaining holonomies are
given by

{ψ, paX}D ≈ 0, {ψ, jaX}D ≈
(
1−Ad(u−1

X )
)a
b
qb∞, (5.18)

{α, paX}D ≈ −εabcqb∞pcX , {α, jaX}D ≈ −εabcqb∞jcX +
(
1−Ad(u−1

X )
)a
b
rb∞,

{µA1 , p
a
X}D ≈ 0, {µA1 , j

a
X}D ≈

(
1−Ad(u−1

X )
)a
b
qbA1 ,

{sA1 , p
a
X}D ≈ −εabcqbA1p

c
X , {sA1 , j

a
X}D ≈ −εabcqbA1j

c
X ,

{µB1 , p
a
X}D ≈ 0, {µB1 , j

a
X}D ≈

(
1−Ad(u−1

X )
)a
b
qbB1 ,

{sB1 , p
a
X}D ≈ −εabcqbpcX , {sB1 , j

a
X}D ≈ −εabcqbB1j

c
X +

(
1−Ad(u−1

X )
)a
b
rbB1 ,

where:

qA1 ≡
e1
2
, qB1 ≡

1
2

sinψ coth µA1
2

cosψ
sinψ

 , q∞ ≡ −1
4

1− cosψ coth µA1
2 coth µB1

2
sinψ coth µB1

2
coth µA1

2 − cosψ coth µB1
2

 ,
r∞ ≡

sA1 cosψ
8 sinh2 µA1

2

− coth µB1
2

0
1/ cosψ

− sB1 cosψ
8 sinh2 µB1

2

coth µA1
2

− tanψ
1

− α sinψ
4 tanh µB1

2

coth µA1
2

cotψ
1

 ,
rB1 ≡

α

2

cosψ coth µA1
2

− sinψ
cosψ

− sA1 sinψ e0

4 sinh2 µA1
2
. (5.19)

c) The Poisson brackets of the momentum and angular momentum variables paX , jaX of the
non-gauge-fixed holonomies are analogous to the ones for the particle gauge fixing. They
are given by (5.2a), (5.2b), (5.2c) and (5.3) with

w = − 1
2 sinψ

coth µA1
2 coth µB1

2 − cosψ
2 coth µA1

2 sinψ
coth µB1

2 − coth µA1
2 cosψ

 , m = α

2
∂w

∂ψ
+ sA

2
∂w

∂µA
+ sB

2
∂w

∂µB
. (5.20)

2. The Dirac bracket resulting from the “spacelike intersection” gauge fixing conditions (4.16)
is given as follows.
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a) The brackets of the mass and spin variables µA1 , µB1 , sA1 , sB1 of the gauge-fixed handle
and the variables ψ, α take a form analogous to (5.17):

{µA1 , sA1}D≈{µB1 , sB1}D≈{µA1 , µB1}D≈{ψ, µA1}D≈{ψ, µB1}D≈{α,ψ}D≈0, (5.21)
{µA1 , sB1}D ≈ {sA1 , µB1}D ≈ coshψ, {sA1 , sB1}D ≈ α sinhψ,
{ψ, sA1}D≈ 1

2 sinhψ coth µB1
2 , {ψ, sB1}D≈−1

2 sinhψ coth µA1
2 ,

{α, sA1}D≈ α
2 coshψ coth µB1

2 −
sB1

4 sinhψ (sin µB1
2 )−2, {α, µA1}D≈ 1

2 sinhψ coth µB1
2 ,

{α, sB1}D≈−α
2 coshψ coth µA1

2 + sA1
4 sinhψ (sin µA1

2 )−2, {α, µB1}D≈−1
2 sinhψ coth µA1

2 .

b) The Dirac brackets of the variables µA1 , sA1 , µB1 , sB1 , α, ψ with the momentum and
angular momentum variables paX , jaX (X 6= {A1, B1}) of the remaining holonomies are
given by

{ψ, paX}D ≈ 0, {ψ, jaX}D ≈
(
1−Ad(u−1

X )
)a
b
qb∞, (5.22)

{α, paX}D ≈ −εabcqb∞pcX , {α, jaX}D ≈ −εabcqb∞jcX +
(
1−Ad(u−1

X )
)a
b
rb∞,

{µA1 , p
a
X}D ≈ 0, {µA1 , j

a
X}D ≈

(
1−Ad(u−1

X )
)a
b
qbA1 ,

{sA1 , p
a
X}D ≈ −εabcqbA1p

c
X , {sA1 , j

a
X}D ≈ −εabcqbA1j

c
X ,

{µB1 , p
a
X}D ≈ 0, {µB1 , j

a
X}D ≈

(
1−Ad(u−1

X )
)a
b
qbB1 ,

{sB1 , p
a
X}D ≈ −εabcqbB1p

c
X , {sB1 , j

a
X}D ≈ −εabcqbB1j

c
X +

(
1−Ad(u−1

X )
)a
b
rbB1 ,

where:

qA1 ≡
e1
2
, qB1 ≡

1
2

 sinhψ
coshψ

sinhψ coth µA1
2

 , q∞ ≡ −1
4

 coshψ coth µB1
2 − coth µA1

2
sinhψ coth µB1

2
coshψ coth µA1

2 coth µB1
2 − 1

 ,
r∞ ≡

sA1 coshψ
8 sinh2 µA1

2

−1/ coshψ
0

coth µB1
2

+ sB1 coshψ
8 sinh2 µB1

2

 1
tanhψ

coth µA1
2

− α sinhψ
4 tanh µB1

2

 1
cothψ

1

 ,
rB1 ≡

α

2

 coshψ
sinhψ

coshψ coth µA1
2

− sA1 sinhψ e2

4 sinh2 µA1
2

. (5.23)

c) The Poisson brackets of the momentum and angular momentum variables paX , jaX of the
non-gauge-fixed holonomies are given by (5.2a), (5.2b), (5.2c) and (5.3) with

w=− 1
2 sinhψ

coth µA1
2 coshψ−coth µB1

2
2 coth µA1

2 sinhψ
coshψ−coth µA1

2 coth µB1
2

 , m= α

2
∂w

∂ψ
+ sA

2
∂w

∂µA
+ sB

2
∂w

∂µB
. (5.24)

The Dirac brackets obtained from the two handle gauge fixing conditions exhibit many
structural similarities with the one for the particle gauge fixing condition in Theorem 5.1.
Firstly, the Dirac brackets of the momenta and angular momenta of the non-gauge-fixed
holonomies take an analogous form and are again given in terms of a matrix V as in (5.3)
and a vectorm defined by (5.20), (5.24). As in the particle case, the matrix V depends only
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on the parameters µA1 , µB1 and ψ and is therefore given as a function of the Lorentzian
components of the non-gauge-fixed holonomies. However, in contrast to the particle gauge
fixing condition, the vectorm is now given as a linear combination of angular momenta, and
does not have a component which depends only on the Lorentzian part of the holonomies.
This is due to the fact that the spin variables sA1 , sB1 in (5.20), (5.24) are dynamical
variables, not external parameters as the spin variables s1, s2 of the particles.
This implies that we can identify the momentum variables of the non-gauge-fixed holonomies
with functions on the group PSL(2,R)n+2g−2 and their angular momenta with vector fields
on the same group. The structure of the Dirac bracket is thus similar to the original bracket
in Theorem 2.1: The Dirac bracket of two momenta vanishes. The Dirac bracket of momenta
with angular momenta is given by the action of vector fields on functions. And the Dirac
bracket of two angular momenta corresponds to the Lie bracket of the associated vector
fields. In this description, the parameters µA1 , µB1 , ψ are given as functions of the Lorentzian
components of the non-gauge-fixed holonomies. The parameters sA1 , sB1 , α depend on both,
their Lorentzian and translational components.
As in the particle gauge fixing, the parameters α,ψ Poisson-commute with each other.
Equations (5.18), (5.22) imply that the variable ψ generates global translations of the
non-gauge-fixed holonomies in the direction of the vector q∞. However, in contrast to the
particle case, where this translation was in the direction of the total momentum p̂R, one
can show that the vector q∞ in (5.19), (5.23) is not parallel to the total momentum pK1
associated with the gauge-fixed handle via uK1 = [uB1 , u

−1
A1

] = exp(−paK1
Ja).

