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Abstract.
We use a method recently introduced in Barceló et al, 10.1103/Phys-

RevD.83.041501, to analyse Hawking radiation in a Schwarzschild black hole as per-
ceived by different observers in the system. The method is based on the introduction
of an “effective temperature” function that varies with time. First we introduce a non-
stationary vacuum state for a quantum scalar field, which interpolates between the
Boulware vacuum state at early times and the Unruh vacuum state at late times. In
this way we mimic the process of switching on Hawking radiation in realistic collapse
scenarios. Then, we analyse this vacuum state from the perspective of static observers
at different radial positions, observers undergoing a free-fall trajectory from infinity,
and observers standing at rest at a radial distance and then released to fall freely to-
wards the horizon. The physical image that emerges from these analyses is rather rich
and compelling. Among many other results, we find that generic freely-falling observes
do not perceive vacuum when crossing the horizon, but an effective temperature a few
times larger than the one that they perceived when started to free-fall. We explain
this phenomenon as due to a diverging Doppler effect at horizon crossing.
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1. Introduction

Arguably, the discovery that black holes should evaporate by emitting a Planckian

spectrum of particles, is the most important result of combining general relativistic

with quantum mechanical notions [1, 2]. As it is by now well known, Hawking radiation

is a kinematic effect (that is, does not directly depend on Einstein’s equations), and so,

much more general than its incarnation in General Relativity. In any phenomenon
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in nature describable in terms of quantum excitations propagating in a Lorentzian

geometry with black-hole-like properties, one expects to have Hawking particle (or

quasi-particle) production. In [3], for example, you can find a catalogue of systems and

situations outside the General Relativity realm in which Hawking radiation is expected

to appear. Here, by black-hole-like properties we mean either the presence of trapping

horizons or just the asymptotic approach towards configurations with horizons [4, 5, 6].

When the Lorentzian geometry acquires the form of a stationary black hole, the

temperature of Hawking radiation becomes constant and proportional to the surface

gravity of the black hole at the horizon [2]. Moreover, this temperature only depends

on this constant, leaving no trace of the history of the black hole geometry formation

or preparation [2, 7]. In the General Relativity realm that we shall adopt in this paper,

this surface gravity and so Hawking temperature, happens to be inversely proportional

to the mass of the black hole.

When investigating Hawking radiation, it is customary to work on a simple static

background geometry, namely the Schwarzschild solution, neglecting any back-reaction

on the geometry. In order to have Hawking radiation at infinity, it is necessary to

set the quantum field in a particular quantum state: the Unruh vacuum state [8, 9].

This state is commonly described as being a vacuum state for observers freely falling

at the event horizon of the black hole. It is a stationary state, describing a black hole

which has always been and will ever be emitting radiation at Hawking temperature

at all times. Therefore, it does not capture the process of the black hole formation in

General Relativity, in which Hawking radiation switches on in the last stages of collapse.

Instead, in this paper we are going to analyse the characteristics of a different vacuum

state, which might be called the collapse vacuum. This vacuum is appropriately chosen

so as to mimic the process of switching on of Hawking radiation. Initially, there will

be no radiation at infinity, but at some particular time, some radiation will start to be

noticeable. After some rather quick transient regime, this radiation will become thermal

with Hawking temperature (as in this paper we are not going to consider the effects of

the evaporation, it will not be necessary to distinguish between the terms thermal and

Planckian, and we will use them indistinctively). Our collapse vacuum interpolates

between the Boulware vacuum state [10] at early times and the Unruh vacuum state at

late times.

It is well known that “presence of particles” is an observer dependent notion [8, 11].

In this paper we will be specifically interested in analysing how the collapse vacuum state

is perceived by different observers. In particular, we are going to consider (i) static

observers at different radial positions of spacetime, (ii) observers undergoing a free-fall

trajectory from infinity, passing through a fixed radial position at different times, and

(iii) observers standing at rest at a radial distance until a moment at which they are

released to fall freely towards the hole. A discussion about the different perceptions

of the radiation from a black hole in the Unruh state by freely-falling and stationary

observers can be found in [12].

In order to analyse this particle perception, we could use Bogoliubov
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coefficients [11], but these, except for a few particular simple cases, are difficult to

calculate. Instead, we could use the functional Schrödinger formalism as in [12], but

it appears difficult to manipulate for non-stationary vacuum states. In this paper we

will adopt a different strategy. Following [13], we shall define and calculate a time

dependent effective temperature for each observer along its world line. Then, abusing of

the language we will describe the perception of the observer as experiencing a thermal

radiation wind with a time dependent temperature. This effective temperature will

only be a real temperature in situations in which an additional adiabatic condition

is satisfied. We will also calculate when this condition is satisfied and when it is not.

