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1 Introduction

One of the most important problem in present cosmology is the understanding of the
origin of the late-time cosmic acceleration (the so-called Dark Energy (DE) epoch).
Recently new interesting model DE model was proposed in [1, 2]. This model
consists of two scalar fields where one of scalars represents the Lagrange multiplier.
The multiplier puts constraint on the second scalar field and as a result the theory
contains singe degrees of freedom. It was shown that the energy of the system flows
along time-like geodetic that is similar to the dust, however the theory contains non-
zero energy. The behavior of this system suggests that it can be natural candidate
for unification of Dark Energy and Dark Matter. The cosmological implications of
these models were then analyzed in [4, 5, 6]. The role of Lagrange multipliers in
the context of f(R) gravities was studied in [3]. Moreover, the Lagrange multipliers
in the context of modified gravity may improve the ultraviolet properties of the
covariant Hořava-Lifshitz gravity [9] leading to its renormalizability conjecture [7, 8].

As was shown in all these papers the presence of the Lagrange multipliers in
the action has strong impact on the form of the resulting equations of motions.
Then it is natural to ask the question how the presence of Lagrange multipliers
modifies Hamiltonian structure of given theory. Moreover, we would like to see
whether the Hamiltonian of these systems is again given as a linear combination
of constraints and whether these constraints are the first class and their Poisson
algebra respects the basic principles of geometrodynamics [10, 11, 12]. It turns out
that Hamiltonian structure of given theory is very interesting. We show that the
presence of the first scalar field that plays the role of the Lagrange multiplier implies
an existence of the second class constraints. Then after their solving we find the
Hamiltonian equations of motions for the second scalar field that are autonomous in
the sense that the time evolution of the scalar field does not depend on its conjugate
momenta. Such systems were studied in the past especially in the context of the ’t
Hooft deterministic approach to quantum mechanics [13, 14, 15, 16]. We also find
that the resulting theory is a fully constrained system with the algebra of constraints
that has the same form as in General Relativity.

As the second example of the Lagrange multiplier modified theory we consider
the gravity action introduced in [3]. This action is the Lagrange modification of
F (R) gravity theories 2. We show that the resulting Hamiltonian is given as a linear
combination of constraints and has similar structure as the Hamiltonian of F (R)
gravities [21, 22] 3. However there is an important difference that follows the fact
that the presence of the Lagrange multiplier implies that the original auxiliary fields
become dynamical in Hamiltonian formulation. We further determine the Poisson
brackets between constraints. We show that the algebra of these constraints takes
exactly the same form as in [10, 11, 12]. In other words we explicitly prove the
consistency of Lagrange modified theories of gravity from the Hamiltonian point of
view.

2For review, see [17, 19, 20].
3For related works, see [24, 25].
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Let us summarize our results. We study the Lagrange multiplier modified the-
ories with emphasis on their Hamiltonian formalism. We find that the resulting
Hamiltonian is again given as a linear combination of the first class constraints.
We show that the Poisson brackets of these constraints have the same form as in
General Relativity.

This paper is organized as follows. In the next section (2) we perform the
Hamiltonian formulation of the General Relativity action together with the Lagrange
multiplier modified scalar field action. We find corresponding Hamiltonian and
diffeomorphism constraints and calculate their algebra. In section (3) we study
the Lagrange multiplier modified action introduced in [3]. We again determine
corresponding Hamiltonian. Then we calculate the Poisson brackets of the secondary
constraints and we find that they take exactly the same form as in General Relativity.

2 Lagrange Multiplier Modified Scalar Field Ac-

tion

In this section we develop the Hamiltonian formalism for Lagrange multiplier mod-
ified scalar field action. We study the form of the action that was introduced in
[3]

S =

∫
d(D+1)x

√
−ĝ[(D+1)R(ĝ)− ω(φ)

2
ĝµν∂µφ∂νφ− V (φ)− λ[

1

2
ĝµν∂µφ∂νφ + U(φ)]] .