Similarly, equations (5.18), (5.22) imply that the variable α generates global rotations around
q∞ and global translations in the direction of the vector r∞ defined in (5.19), (5.23). Neither
of these vectors coincides with the total momentum vector pK1 of the handle.
The main difference in relation to the particle gauge fixing condition is that the parameters
µA1 , µB1 , sA1 , sB1 are dynamical and do not Poisson-commute with the other phase space
variables. Instead, it follows from (5.18), (5.22) that the variable µA1 generates global
translations of all non-gauge-fixed holonomies in the direction of p̂A1 = e1. The variable sA1

generates rotations around p̂A1 = e1. The variable µB1 generates global translations in the
direction of the vector qB1 in (5.19), (5.23). However, this vector does not coincide with
the vector p̂B1 . Instead, it is given as the sum qB1 = p̂B1 + coth µA1

2 p̂A1 ∧ p̂B1 . Similarly,
the spin variable sB1 generates a combination of global rotations around qB1 and global
translations in the direction of the vector rB1 in (5.19), (5.23).

6 Interpretation

6.1 Gauge fixing with particles

Having derived the Dirac bracket of the gauge-fixed system, we now investigate its inter-
pretation in terms of spacetime geometry. We start by considering the Dirac bracket in
Theorem 5.1 that results from the particle gauge fixing condition (4.4). For this we recall
that the constraint (3.10), which is a Casimir function with respect to the Dirac bracket,
relates the variables associated with the two gauge-fixed particles to the variables of the
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remaining particles and handles:

(exp(pcRJc), jR) = M2M1 ≈M−1
3 · · ·M−1

n [A−1
1 , B1] · · · [A−1

g , Bg]. (6.1)

The three-vector pR can thus be expressed as a function of the Lorentzian components
of the residual holonomies. The three-vector jR can be identified with a vector field on
PSL(2,R)n−2+2g and is given in terms of the angular momentum vectors of the residual
variables by

jR ≈
n∑
i=3

Ad(u−1
M3

. . . u−1
Mi−1

)jMi +
g∑
i=1

Ad(u−1
M3
· · ·u−1

Mn
u−1
K1
· · ·u−1

Ki
)jKi , (6.2)

with uKi and jKi as in (3.12). As the first two particles were used to determine the reference
frame of the observer and their holonomies are fixed, we can interpret the non-gauge-fixed
particles and handles as a dynamical system embedded in a background geometry that is
specified by the two gauge-fixed particles. The variables pR and jR defined in (4.6) and
(4.8a) can be viewed as the total momentum and angular momentum of this residual system.
The phase space transformations generated by these variables correspond to the effective
symmetries of the residual system.

6.1.1 Conical symmetry via gauge fixing with particles

To develop a precise understanding of these effective symmetries and of the impact of gauge
fixing, we compare the global symmetries of a non-gauge-fixed system with n− 2 particles
and the original Poisson bracket from Theorem 2.1 to the effective symmetries of the Dirac
bracket. We consider the Fock-Rosly bracket for n − 2 particles labelled by holonomies
M3, . . . ,Mn and g handles with associated holonomies A1, B1, . . . , Ag, Bg with the ordering
of Theorem 2.1. This corresponds to erasing the loops m1,m2 from the set of generators
of π1(Sg,n) in Figure 2. A short calculation shows that the associated variables pR and jR
defined by (6.1), (6.2) take the role of the variables pC and jC for the Fock-Rosly bracket
on Pn+2g

3 . Their Poisson brackets thus take the form (3.13):

{paR, pbR} = 0, {jaR, pbR} = −εabcpcR, {jaR, jbR} = −εabcjcR. (6.3)

Their brackets with the momenta and angular momenta of the residual particles and handles
are given by (3.14). So for any v ∈ R3 that does not depend on the phase space variables,
we have for all X ∈ {M3, . . . , Bg}:

{v · jR,pX} = v ∧ pX , {v · pR,pX} = 0,
{v · jR, jX} = v ∧ jX , {v · pR, jX} =

(
1−Ad(u−1

X )
)
T−1(pR)v,

(6.4)

The effective symmetries of the non-gauge-fixed system with the Fock-Rosly bracket therefore
correspond to the action of the Poincaré group P3 on three-dimensional Minkowski space.
Hence, we can interpret this system as a (2+1)-spacetime that is effectively Minkowskian.
To compare this with the effective symmetries of the gauge-fixed system, we determine the
Dirac bracket of its total momentum pR and angular momentum jR with the momenta and
angular momenta of the non-gauge-fixed particles and handles. The form of these expressions
on the constraint surface follows directly from equations (5.1) and from expressions (4.6)–(4.8)
for pR and jR in terms of the parameters ψ and α. We obtain the following corollary.
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Corollary 6.1. The components of the total momentum and angular momentum of the
residual system Poisson-commute weakly:

{paR, pbR}D ≈ {jaR, pbR}D ≈ {jaR, jbR}D ≈ 0. (6.5)

For all X ∈ {M3, . . . ,Mn, A1, . . . , Bg} and v ∈ R3, we have:

{v · pR,pX}D ≈ 0, (6.6a)
{v · pR, jX}D ≈ τ(v)

(
1−Ad(u−1

X )
)
p̂R, (6.6b)

{v · jR,pX}D ≈ φ(v) p̂R ∧ pX , (6.6c)
{v · jR, jX}D ≈ φ(v) p̂R ∧ jX −

(
1−Ad(u−1

X )
)
[σ(v)p̂R + φ(v)p̂R ∧ xR], (6.6d)

where φ(v), τ(v), σ(v) are linear functions of v given by expression (5.1) for ξR and

τ(v)= v · (∂pR/∂ψ)
p̂R · (∂pR/∂ψ)

, φ(v)= v · (∂jR/∂α)
p̂R · (∂jR/∂α)

, σ(v)= v · (∂jR/∂ψ)
p̂R · (∂jR/∂α)

− ξR φ(v). (6.7)

Equations (6.6a) and (6.6b) state that the phase space transformations generated by the
components of the total momentum pR are global translations in the direction of pR.
Equations (6.6c) and (6.6d) imply that the phase space transformations generated by the
components of the total angular momentum jR are global translations in the direction of pR
together with rotations around the geodesic gR(t) = tp̂R +xR, xR · pR = 0. Their action on
points in Minkowski space is given by

y 7→ xR + Ad(uR(φ))(y − xR) + σp̂R, uR(φ) = exp(φ p̂aRJa). (6.8)

The term φ(v)pR ∧ xR in (6.6d) arises from the fact that this geodesic does not go through
the origin but has an offset xR. The parameter φ(v) defines the angular velocity of the
rotation generated by the angular momentum vector jR. The parameters τ(v) and σ(v)
define the relative velocity of the translations generated by, respectively, the momentum pR
and the angular momentum jR.
It follows from the discussion in Sections 2.2 and 4.1 that these translations and rotations
are precisely the symmetries of the cone whose axis is given by the geodesic gR. This is
the cone associated to the two gauge-fixed particles via (4.6)–(4.8). The effective symmetry
group of the Dirac bracket is therefore the two-dimensional abelian symmetry group of a
cone in Minkowski space, which is generated by a rotation around its axis and a translation
in the direction of its axis. This allows us to interpret the system as a (2+1)-spacetime which
is effectively conical. As detailed in Section 2.2, an element of the Poincaré group defines a
cone in Minkowski space. Corollary 6.1 states that this cone is the one given by the product
M2M1 of the holonomies of the gauge fixed particles. Its deficit angle and time shift are
dynamical variables given by the relative velocity tanhψ and the minimal distance α of the
gauge-fixed particles or, equivalently, the total mass µR and spin sR of the non-gauge-fixed
system.
The particle gauge fixing procedure therefore has a clear interpretation in terms of spacetime
geometry: It describes the transition from an effectively Minkowskian (2+1)-spacetime
associated with the original bracket to an effectively conical spacetime associated with the
Dirac bracket. The geometry of the cone is determined by the mass and spin parameters
of the two gauge-fixed particles and by the two dynamical variables that characterise their
relative motion, their relative velocity tanhψ and their minimum distance α. The former
defines the opening angle of the cone and the latter its time shift.
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6.1.2 Particle gauge fixing as a global translation

To analyse the geometrical interpretation of the particle gauge fixing procedure and the
resulting Dirac bracket further, we investigate its relation to the original bracket in Theorem
2.1. In this context, it is natural to ask if the Dirac bracket (5.2) for the variables of the
non-gauge-fixed particles and handles can be related to the original bracket (2.43) via a
certain coordinate transformation. More precisely, we ask if there exists a diffeomorphism
Γ : Pn+2g−2

3 → Pn+2g−2
3 , such that the bracket (2.43) of the transformed momentum and

angular momentum variables agrees with their Dirac bracket on the constraint surface:

{f ◦ Γ, g ◦ Γ} ≈ {f, g}D ◦ Γ ∀f, g ∈ C∞(Pn+2g−2
3 ). (6.9)

Note that this condition does not imply that Fock and Rosly’s Poisson structure is Poisson-
equivalent to the gauge-fixed Poisson structure in Theorem 5.1. This is because Fock and
Rosly’s Poisson bracket does not restrict to a Poisson structure on the constraint surface.
Moreover, since we inverted the Dirac matrix only on the constraint surface, it cannot be
expected that identity (6.9) holds globally.
To determine if there exists a transformation Γ : Pn+2g−2

3 → Pn+2g−2
3 that satisfies condition

(6.9), we note that formula (5.2b) is consistent with a transformation that affects only the
angular momentum variables jX , X ∈ {M3, . . . ,Mn}, and transforms them by a global
translation that depends on the vector jR, on the total mass µR and on external parameters
that Poisson-commute with all functions in C∞(Pn+2g−2

3 ). We obtain the following theorem.

Theorem 6.2 (Particle gauge fixing as a global translation).
Consider the Poisson manifold MFR = (Pn+2g−2

3 , { , }), where { , } is the Poisson bracket
(2.43) restricted to the system with the first two particles removed. Denote by pR, jR the
total momentum and angular momentum defined via

(exp(paR), jR) = M−1
3 · · ·M−1

n [A−1
1 , B1] · · · [A−1

g , Bg]. (6.10)

Introduce external parameters µ1, µ2, s1, s2 which Poisson-commute with all functions in
C∞(Pn+2g

3 ) and define ψ ∈ C∞(Pn+2g−2
3 ) as a function of the total mass µR and of the

parameters µ1, µ2 through equations (4.6). Define α ∈ C∞(Pn+2g−2
3 ) as a function of

µ1, µ2, s1, s2 and the total spin sR through equation (4.8b).
Let Γ : Pn+2g−2

3 → Pn+2g−2
3 be a global translation:

Γ :
{
uX 7→ uX ,

jX 7→ jX +
(
1−Ad(u−1

X )
)
t,

∀X ∈ {M3, . . . ,Mn, A1, . . . , Bg}. (6.11)

Suppose the translation vector t is of the form t = −V jR + a, where the 3 × 3-matrix
V is given as a function of the variables µR, µ1, µ2 by (5.3), (5.4) and the three-vector
a is a function of µ1, µ2, µR, s1, s2, sR which is given below in the proof. Then the map
Γ : Pn+2g−2

3 → Pn+2g−2
3 satisfies

{f ◦ Γ, g ◦ Γ} ≈ {f, g}D ◦ Γ ∀f, g ∈ C∞(Pn+2g−2
3 ), (6.12)

where { , }D is the Dirac bracket for the particle gauge fixing derived in Theorem 5.1 and ≈
denotes equality on the constraint surface C ′ ⊂ Pn+2g−2

3 defined by conditions (4.6).
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Proof. The proof is a direct but lengthy calculation. We use the coordinates from Theorem
2.1 and start by determining the Poisson brackets of momentum and angular momentum
variables. From the definition of the map Γ, we have

{jaX ◦ Γ, pbY ◦ Γ} = {jaX , pbY }+
(
1−Ad(u−1

X )
)a
c
{tc, pbY } (6.13)

for X,Y ∈ {M3, . . . ,Mn, A1, . . . , Bg}. With the identities

{µR, pbY } = 0, {tc, pbY } = −V c
d {jdR, pbY } = V c

d ε
db
f p

f
Y , (6.14)

which follow directly from the expressions for Fock and Rosly’s Poisson structure in Theorem
2.1, we obtain agreement with formula (5.2b) in Theorem 5.1.
To determine the brackets of the angular momentum variables, we use the identity

{jaX , jbY } ◦ Γ = {jaX , jbY } − {jaX ,Ad(u−1
Y )bd}td + {jbY ,Ad(u−1

X )ac}tc

−
(
1−Ad(u−1

X )
)a
c

(
1−Ad(u−1

Y )
)b
d
εcdf tf , (6.15)

and obtain

{jaX ◦ Γ, jbY ◦ Γ} = {jaX , jbY } ◦ Γ +
(
1−Ad(u−1

Y )
)b
d
{jaX , td} −

(
1−Ad(u−1

X )
)a
c
{jbY , tc}

−
(
1−Ad(u−1

X )
)a
c
{tc,Ad(u−1

Y )bd}td +
(
1−Ad(u−1

Y )
)b
d
{td,Ad(u−1

X )ac}tc

+
(
1−Ad(u−1

X )
)a
c

(
1−Ad(u−1

Y )
)b
d
({tc, td}+ εcdf t

f ). (6.16)

After some further computations this reduces to

{jaX ◦ Γ, jbY ◦ Γ} = {jaX , jbY } ◦ Γ +
(
1−Ad(u−1

X )
)a
c
V c
d ε

db
k(jkY ◦ Γ)