(1)
Let us explain our notation. We consider D + 1 dimensional manifold M with
the coordinates xµ , µ = 0, . . . , D and where xµ = (t,x) ,x = (x1, . . . , xD). We
presume that this space-time is endowed with the metric ĝµν(x

ρ) with signature
(−, +, . . . , +). Suppose that M can be foliated by a family of space-like surfaces
Σt defined by t = x0. Let gij, i, j = 1, . . . , D denotes the metric on Σt with inverse
gij so that gijg

jk = δk
i . We introduce the future-pointing unit normal vector nµ to

the surface Σt. In ADM variables we have n0 =
√

−ĝ00, ni = −ĝ0i/
√
−ĝ00. We also

define the lapse function N = 1/
√
−ĝ00 and the shift function N i = −ĝ0i/ĝ00. In

terms of these variables we write the components of the metric ĝµν as

ĝ00 = −N2 + Nig
ijNj , ĝ0i = Ni , ĝij = gij ,

ĝ00 = − 1

N2
, ĝ0i =

N i

N2
, ĝij = gij − N iN j

N2
.

(2)

Then it is easy to see that
√

− det ĝ = N
√

det g , ĝµν∂µφ∂νφ = −(∇nφ)2 + gij∂iφ∂jφ . (3)

Further, D + 1-dimensional curvature (D+1)R can be written as

(D+1)R = KijKij − K2 + R(D) +
2√
−ĝ

∂µ(
√
−ĝnµK) − 2

√
gN

∂i(
√

ggij∂jN) , (4)
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where Kij = 1
2N

(∂tgij −∇iNj −∇jNi) and where ∇i is covariant derivative defined
using the metric gij. Further, K = gijKji. In what follows we ignore these boundary
terms when we will presume appropriate boundary conditions. Let us consider the
scalar field action. Using the notation introduced above we find the momentum
conjugate to φ and λ

pφ =
√

g(ω + λ)∇nφ , pλ ≈ 0 . (5)

Then the Hamiltonian for the scalar field takes the form

Hφ =

∫
dDxHφ , Hφ = NHφ

T + N iHφ
i , Hi = pφ∂iφ ,

Hφ
T =

1

2
√

g(ω + λ)
p2

φ +
1

2

√
g(ω + λ)gij∂iφ∂jφ +

√
gV +

√
gλU .

(6)

Finally we write the Hamiltonian for General Relativity part of the action

HGR =

∫
dDxHGR , HGR = NHGR

T + N iHGR
i , (7)

where

HGR
T =

1
√

g
πijgikgjlπ

kl − 1
√

gD
π2 −√

gR(D) ,

HGR
i = −2gik∇jπ

kj ,

(8)

where πij is momentum conjugate to gij with non-trivial Poisson brackets

{
gij(x), πkl(y)

}
=

1

2
(δk

i δl
j + δl

iδ
k
j )δ(x − y) , (9)

and where π ≡ πijgji. Note that ∇i is a covariant derivative calculated with the
metric gij that also obeys ∇igjk = 0.

In summary, the total Hamiltonian is H = Hφ + HGR. The preservation of the
primary constraints pN ≈ 0 , pi ≈ 0 implies the secondary ones

HT = HGR
T + Hφ

T ≈ 0 , Hi = HGR
i + Hφ

i ≈ 0 . (10)

It is useful to introduce the smeared form of these constraints

TT (N) = TGR
T (N) + Tφ

T (N) ,

TS(N i) = TGR
S (N i) + Tφ

S(N i) ,

(11)
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where

TGR
T (N) =

∫
dDxNHGR

T , Tφ
T (N) =

∫
dDxNHφ

T ,

TGR
S (N i) =

∫
dDxN iHGR

i , Tφ
S(N i) =

∫
dDx(N iHφ

i + N ipλ∂iλ) ,

(12)

where we included the primary constraint pλ ≈ 0 into definition of Tφ
S(N i) in order to

ensure the correct form of the Poisson bracket between the diffeomorphism generator
Tφ

S(N i) and the scalar field λ.