−
(
1−Ad(u−1

Y )
)b
c
V c
g ε

ga
k(j

k
X ◦ Γ) +

(
1−Ad(u−1

X )
)ac(

1−Ad(u−1
Y )
)bd
εcdfm̃

f , (6.17)

where the three-vector m̃ takes the form

m̃ =
(

1
4(w2 + 1) + 1

2 p̂R ·
∂w

∂ψ

)
jR − sR

2
∂w

∂µR
+ 1

2w ∧ a− p̂R ∧
∂a

∂µR
. (6.18)

On the constraint surface C ′, the three-vector p̂R is given by (4.6b), which implies that the
factor in front of jR vanishes. If we set

a =
sin µ1

2 sin µ2
2 sinhψ

2 sin µR
2

[
s1 p̂M2 ∧ p̂R + s2 p̂M1 ∧ p̂R

sin2 µ1
2

(6.19)

+
(
s1(cot µ1

2 +cot µ2
2 coshψ)+s2(cot µ2

2 +cot µ1
2 coshψ)

)
p̂R ∧

∂w

∂ψ

]
,

with p̂M1 = e0, p̂M2 = coshψ e0 + sinhψ e1 and w defined via (5.4), we obtain m̃ ≈ m
with m given by (5.4). This proves the claim.

Theorem 6.2 states that the Dirac bracket of the residual system, i.e. the system without the
two gauge-fixed particles, can be obtained from its Fock-Rosly bracket by applying a global
translation (6.11) that depends on the total mass µR and on the total angular momentum
jR of the residual system. Under this translation the total angular momentum transforms as

Γ : jR 7→WjR +
(
1−Ad(u−1

R )
)
a, W = 1−

(
1−Ad(u−1

R )
)
V. (6.20)
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A short calculation shows that the matrix W takes the form W ab = uap̂bR with a spacelike
vector u that satisfies u · p̂R = 1. This implies that on the constraint surface defined by (4.6),
W T is a projector onto Span(p̂R). This ensures that the Lorentz transformations generated
by jR involve only rotations around the axis of the cone defined by the gauge-fixed particles.
The gauge fixing procedure can thus be understood as a global translation which modifies
the total angular momentum in such a way that the associated Lorentz transformations are
reduced to a rotation around the axis of the cone.
Similarly, the specific form of the vector a ensures that the translations generated by the
total angular momentum jR are no longer the full set of translations in R3 but, on the
constraint surface, reduce to translations in the direction of the cone’s axis. Note, however,
that the agreement of the resulting bracket with the Dirac bracket defines the vector a in
Theorem (6.2) only up to translations in the direction of the momentum p̂R.
This provides a simple and direct interpretation of the gauge fixing procedure and the
Dirac bracket in terms of the geometry of the associated spacetime. Gauge fixing can be
understood as a global translation of the non-gauge-fixed particles and handles which is
such that the translated total angular momentum generates precisely the symmetries of the
cone defined by the two gauge-fixed particles.
The total mass µR of the residual system plays the role of a total energy variable and can be
viewed as the Hamiltonian of the system. The associated transformations are translations in
a preferred time direction, which is given by the axis of the effective cone. The variable sR
plays the role of a total angular momentum variable of the system. The associated phase
space transformations are rotations around the axis of the cone.
Note also that Theorem 6.2 allows one to extend the Dirac bracket beyond the constraint
surface. While the formulas in Theorem 5.1 are only valid on the constraint surface defined
by (4.6), the bracket resulting from the global translation in Theorem 6.2 is defined for all
values of the variables pX , jX , X ∈ {M3, ...,Mn, A1, ..., Bg}.

6.2 Gauge fixing with handles

As in the case of the particle gauge fixing, we will now give a physical interpretation of the
Dirac brackets for handles in terms of the geometry of the residual variables.
As the degrees of freedom of the first handle were used to determine the reference frame
of the observer, they can be eliminated from the description and expressed in terms of the
momenta and angular momenta of the residual handles via the constraint

(exp(pcRJc), jR) = [B1, A
−1
1 ] ≈ [A−1

2 , B2] · · · [A−1
g , Bg] (6.21)

together with (4.17). This allows us to interpret the three-vectors pR, jR in (6.21) as a
total momentum and angular momentum vector of the residual system, i.e. the handles with
holonomies A2, B2, ..., Ag, Bg. The phase space transformations generated by these variables
can be viewed as the effective symmetries of the residual system.

6.2.1 Poincaré symmetry via gauge fixing with handles

From Theorem 5.2 it follows directly that these effective symmetries are the ones of Minkowski
space. By taking the partial derivatives of pR, jR with respect to the parameters of the
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gauge-fixed handle, we obtain for all f ∈ C∞(Pn+2g−2
3 )

{paR, f}D ≈
∂paR
∂ψ
{ψ, f}D + ∂paR

∂µA1
{µA1 , f}D + ∂paR

∂µB1
{µB1 , f}D, (6.22)

{jaR, f}D ≈
∂jaR
∂ψ
{ψ, f}D + ∂jaR

∂µA1
{µA1 , f}D + ∂jaR

∂µB1
{µB1 , f}D

+ ∂jaR
∂α
{α, f}D + ∂jaR

∂sA1
{sA1 , f}D + ∂jaR

∂sB1
{sB1 , f}D. (6.23)

Using the expressions (5.18), (5.22) for the Dirac bracket in Theorem 5.2, we find that the
components of the total momentum vector pR generate three linearly independent translations
in the direction of the vectors q∞, qA1 , qA2 in (5.19), (5.23). Similarly, the components
of the angular momentum vector jR generate three independent Lorentz transformations
with axes q∞, qA1 , qB1 and two translations in the direction of the vectors r∞, rB1 given by
(5.19), (5.23).
The effective symmetries of the handle gauge-fixed system are therefore the ones of Minkowski
space, and its effective symmetry group is the Poincaré group P3 in three dimensions. This
distinguishes the handle gauge fixing from the particle gauge fixing, for which the effective
symmetries were conical. It is a consequence of the fact that the gauge-fixed handle has
six residual dynamical degrees of freedom: the variables µA1 , µB1 , sA1 , sB1 , ψ, α, whereas a
system of two gauge-fixed particles has only two such degrees of freedom, the parameters
ψ, α which define the deficit angle and time shift of the cone.

6.2.2 Handle gauge fixing as a global translation

As in the case of the particle gauge fixing, the form of the Dirac bracket in Theorem 5.2
suggests that the Dirac bracket for the handle gauge fixings could be obtained from the
Fock-Rosly bracket by applying a global translation. However, in contrast to the particle
case, one would expect this relationship to hold globally. For the particle gauge fixing, the
constraint surface defined by (4.6)–(4.8) is a (6[n− 2] + 12g − 4)-dimensional submanifold
of the (6[n− 2] + 12g)-dimensional manifold Pn+2g−2

3 . In contrast, the handle gauge fixing
constraints yield a manifold of dimension 12(g − 1), which coincides with the dimension of
P 2g−2

3 . This suggests that the Dirac bracket can be obtained from the Fock-Rosly bracket
for a reduced system with g − 1 handles through a coordinate transformation. This is the
content of the following theorem.

Theorem 6.3 (Handle gauge fixing as a global translation).
Consider the Poisson manifold MFR = (P 2g−2

3 , { , }), where { , } is the Fock-Rosly bracket
(2.43) restricted to the system with the first handle removed. Define the total momentum pR
and angular momentum jR of the system via

(exp(paRJa), jR) = [A−1
2 , B−1

2 ] · · · [A−1
g , Bg]. (6.24)

Let Γ : P 2g−2
3 → P 2g−2

3 be the smooth map that describes the transformation of the holonomies
under global conjugation with a translation by t = −V jR:

Γ :
{
uX 7→ uX ,

jX 7→ jX −
(
1−Ad(u−1

X )
)
V jR,

∀X ∈ {A2, . . . , Bg}, (6.25)
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where the matrix V is a function of the total momentum pR. Introduce variables µA1 , µB1 , sA1 ,
sB1 , ψ, α ∈ C∞(P 2g−2

3 ) by defining them as functions of the total momentum pR = pR ◦ Γ
and the total angular momentum jR ◦ Γ through equations (4.17):

(exp(paRJa), jR ◦ Γ) = [B1, A
−1
1 ], (6.26)

where B1, A1 are given by (4.12) for the timelike gauge fixing condition or by (4.15) for the
spacelike gauge fixing condition. Suppose the matrix V is of the form Vab = 1

2(ηab + εabcw
c),

where the three-vector w given as a function of pR, jR by (5.20) (timelike gauge fixing
condition) or (5.24) (spacelike gauge fixing condition). Then the map Γ : P 2g−2

3 → P 2g−2
3

satisfies
{f ◦ Γ, g ◦ Γ} = {f, g}D ◦ Γ ∀f, g ∈ C∞(P 2g−2

3 ), (6.27)

where { , }D is the Dirac bracket for the timelike or spacelike gauge fixing condition given in
Theorem 5.2.

Proof. The proof is similar to the one of Theorem 6.2. For the Poisson bracket of momenta
and angular momenta jaX , pbY , X,Y ∈ {A2, ..., Bg}, we obtain

{jaX ◦ Γ, pbY ◦ Γ} = {jaX , pbY }+
(
1−Ad(u−1

X )
)a
c
V c
g ε

gbfpYf , (6.28)

which agrees with the expression in Theorem 5.2. To determine the brackets of the angular
momentum variables, we use the identity

{jaX , jbY } ◦ Γ = {jaX , jbY }+ {jaX ,Ad(u−1
Y )bd}V dgjRg − {jbY ,Ad(u−1

X )ac}V cgjRg

+
(
1−Ad(u−1

X )
)a
c

(
1−Ad(u−1

Y )
)b
d
εcdf Vfgj

g
R, (6.29)

which yields

{jaX ◦ Γ, jbY ◦ Γ} = {jaX , jbY } ◦ Γ +
(
1−Ad(u−1

Y )
)b
d
{jaX , td} −

(
1−Ad(u−1

X )
)a
c
{jbY , tc}

−
(
1−Ad(u−1

X )
)a
c
{tc,Ad(u−1

Y )bd}td +
(
1−Ad(u−1

Y )
)b
d
{td,Ad(u−1

X )ac}tc

+
(
1−Ad(u−1

X )
)a
c

(
1−Ad(u−1

Y )
)b
d
({tc, td}+ εcdf t

f ). (6.30)

After some further computations this reduces to

{jaX ◦ Γ, jbY ◦ Γ} = {jaX , jbY } ◦ Γ +
(
1−Ad(u−1

X )
)a
c
V c
d ε

db
k(jkY ◦ Γ) (6.31)

+
(
1−Ad(u−1

X )
)ac{jbY ◦ Γ, Vcf}jfR −

(
1−Ad(u−1

Y )
)bd{jaX ◦ Γ, Vdf}jfR

−
(
1−Ad(u−1

Y )
)b
c
V c
g ε

ga
k(j

k
X ◦ Γ)− 1

4(w2 + 1)
(
1−Ad(u−1

X )
)ac(

1−Ad(u−1
Y )
)bd
εcdf j

f
R.

Using the formula for the Fock-Rosly bracket in Theorem 2.1, we then derive the identities

{jaX ◦Γ, Vdf} =
∂Vdf
∂pRk
{jaX ◦Γ, pkR} = −∂Vdf

∂pRk

(
1−Ad(u−1

X )
)ac(T−1(pR)ck−Vcgε kl

g pRl ), (6.32)

where T−1(pR) : R3 → R3 is the map defined given by (2.14). Inserting these expressions
into (6.31) together with the definition of the map T−1(p) and the definition of the variables
µA1 , µB1 , ψ, we obtain after a lengthy computation:

{jaX ◦ Γ, jbY ◦ Γ} = {jaX , jbY } ◦ Γ +
(
1−Ad(u−1

X )
)a
c
V c
d ε

db
k(jkY ◦ Γ) (6.33)

+
(
1−Ad(u−1

X )
)ac{jbY ◦ Γ, Vcf}jfR +

(
1−Ad(u−1

X )
)ac(

1−Ad(u−1
Y )
)bd
εcdfm̃

f ,
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where the three-vector m̃ takes the form

m̃ = −1
2(jRqA1)

∂w

∂µA1
− 1

2(jRqB1)
∂w

∂µB1
− 1

2(jRq∞)∂w
∂ψ

, (6.34)

and qA1 , qB1 , q∞ are given by (5.19) (timelike gauge fixing condition) or (5.23) (spacelike
gauge fixing condition).
To evaluate this expression further, we make use of condition (6.26) which relates the angular
momentum jR to the variables µA1 , µB1 , ψ, sA1 , sB1 , α. We obtain:

jR ◦Γ = WjR = −
[
Ad(uB1)−Ad(uB1u

−1
A1

)
]
jB1 +

[
Ad(uB1)−Ad([uB1 , u

−1
A1

])
]
jA1 , (6.35)

where uB1 , uA1 , jA1 , jB1 are given by (4.12) (timelike gauge fixing condition) or (4.15)
(spacelike gauge fixing condition), and the invertible matrix W is defined as in (6.20). After
inverting the matrix W and performing some further evaluations, we obtain

qA1jR = −sA1 , qB1jR = −sB1 , q∞jR = −α. (6.36)

Inserting these expressions into (6.34) then yields the expression for the vectorm in Theorem
5.2 and proves the claim.

Theorem 6.3 states that the Dirac bracket associated with the two gauge fixing conditions
for handles is obtained from the Fock-Rosly bracket on P 2g−2

3 via the invertible coordinate
transformation (6.25). It is therefore Poisson-equivalent to the restriction of the Fock-Rosly
bracket to g − 1 handles. However, despite this equivalence, passing from the bracket in
Theorem 2.1 to the Dirac bracket in Theorem 5.2 has non-trivial physical implications.
Unlike the variables in the Fock-Rosly bracket, the variables pX , jX in the Dirac bracket
have a physical interpretation in terms of the geometry of the non-gauge-fixed handles.
Passing from the Dirac bracket to the Fock-Rosly bracket for g − 1 handles therefore leads
to a set of variables that no longer have a direct physical interpretation.