It is well known that the Poisson brackets between smeared form of the General
Relativity constraints take the form [10, 11, 12]

{
TGR

T (N),TGR
T (M)

}
= TGR

S (gij(N∂jM − M∂jN)) ,{
TGR

S (N i),TGR
T (M)

}
= TGR

T (N i∂iM) ,{
TGR

S (N i),TGR
S (M i)

}
= TGR

S (N j∂jM
i − M j∂jN

i) .

(13)

On the other hand we have to determine the Poisson brackets between constraints
corresponding to the scalar field. First of all it is easy to see that

{
Tφ

S(N i),Tφ
S(M i)

}
= Tφ

S(N j∂jM
i − M j∂jN

i) . (14)

On the other hand the Poisson bracket between TS(N i) and Tφ
T (M) is equal to

{
TS(N i),Tφ

T (M)
}

=

∫
dDx(−Nk∂kHφ

T − ∂kN
kHφ

T ) =

=

∫
dDxNk∂kHφ

T = Tφ
T (Nk∂kM)

(15)

using
{
TS(N i), gij

}
= −Nk∂kgij − ∂iξ

kgkj − gik∂jξ
k ,{

TS(N i),
√

g
}

= −Nk∂k
√

g −√
g∂kN

k .

(16)

Note that the presence of the term N ipλ∂iλ in the definition of Tφ
S(N i) was crucial

for deriving of the correct form of the Poisson bracket (15). Finally we calculate the
Poisson bracket between Tφ

T (N),Tφ
T (M) and after some algebra we find the desired

result {
Tφ

T (N),Tφ
T (M)

}
= Tφ

S(gij(N∂jM − M∂jN)) . (17)

It is also easy to show that
{
TGR

T (N),Tφ
T (M)

}
+

{
Tφ

T (N),TGR
T (M)

}
= 0

(18)
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due to the fact that Hφ
T depends on g and not on their derivatives. If we combine

these results we find that the Poisson brackets of the constraints TT (N),TS(N i)
has the desired form (13).

As the next step we analyze the stability of the primary constraint pλ ≈ 0. The
requirement of its stability implies the secondary constraint

∂tpλ(x) = {pλ(x), H} =
1

2
√

g(ω + λ)2
p2

φ − 1

2

√
ggij∂iφ∂jφ −√

gU ≡ Gλ(x) ≈ 0 .

(19)

We observe that

{pλ(x),Gλ(y)} =
1

√
g(ω + λ)3

p2
φ(x)δ(x − y) . (20)

In other words pλ and Gλ are the second class constraints. However there are addi-
tional non-zero Poisson brackets. The first one is

{Gλ(x),Gλ(y)} = −2
1

√
g(ω + λ)2

gijHφ
j (x)∂iδ(x − y) −

− ∂i

[
1

√
g(ω + λ)2

gijHφ
j (x)

]
δ(x − y) .

(21)

It is also clear from the structure of the constraint Gλ that there is non-zero Poisson
brackets between Gλ and H defined by (10)

{Gλ(x),H} 6= 0 , (22)

where H = NHT + N iHi. Note that the explicit form of this Poisson bracket is not
important for us.

Using these results we can proceed to the study of the stability of the secondary
constraints. Following the standard analysis of the constraint systems we introduce
the total Hamiltonian as

HT = H +

∫
dDx(αpλ + βGλ) , (23)

where α, β are Lagrange multipliers and analyze the stability of the constraints
H,Gλ, pλ. Firstly we have

∂tH = {H(x), H} +

∫
dDy(β {H(x),Gλ(y)} + β {H(x), pλ(y)}) ≈

≈
∫

dDyβ {H(x),Gλ(y)} 6= 0 , (24)

where we used the fact that the Poisson brackets between H and H weakly vanish.
Then the requirement of stability of the constraint H ≈ 0 determines the value of
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the Lagrange multiplier β to be equal to 0. On the other hand the time evolution
of the constraint Gλ is given by the equation

∂tGλ(x) = {Gλ(x), H} +

∫
dDyα(y) {Gλ(x), pλ(y)} ≈ 0 .