7 Outlook and Conclusions

In this article, we applied Dirac’s gauge fixing procedure to the phase space of (2+1)-
dimensional gravity with vanishing cosmological constant. We considered spacetimes of
general genus and with a general number of punctures representing massive point particles
with spin. We showed that in this context imposing gauge fixing conditions amounts to
specifying an observer in the spacetime. This leads to two types of natural gauge fixing
conditions. The first characterises an observer with respect to the worldlines of two point
particles, the second with respect to the geometry of a handle.
We derived explicit expressions for the associated Dirac brackets and showed that the Dirac
bracket has a direct interpretation in terms of spacetime geometry. For the gauge fixing
condition based on two point particles, the symmetries of the resulting Dirac bracket are
those of a cone whose opening angle and time shift are given, respectively, by the relative
velocity and the minimal distance of the two particles. The gauge fixing condition based on
a handle leads to an effectively Minkowskian spacetime.
In both cases, there is a direct relation between the Dirac bracket and Fock and Rosly’s
Poisson structure for a reduced system with, respectively, two particles or a handle removed.
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The Dirac bracket is obtained from the bracket for the reduced system via a global translation.
For the gauge fixing condition based on particles, this allows one to extend the Dirac bracket
beyond the constraint surface. For the gauge fixing condition based on the geometry of
a handle, it demonstrates that the Dirac bracket is Poisson-isomorphic to the Fock-Rosly
bracket for the reduced system.
We expect our gauge fixing procedure to generalise straightforwardly to Euclidean (2+1)-
gravity with vanishing cosmological constant. In this case, the Poincaré group in three
dimensions is replaced by the Euclidean group and Fock and Rosly’s Poisson structure is of
a very similar form. Using the explicit description of the Poisson structure in [51], it should
also be possible in principle to generalise it to Lorentzian (2+1)-gravity with non-vanishing
cosmological constant and to Euclidean (2+1)-gravity with negative cosmological constant.
However, as the relevant isometry groups are no longer semidirect product groups in these
cases, inverting the Dirac matrix will become much more involved. While it reduces to
inverting 3× 3-matrices for the case of vanishing cosmological constant, this will no longer
be the case when a non-trivial cosmological constant is present.
Given that the gauge fixing procedure involves a system with six first-class constraints and
six gauge fixing conditions, the resulting Dirac bracket is surprisingly simple. This hints at
the presence of underlying mathematical structures that give rise to these simplifications.
The results of [16], which investigates the gauge-invariant phase space in SL(2,C)-Chern-
Simons theory with punctures, indicate that these could be dynamical quantum groups and
the associated classical structures. We intend to explore the relation between the Dirac
bracket and dynamical quantum group symmetries in a future work. Generally, it would be
interesting to compare our gauge fixing to the results in [16], which used a very different
approach to describe the gauge-invariant phase space of the theory.
The Dirac bracket obtained from the particle gauge fixing condition also serves as a model
for open universes, i.e. spacetimes that have a boundary at spatial infinity and on which
one imposes the boundary condition that the associated metric is effectively conical. While
we obtained the conical structure of the spacetime via a gauge fixing procedure, the
Poisson structure of Theorem 5.1 on the constraint surface defined by (4.6) can be regarded
independently of its origin. In this case, the mass and spin variables of the gauge-fixed
particles that arise in this bracket play the role of parameters that describe the orientation
of the cone. It would be interesting to see if and how this Poisson structure is related to the
results in [52] which defines a model for open universes constructed by coupling non-standard
punctures to Chern-Simons theory.
One of our main motivations for deriving the Dirac bracket of (2+1)-gravity is the construction
of a fully gauge-invariant quantum theory based on a quantisation of the reduced phase space
with the Dirac bracket. As the Dirac bracket associated with our gauge fixing conditions can
be formulated in terms of vector fields and functions on several copies of the three-dimensional
Lorentz group PSL(2,R), the gauge-invariant phase space should be directly amenable to
quantisation. This would provide a fully gauge-invariant quantum theory of gravity which
includes an observer and which is described in terms of physically meaningful quantities.
In particular, it would be interesting to see what role the geometrical restrictions on the
particle’s worldlines play in the quantum theory, and if there are consistency conditions that
require inclusion of this case.

41



Acknowledgements

The research of the authors is funded by the German Research Foundation (DFG) through the
Emmy Noether fellowship ME 3425/1-1. Both authors are also members of the Collaborative
Research Center 676 “Particles, Strings and the Early Universe”. We are grateful to Winston
Fairbairn for helpful suggestions and comments on a draft of this article and thank Bernd
Schroers and Philippe Roche for remarks and discussions. Some of our computations were
double-checked with the xAct tensor calculus package [53].

References

[1] B. Dittrich and J. P. Ryan. “Phase space descriptions for simplicial 4d geometries.”,
2008. arXiv:0807.2806.

[2] B. Bahr and B. Dittrich. “(Broken) Gauge symmetries and constraints in Regge calculus.”
Classical and Quantum Gravity, 26 (2009) 225011. DOI:10.1088/0264-9381/26/22/
225011. arXiv:0905.1670.

[3] B. Dittrich and P. A. Höhn. “From covariant to canonical formulations of discrete
gravity.” Classical and Quantum Gravity, 27 (2010) 155001. DOI:10.1088/0264-9381/
27/15/155001. arXiv:0912.1817.

[4] B. Dittrich and J. P. Ryan. “Simplicity in simplicial phase space.” Physical Review D,
82 (2010) 064026. DOI:10.1103/PhysRevD.82.064026. arXiv:1006.4295.

[5] E. Buffenoir, M. Henneaux, K. Noui, and P. Roche. “Hamiltonian analysis of Plebanski
theory.” Classical and Quantum Gravity, 21 (2004) 5203–5220. DOI:10.1088/0264-9381/
21/22/012. arXiv:gr-qc/0404041.

[6] A. Alekseev, H. Grosse, and V. Schomerus. “Combinatorial quantization of the Hamil-
tonian Chern-Simons theory I.” Communications in Mathematical Physics, 172 (1995)
317–358. DOI:10.1007/BF02099431. arXiv:hep-th/9403066.

[7] A. Alekseev, H. Grosse, and V. Schomerus. “Combinatorial quantization of the Hamil-
tonian Chern-Simons theory II.” Communications in Mathematical Physics, 174 (1996)
561–604. DOI:10.1007/BF02101528. arXiv:hep-th/9408097.

[8] E. Buffenoir and P. Roche. “Two dimensional lattice gauge theory based on a quantum
group.” Communications in Mathematical Physics, 170 (1995) 669–698. DOI:10.1007/
BF02099153. arXiv:hep-th/9405126.

[9] V. G. Turaev and O. Y. Viro. “State sum invariants of 3-manifolds and quantum
6j-symbols.” Topology, 31 (1992) 865–902. DOI:10.1016/0040-9383(92)90015-A.

[10] J. W. Barrett and B. W. Westbury. “Invariants of piecewise-linear 3-manifolds.”
Transactions of the American Mathematical Society, 348 (1996) 3997–4022. DOI:
10.1090/S0002-9947-96-01660-1. arXiv:hep-th/9311155.

[11] E. Witten. “Quantum field theory and the Jones polynomial.” Communications in
Mathematical Physics, 121 (1989) 351–399. DOI:10.1007/BF01217730.

42

http://arxiv.org/abs/0807.2806
http://dx.doi.org/10.1088/0264-9381/26/22/225011
http://dx.doi.org/10.1088/0264-9381/26/22/225011
http://arxiv.org/abs/0905.1670
http://dx.doi.org/10.1088/0264-9381/27/15/155001
http://dx.doi.org/10.1088/0264-9381/27/15/155001
http://arxiv.org/abs/0912.1817
http://dx.doi.org/10.1103/PhysRevD.82.064026
http://arxiv.org/abs/1006.4295
http://dx.doi.org/10.1088/0264-9381/21/22/012
http://dx.doi.org/10.1088/0264-9381/21/22/012
http://arxiv.org/abs/gr-qc/0404041
http://dx.doi.org/10.1007/BF02099431
http://arxiv.org/abs/hep-th/9403066
http://dx.doi.org/10.1007/BF02101528
http://arxiv.org/abs/hep-th/9408097
http://dx.doi.org/10.1007/BF02099153
http://dx.doi.org/10.1007/BF02099153
http://arxiv.org/abs/hep-th/9405126
http://dx.doi.org/10.1016/0040-9383(92)90015-A
http://dx.doi.org/10.1090/S0002-9947-96-01660-1
http://dx.doi.org/10.1090/S0002-9947-96-01660-1
http://arxiv.org/abs/hep-th/9311155
http://dx.doi.org/10.1007/BF01217730


[12] N. Reshetikhin and V. Turaev. “Invariants of 3-manifolds via link polynomials and
quantum groups.” Inventiones Mathematicae, 103 (1991) 547–597. DOI:10.1007/
BF01239527.

[13] E. Buffenoir, K. Noui, and P. Roche. “Hamiltonian quantization of Chern Simons
theory with SL(2,C) group.” Classical and Quantum Gravity, 19 (2002) 4953–5015.
DOI:10.1088/0264-9381/19/19/313. arXiv:hep-th/0202121.

[14] C. Meusburger and K. Noui. “The relation between 3d loop quantum gravity and
combinatorial quantisation: Quantum group symmetries and observables.”, 2008. arXiv:
0809.2875.

[15] C. Meusburger and K. Noui. “Combinatorial quantisation of the Euclidean torus
universe.” Nuclear Physics B, 841 (2010) 463–505. DOI:10.1016/j.nuclphysb.2010.08.014.
arXiv:1007.4615.

[16] E. Buffenoir and P. Roche. “Chern-Simons theory with sources and dynamical quantum
groups. I: Canonical analysis and algebraic structures.”, 2005. arXiv:hep-th/0505239.

[17] C. Meusburger. “Cosmological measurements, time and observables in (2+1)-
dimensional gravity.” Classical and Quantum Gravity, 26 (2009) 055006. DOI:
10.1088/0264-9381/26/5/055006. arXiv:0811.4155.

[18] V. V. Fock and A. A. Rosly. “Poisson structure on moduli of flat connections on
Riemann surfaces and r-matrix.”, 1991. ITEP-72-92, arXiv:math/9802054.

[19] C. Meusburger and B. J. Schroers. “Poisson structure and symmetry in the Chern–
Simons formulation of (2 + 1)-dimensional gravity.” Classical and Quantum Gravity, 20
(2003) 2193–2233. DOI:10.1088/0264-9381/20/11/318. arXiv:gr-qc/0301108.

[20] G. Mess. “Lorentz spacetimes of constant curvature.” Geometriae Dedicata, 126 (2007)
3–45. DOI:10.1007/s10711-007-9155-7. arXiv:0706.1570.

[21] L. Andersson, T. Barbot, R. Benedetti, F. Bonsante, W. Goldman, F. Labourie,
K. Scannell, and J. Schlenker. “Notes on a paper of Mess.” Geometriae Dedicata, 126
(2007) 47–70. DOI:10.1007/s10711-007-9164-6. arXiv:0706.0640.

[22] R. Benedetti and F. Bonsante. Canonical Wick rotations in 3-dimensional gravity.
Number 926 in Memoirs of the American Mathematical Society. AMS, 2009. ISBN
9780821842812.

[23] A. Staruszkiewicz. “Gravitation theory in three-dimensional space.” Acta Phys. Polon.,
24 (1963) 735–740.

[24] S. Deser, R. Jackiw, and G. ’t Hooft. “Three-dimensional Einstein gravity: Dynamics of
flat space.” Annals of Physics, 152 (1984) 220–235. DOI:10.1016/0003-4916(84)90085-X.

[25] S. Deser and R. Jackiw. “Classical and quantum scattering on a cone.” Communications
in Mathematical Physics, 118 (1988) 495–509. DOI:10.1007/BF01466729.

[26] P. de Sousa Gerbert. “On spin and (quantum) gravity in 2+ 1 dimensions.” Nuclear
Physics B, 346 (1990) 440–472. DOI:10.1016/0550-3213(90)90288-O.

43

http://dx.doi.org/10.1007/BF01239527
http://dx.doi.org/10.1007/BF01239527
http://dx.doi.org/10.1088/0264-9381/19/19/313
http://arxiv.org/abs/hep-th/0202121
http://arxiv.org/abs/0809.2875
http://arxiv.org/abs/0809.2875
http://dx.doi.org/10.1016/j.nuclphysb.2010.08.014
http://arxiv.org/abs/1007.4615
http://arxiv.org/abs/hep-th/0505239
http://dx.doi.org/10.1088/0264-9381/26/5/055006
http://dx.doi.org/10.1088/0264-9381/26/5/055006
http://arxiv.org/abs/0811.4155
http://arxiv.org/abs/math/9802054
http://dx.doi.org/10.1088/0264-9381/20/11/318
http://arxiv.org/abs/gr-qc/0301108
http://dx.doi.org/10.1007/s10711-007-9155-7
http://arxiv.org/abs/0706.1570
http://dx.doi.org/10.1007/s10711-007-9164-6
http://arxiv.org/abs/0706.0640
http://dx.doi.org/10.1016/0003-4916(84)90085-X
http://dx.doi.org/10.1007/BF01466729
http://dx.doi.org/10.1016/0550-3213(90)90288-O


[27] G. ’t Hooft. “The evolution of gravitating point particles in 2+1 dimensions.” Classical
and Quantum Gravity, 10 (1993) 1023–1038.

[28] G. ’t Hooft. “Canonical quantization of gravitating point particles in 2+1 dimensions.”
Classical and Quantum Gravity, 10 (1993) 1653–1664.

[29] G. ’t Hooft. “Quantization of point particles in (2+1)-dimensional gravity and spacetime
discreteness.” Classical and Quantum Gravity, 13 (1996) 1023–1039.

[30] S. Carlip. Quantum Gravity in 2+1 Dimensions. Cambridge Monographs on Mathe-
matical Physics. Cambridge University Press, 2003. ISBN 0521545889.

[31] K. Krasnov and J. Schlenker. “Minimal surfaces and particles in 3-manifolds.” Ge-
ometriae Dedicata, 126 (2007) 187–254. DOI:10.1007/s10711-007-9132-1. arXiv:
math/0511441.

[32] F. Bonsante, K. Krasnov, and J. Schlenker. “Multi-black Holes and Earthquakes on
Riemann Surfaces with Boundaries.” International Mathematics Research Notices,
(2010) 070. DOI:10.1093/imrn/rnq070. arXiv:math/0610429.

[33] T. Barbot, F. Bonsante, and J. Schlenker. “Collisions of particles in locally AdS
spacetimes I. Local description and global examples.”, 2010. arXiv:1010.3602.

[34] H.-J. Matschull. “On the relation between 2+1 Einstein gravity and Chern-Simons
theory.” Classical and Quantum Gravity, 16 (1999) 2599. DOI:10.1088/0264-9381/16/
8/303. arXiv:gr-qc/9903040.