(25)

Due to the fact that {GA, H} 6= 0 and {Gλ, pλ} 6= 0 the equation above can be
solved for α at least in principle. Then using these results it is easy to see that the
constraint pλ ≈ 0 is preserved during the time evolution of the system. Further, pλ

and Gλ are the second class constraints that can be solved for λ and pλ so that the
reduced phase space is spanned by (gij, π

ij), (φ, pφ) and the symplectic structure is
given by the Dirac brackets between these variables. In order to find their form we
introduce following notation for the Poisson brackets of the second class constraints
pλ,Gλ

411(x,y) = {pλ(x), pλ(y)} = 0 , 412(x,y) = {pλ(x),Gλ(y)} 6= 0 ,

421(x,y) = {Gλ(x), pλ(y)} 6= 0 , 422(x,y) = {Gλ(x),Gλ(y)} 6= 0

(26)

and denote the inverse matrix as (4−1)AB(x,y). This matrix by definition obeys
the equation ∫

dx4AC(x, z)(4−1)CB(z,y) = δB
Aδ(x − y) . (27)

It can be shown that the matrix (4−1) has following structure

(4−1) =

(
∗ ∗
∗ 0

)
, (28)

where ∗ denotes non-zero elements. It is important for the calculation of the Dirac
brackets that (4−1)22 = 0. Explicitly, the Dirac bracket between φ and pφ takes the
form

{φ(x), pφ(y)}D = {φ(x), pφ(y)} −

−
∫

dDzdDz′ {φ(x), ΦA(z)} (4−1)AB(z, z′) {ΦB(z′), pφ(y)} =

= {φ(x), pφ(y)} −
∫

dDzdDz′ {φ(x),Gλ(z)} (4−1)22(z, z′) {Gλ(z
′), pφ(y)} =

= {φ(x), pφ(y)} ,

(29)

where ΦA = (pλ,Gλ) is the common notation for the second class constraints.

We are now ready to completely eliminate the second class constraints ΦA. The
constraint Gλ = 0 can be solved for ω + λ

(ω + λ) =
pφ

√
g
√

gij∂iφ∂jφ + 2U
. (30)
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Inserting this result into the Hamiltonian constraint (6) we find that it takes the
form

Hφ
T = pφ

√
gij∂iφ∂jφ + 2U +

√
gV −√

gωU . (31)

We observe that this Hamiltonian density is linear in momenta. Then the equation
of motion for φ takes the form

∂tφ = {φ, H} = N
√

gij∂iφ∂jφ + 2U + N i∂iφ (32)

that shows that the time evolution of φ does not depend on pφ. Such systems were
extensively studied in the past in the context of ’t Hooft’s deterministic approach to
quantum mechanics [13, 14, 15, 16] and it is really interesting that the Hamiltonian
with similar structure arises in Lagrange modified multiplier theory. More precisely,
let us review basic facts considering such system, following [18]. Let us consider the
Hamiltonian system

H = pif
i(q) + U(q) , i = 1, . . . , N . (33)

From (33) we determine the equations of motion for qi

∂tq
i =

{
qi, H

}
= f i(q) . (34)

This equation for qi is autonomous, i.e., it is decoupled from the conjugate mo-
menta pi. Further it is impossible to perform the Legendre transformation to the
Lagrangian since Hij = ∂2H

∂pi∂pj
= 0. However it is possible to find the Lagrangian

that gives the equation of motion (34) when we introduce the auxiliary fields λi and
write the Lagrangian as

L = λi(q̇
i − f i(q)) − U(q) . (35)

No we show that from (35) we can derive the Hamiltonian (33). The momenta
conjugate to λi and qi take the form

pi
λ =

δL

δλ̇i

≈ 0 , pq
i =

δL

δq̇i
= λi (36)

so that we have two sets of primary constraints

Φi
λ = pi

λ ≈ 0 , Φq
i = pq

i − λi ≈ 0 . (37)

The extended Hamiltonian that follows from (35) takes the form

HE = H + ωλ
i Φi

λ + ωi
qΦ

q
i , H = λif

i + U(q) . (38)

Then we study the stability of the constraints Φi
λ , Φq

i

∂tΦ
i
λ =

{
Φi

λ, HE

}
= −f i + ωi

q = 0

∂tΦ
q
i = {Φq

i , HE} = −λj
df j

dqi
− ωq

i = 0 .