[35] A. Achúcarro and P. K. Townsend. “A Chern-Simons action for three-dimensional
anti-de Sitter supergravity theories.” Physics Letters B, 180 (1986) 89–92. DOI:
10.1016/0370-2693(86)90140-1.

[36] E. Witten. “2 + 1 dimensional gravity as an exactly soluble system.” Nuclear Physics
B, 311 (1988) 46–78. DOI:10.1016/0550-3213(88)90143-5.

[37] P. Schaller and T. Strobl. “Diffeomorphisms versus non abelian gauge transformations:
an example of 1+ 1 dimensional gravity.” Physics Letters B, 337 (1994) 266–270.
DOI:10.1016/0370-2693(94)90974-1. arXiv:hep-th/9401110.

[38] A. Alekseev and A. Malkin. “Symplectic structure of the moduli space of flat connection
on a Riemann surface.” Communications in Mathematical Physics, 169 (1995) 99–119.
DOI:10.1007/BF02101598. arXiv:hep-th/9312004v1.

[39] C. Meusburger and B. J. Schroers. “The quantisation of Poisson structures arising
in Chern-Simons theory with gauge group G n g∗.” Advances in Theoretical and
Mathematical Physics, 7 (2004) 1003–1043. arXiv:hep-th/0310218.

[40] K. Noui. “Three-dimensional loop quantum gravity: Particles and the quantum
double.” Journal of Mathematical Physics, 47 (2006) 102501. DOI:10.1063/1.2352860.
arXiv:gr-qc/0612144.

[41] C. Meusburger and B. J. Schroers. “Mapping class group actions in Chern-Simons
theory with gauge group G n g∗.” Nuclear Physics B, 706 (2005) 569–597. DOI:
10.1016/j.nuclphysb.2004.10.057. arXiv:hep-th/0312049.

44

http://dx.doi.org/10.1007/s10711-007-9132-1
http://arxiv.org/abs/math/0511441
http://arxiv.org/abs/math/0511441
http://dx.doi.org/10.1093/imrn/rnq070
http://arxiv.org/abs/math/0610429
http://arxiv.org/abs/1010.3602
http://dx.doi.org/10.1088/0264-9381/16/8/303
http://dx.doi.org/10.1088/0264-9381/16/8/303
http://arxiv.org/abs/gr-qc/9903040
http://dx.doi.org/10.1016/0370-2693(86)90140-1
http://dx.doi.org/10.1016/0370-2693(86)90140-1
http://dx.doi.org/10.1016/0550-3213(88)90143-5
http://dx.doi.org/10.1016/0370-2693(94)90974-1
http://arxiv.org/abs/hep-th/9401110
http://dx.doi.org/10.1007/BF02101598
http://arxiv.org/abs/hep-th/9312004v1
http://arxiv.org/abs/hep-th/0310218
http://dx.doi.org/10.1063/1.2352860
http://arxiv.org/abs/gr-qc/0612144
http://dx.doi.org/10.1016/j.nuclphysb.2004.10.057
http://dx.doi.org/10.1016/j.nuclphysb.2004.10.057
http://arxiv.org/abs/hep-th/0312049


[42] P. A. M. Dirac. “Generalized Hamiltonian dynamics.” Canadian Journal of Mathematics,
2 (1950) 129–148.

[43] P. A. M. Dirac. “The Hamiltonian form of field dynamics.” Canadian Journal of
Mathematics, 3 (1951) 1–23.

[44] P. A. M. Dirac. Lectures on quantum mechanics. Courier Dover Publications, 2001.
ISBN 9780486417134.

[45] M. Henneaux and C. Teitelboim. Quantization of Gauge Systems. Princeton University
Press, 1994. ISBN 0691037698.

[46] H.-J. Matschull. “Dirac’s Canonical Quantization Programme.”, 1996. Lecture notes,
arXiv:quant-ph/9606031.

[47] J. Figueroa-O’Farrill. BRST cohomology and its applications to conformal field theory.
Ph.D. thesis, State University of New York at Stony Brook, 1989. Available from:
http://www.maths.ed.ac.uk/~jmf/Research/PVBLICATIONS/Thesis.pdf.

[48] J. Nelson and T. Regge. “Homotopy groups and 2+1 dimensional quantum gravity.”
Nuclear Physics B, 328 (1989) 190–202. DOI:10.1016/0550-3213(89)90099-0.

[49] J. Nelson and T. Regge. “2+1 gravity for genus > 1.” Communications in Mathematical
Physics, 141 (1991) 211–223. DOI:10.1007/BF02100010.

[50] J. Nelson and T. Regge. “2+1 quantum gravity for high genus.” Classical and Quantum
Gravity, 9 (1992) 187. DOI:10.1088/0264-9381/9/S/012.

[51] C. Meusburger and B. J. Schroers. “Quaternionic and Poisson-Lie structures in 3d
gravity: the cosmological constant as deformation parameter.” Journal of Mathematical
Physics, 49 (2008) 083510. DOI:10.1063/1.2973040. arXiv:0708.1507.

[52] C. Meusburger and B. J. Schroers. “Boundary conditions and symplectic structure in
the Chern–Simons formulation of (2+1)-dimensional gravity.” Classical and Quantum
Gravity, 22 (2005) 3689–3724. DOI:10.1088/0264-9381/22/17/021. arXiv:gr-qc/0505071.

[53] J. M. Martín-García. “xPerm: fast index canonicalization for tensor computer algebra.”
Computer Physics Communications, 179 (2008) 597–603. DOI:10.1016/j.cpc.2008.05.
009. arXiv:0803.0862.

45

http://arxiv.org/abs/quant-ph/9606031
http://www.maths.ed.ac.uk/~jmf/Research/PVBLICATIONS/Thesis.pdf
http://dx.doi.org/10.1016/0550-3213(89)90099-0
http://dx.doi.org/10.1007/BF02100010
http://dx.doi.org/10.1088/0264-9381/9/S/012
http://dx.doi.org/10.1063/1.2973040
http://arxiv.org/abs/0708.1507
http://dx.doi.org/10.1088/0264-9381/22/17/021
http://arxiv.org/abs/gr-qc/0505071
http://dx.doi.org/10.1016/j.cpc.2008.05.009
http://dx.doi.org/10.1016/j.cpc.2008.05.009
http://arxiv.org/abs/0803.0862

	Introduction
	Gravity in (2+1) dimensions
	Notation and conventions
	Spacetime geometry in (2+1) dimensions
	The Chern-Simons formulation of (2+1)-gravity
	Phase space and Poisson structure

	Gauge fixing in (2+1)-gravity
	Constrained systems and gauge fixing
	Gauge fixing and reference frames in (2+1)-gravity

	Gauge fixing conditions
	Gauge fixing with respect to particles
	Gauge fixing with respect to handles

	The Dirac bracket for (2+1)-gravity
	The Dirac bracket for the particle gauge fixing condition
	The Dirac bracket for the handle gauge fixing conditions

	Interpretation
	Gauge fixing with particles
	Conical symmetry via gauge fixing with particles
	Particle gauge fixing as a global translation

	Gauge fixing with handles
	Poincaré symmetry via gauge fixing with handles
	Handle gauge fixing as a global translation


	Outlook and Conclusions