(39)
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From these equations we can in principle determine the Lagrange multipliers. In
other words the constraints Φi

λ, Φ
q
i are the second class that should strongly vanish.

The solving of these constraints we find the Hamiltonian

H = pq
i f

i + U(q) (40)

that coincides with the Hamiltonian (33). Further, it can be easily shown that the
Dirac brackets between qi and pi coincide with their Poisson brackets. However the
problem with the Hamiltonian (33) is that is not bounded from below which is due
to the absence of a leading kinetic term quadratic in the momenta (pi)

2.

After this short review of the Hamiltonian analysis of autonomous system we
complete our analysis by calculation of the Poisson bracket between Hφ

T given in
(31) and the spatial diffeomorphism constraint TS(N i). Using

{
TS(N i), gij∂iφ∂jφ

}
= −Nk∂k

(
gij∂iφ∂jφ

)
(41)

we easily find {
TS(N i),Hφ

T

}
= −N i∂iHφ

T − ∂iN
iHφ

T , (42)

where Hφ
T was given in (31). The analysis of the remaining Poisson brackets is the

same as above with conclusion that the smeared form of the constraints obey the
algebra of constraints given in (13). In other words we show that the Lagrangian
multiplier modified scalar action together with General Relativity action obeys the
basis rules of geometrodynamics.

3 Hamilton Analysis of F (R) Theories with La-

grange Multipliers

It turns out that the Lagrange multiplier modified F (R)-gravity possesses many
interesting properties. For example, the reconstruction programme can be more
easily performed in Lagrange multiplier modified gravity [3]. In usual F (R)-gravity,
we need to solve the complicated differential equation to realize the reconstruction
program, for recent review, see [23]. It was demonstrated in [3] that the presence
of constraint significantly simplifies the reconstruction scenario. It was also shown
there that the presence of Lagrange multiplier implies that it is necessary to include
the second F (R) function into action.

The action introduced in [3] takes the form

S =

∫
dD+1x

√
−ĝ

[
F1(

(D+1)R) − λ

(
1

2
∂µ

(D+1)Rĝµν∂ν
(D+1)R + F2(

(D+1)R)

)]
.

(43)
Introducing two auxiliary fields A, B we can rewrite the action (43) into the form

S =

∫
dD+1x

√
−ĝ

[
F1(A) − λ

(
1

2
∂µAĝµν∂νA + F2(A)

)
+ B((D+1)R − A)

]
. (44)
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It is easy to see that integration of A, B from (44) leads to (43). Our goal is to find
the Hamiltonian from (44) implementing D + 1 formalism. In fact using (4) it is
easy to see that the action (44) takes the form

S =

∫
dDxdt

√
gN

(
F1(A) − λ(−∇nA∇nA + gij∂iA∂jA + F2(A)) − BA

)
+

+

∫
dDxdt

√
gNB(KijGijklKkl + R(D) − A) −

− −2

∫
dDxdt(

√
g(∂tB − N i∂iB)K + 2

√
g∂iBgij∂jN) ,

(45)

where we performed integration by parts and ignored boundary terms. From (45)
we easily find momenta conjugate to canonical variables gij, N, Ni, A and B

πij =
√

gBGijklKkl −
√

g∇nBgij , , pN ≈ 0 , , pi ≈ 0 ,

pB = −2
√

gK , pA = 2
√

λ∇nA , pλ ≈ 0 .

(46)

Note that the Lagrange multiplier implies that A is a dynamical field which is
different from standard F (R) theory of gravity where A remains auxiliary field.
Then after some effort we derive the Hamiltonian density in the form

H = NHT + N iHi ,

(47)

where

HT =
1

√
gB

πijgikgilπ
kl − 1

√
gBD

π2 − πpB√
gD

+

+
B

4
√

gD
(D − 1)p2

B −√
gBR(D) + 2∂i[

√
ggij∂jB]

+
1

4
√

gλ
p2

A +
√

gBA −√
g[F1(A) − λ(gij∂iA∂jA + F2(A))] ,

(48)

and where
Hi = pA∂iA + pB∂iB + pλ∂iλ − 2gik∇jπ

jk . (49)

For further purposes we split HT into two parts as HT = HGR
T + HA

T where

HGR
T =

1
√

gB
πijgikgilπ

kl − 1
√

gBD
π2 − πpB√

gD
+

+
B

4
√

gD
(D − 1)p2

B −√
gBR(D) + 2∂i[

√
ggij∂jB]

HA
T =

1

4
√

gλ
p2

A +
√

gBA −√
g[F1(A) − λ(gij∂iA∂jA + F2(A))] .

(50)
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The theory possesses 2 + D primary constraints

πN ≈ 0 , πi ≈ 0 , πλ ≈ 0 . (51)

The preservation of the primary constraints πN and πi imply the secondary con-
straints HT ≈ 0 ,Hi ≈ 0 while the preservation of πλ ≈ 0 leads to the secondary
constraint

Gλ =
1

4
√

gλ2
p2

A −√
g(gij∂iA∂jA + F2(A)) ≈ 0 (52)

We see that it takes the same form as the secondary constraint (19). Clearly pλ

together with Gλ are the second class constraints. Properties of these constraints
were analyzed in previous section and results derived there can be used in this
section as well.

On the other hand the form of the Hamiltonian constraint HGR
T is new and we

have to check that this constraint is preserved during the time evolution of the
system. In other words we have to calculate the Poisson brackets of the smeared
form of these constraints 4

TGR
T (N) =

∫
dDxN(x)HGR

T (x) , TGR
S (N i) =

∫
dDxN i(x)HGR

i (x) . (53)

Let us now outline the strategy of the calculations of these Poisson brackets. In
the process of their calculations several delta functions occur. However it turns out
that the non-zero contributions give terms that contain derivatives of these delta
functions. Such expressions arise for example from following Poisson bracket

{
πkl(x), (

√
gRD)(y)

}
= −

δ(
√

gR(D)(y))

δgkl(x)
. (54)

The right side of this equation can be calculated using the formulas

δR(D) = −(R(D))ijδgij + ∇i∇jδgij − gij∇k∇kδgji , δg = ggijδgij .

(55)

Now we are ready to perform these calculations. It turns out that following non-zero
Poisson brackets contribute to the final result

−
{∫

dDxN
1

B
√

g
πijgikgjlπ

ij,

∫
dDyM

√
gR(D)

}
−

−
{∫

dDyN
√

gR(D),

∫
dDxM

1

B
√

g
πijgikgjlπ

ij

}
=

= 2

∫
dDx(N∇i∇jM − M∇i∇jN)πij − 2

∫
dDxπ(N∇i∇iM − M∇i∇iN) +

+ 4

∫
dDxπij(N∇iM − M∇iN)πij 1

B
∇jB − 4

∫
dDxπ(N∇iM − M∇iN)

1

B
∇iB ,

(56)

4In [22] similar analysis has been performed in the context of non-projectable version of Hořava-
Lifshitz F (R) gravity.
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{∫
dDx

N
√

gB
π2,

∫
dDyM

√
gR(D)

}
+

{∫
dDxN

√
gR(D),

∫
dDy

M
√

gB
π2

}
=

= − 2

D

∫
dDxπ(N∇i∇iM − M∇i∇iN) + 2

∫
dDxπ(N∇i∇iM − M∇i∇iN) −

− 4

D

∫
dDxπ(N∇iM − M∇iN)

∇iB

B
+ 4

∫
dDxπ(N∇iM − M∇iN)

∇iB

B

(57)

and
{∫

dDxN
πpB

D
√

g
,

∫
dDy

√
gR(D)BM

}
+

{∫
dDy

√
gR(D)BN,

∫
dDxM

πpB

D
√

g

}
=

= −(1 − D)

D

∫
dDxpBB(N∇i∇iM − M∇i∇iN) −

− 2(1 − D)

D

∫
dDxpB(N∇iMM − M∇iN)∇iB ,

(58)

{∫
dDx

N

B
√

g
πijgikgjlπ

kl,

∫
dy2M∂i[

√
ggij∂jB]

}
+

+

{∫
dy2N∂i[

√
ggij∂jB],

∫
dDx

M

B
√

g
πijgikgjlπ

kl

}
=

= 2

∫
dDxπ

1

B
(N∇iM − M∇iN)gij∇jB − 4

∫
dDx

1

B
(N∇iM − M∇iN)πij∇jB

(59)

and

−
{∫

dDx
N

√
gBD

π2,

∫
dDyM2∂m[

√
ggmn∂nB]

}
−

−
{∫

dDxN2∂m[
√

ggmn∂nB],

∫
dDx

M
√

gBD
π2

}
=

=
2(2 − D)

D

∫
dDx

π

B
(N∇iM − M∇iN)∇iB

(60)
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and

−
{∫

dDx
N

√
gD

πpB,

∫
dDy2M∂m[

√
ggmn∂nB]

}
+

−
{∫

dDy2N∂m[
√

ggmn∂nB],

∫
dDx

M
√

gD
πpB

}
=

=
(2 − D)

D

∫
dDx(N∇mM − M∇mN)pB∇mB +

+
2

D

∫
dDxπ(N∇m∇mM − M∇m∇mN) ,

(61)

{∫
dDx

NB

4
√

gD
(D − 1)p2

B, 2

∫
dDyM∂m[

√
ggmn∂nB]

}
+

+

{
2

∫
dDxN∂m[

√
ggmn∂nB],

∫
dDy

MB

4
√

gD
(D − 1)p2

B

}
=

= −D − 1

D

∫
dDxpBB(N∇m∇mM − M∇m∇mN) .

(62)

Collecting all these terms together we obtain that almost all contributions cancel
and the final result takes the form

{
TGR

T (M),TGR
T (N)

}
= TGR

S ((N∇jM − M∇jN)gji) . (63)

In other words the Poisson bracket of the smeared form of the Hamiltonian con-
straints (50) has the same form as in General Relativity and hence it is with agree-
ment with basic principles of geometrodynamics. Alternatively, it has the form that
is expected for fully diffeomorphism invariant theory. Note also that the Poisson
bracket between smeared form of the diffeomorphism and Hamiltonian constraint
takes the standard form that follows from the fact that Hamiltonian is manifestly
invariant under spatial diffeomorphism. Then it is clear that the diffeomorphism
and Hamiltonian constraints are preserved during the time evolution of the system.

Now it is straightforward to finish the analysis of the Poisson brackets of the
constraints of the Lagrange multiplier modified gravity. Since the Poisson brackets
of the constrains corresponding to the gravity part of the action are the same as in
General Relativity and since the scalar part of the constraints has exactly the same
form as in previous section we immediately find that the Poisson brackets of the
Lagrange multiplier modified F (R) gravity take the form

{TT (N),TT (M)} = TS(gij(N∂jM − M∂jN)) ,{
TS(N i),TT (M)

}
= TT (N i∂iM) ,{

TS(N i),TS(M i)
}

= TS(N j∂jM
i − M j∂jN

i) .

(64)
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where
HT = HGR

T + HA
T , Hi = −gil∇kπ

lk + pA∂iA , (65)

where HGR
T is given in (48). Note that HA

T is equal to

HA
T = pA

√
gij∂iA∂jA + F2(A) +

√
gBA −√

gF1(A) (66)

after solving the second class constraint Gλ given in (52) with respect to λ

λ =
pA

2
√

g
√

F2(A) + gij∂iφ∂jφ
. (67)
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