Even in the cases in which the adiabatic condition is violated, and therefore the radiation

spectrum differs from the Planckian shape, it will be argued that the calculated effective

temperature is still useful as an estimator of the amount of particles encountered by

the observer at each instant of time. But it is important to remark that in these

cases our method cannot give information about the characteristics of the spectrum. In

any case one should keep in mind that a precise calculation of the particle perception

would require the construction of a particle detector, taking into account its spatial and

temporal resolutions. This is, however, beyond the scope of this paper. Nonetheless, we

will show that the physical image that emerges from our description is rather rich and

compelling. For instance, it will allow us to clearly see that freely-falling observers at

the horizon will not perceive vacuum unless (a) they closely follow the collapse or (b)

they have instantaneously zero radial velocity at the horizon. We will also show that

this result is not an artifact of the chosen vacuum, but that it is precisely a characteristic

of the final Unruh state.

The paper is structured as follows. In section 2, we will start recalling the basic

background ingredients needed for our analysis. In section 3, we will describe and fix

the vacuum state for the quantum radiation field of our problem. Then, in section 4,

after describing what we mean by effective temperature and adiabatic control functions,

we will study in detail the radiation perception associated with the already enumerated

different observers. We will devote section 5 to the explanation of one of our most

important results: the non-zero perception of radiation by freely-falling observers at the

horizon, against the opposite naive expectation. After a brief comparison of the results

with those that one would obtain in a pure Unruh state (section 6), we will finally

summarize and conclude.

2. Preliminaries

2.1. Geometrical set up

We shall restrict ourselves to the analysis of radiation emission in a Schwarzschild black

hole. In units where G = c = 1, the Schwarzschild metric reads

ds2 = −
(

1 − 2m

r

)
dt2 +

(
1 − 2m

r

)−1

dr2 + r2dΩ2
2, (1)
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with m being the mass of the black hole. Moreover, we will only use the (t, r) sector

of the geometry. In double null coordinates, the corresponding (1 + 1)-metric can be

written as

ds2 = −
(

1 − 2m

r

)
dūdv̄. (2)

Here,

ū := t − r∗, v̄ := t + r∗, (3)

with r∗ being the “tortoise” coordinate

r∗ := r + 2m ln
( r

2m
− 1
)

. (4)

2.2. Quantum field theory

We are going to analyse the behaviour of a quantum field in this spacetime. For

simplicity, we will only consider a Klein-Gordon massless scalar field (analyses with

other fields would yield qualitatively similar results). In this paper, we will only consider

spherically symmetric configurations and ignore any backscattering of the scalar field

in the geometry, so that our analysis will be equivalent to that in a (1 + 1)-dimensional

conformally invariant theory (here on, we will stick to a pure 1 + 1 analysis). Now, the

1 + 1 Klein-Gordon equation in null coordinates reads

∂

∂ū

∂

∂v̄
φ(ū, v̄) = 0, (5)

so that its general solution can be written as

φ = f(ū) + g(v̄). (6)

Owing to the conformal invariance of the 1 + 1 Klein-Gordon equation, any relabelling

ū = pvs(U), v̄ = qvs(V ) (the subscript ‘vs’ in these functions stands for vacuum state;

the reason for this notation will be understood later on) can be associated with a mode

decomposition of the quantum field of the form

φ̂ =

∫ ∞

0

dω′
[
âU

ω′φU
ω′ + âV

ω′φV
ω′ + âU†

ω′ (φ
U
ω′)∗ + âV †

ω′ (φ
V
ω′)∗
]
, (7)

where the normalized modes in this expression are

φU
ω′ =

1√
4πω′

e−iω′U , φV
ω′ =

1√
4πω′

e−iω′V . (8)

This can easily be seen by using the following form of the Klein-Gordon scalar product

〈φ1, φ2〉 := −i

(
−
∫

dUφ1

↔
∂U φ∗

2 +

∫
dV φ1

↔
∂ V φ∗

2

)
. (9)

Once the functions ū = pvs(U), v̄ = qvs(V ) have been defined, one can select a vacuum

state |0′〉 by requiring that it satisfies

âU
ω′ |0′〉 = 0, âV

ω′ |0′〉 = 0. (10)
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For any other choice ū = pob(u), v̄ = qob(v), we can perform an analogue mode

decomposition and also define a vacuum state,

âu
ω|0〉 = 0, âv

ω|0〉 = 0. (11)

In general, the vacuum states |0′〉 and |0〉 will be different. Thus, an observer for which

the vacuum is |0〉 might detect particles corresponding to the vacuum |0′〉.

2.3. Bogoliubov coefficients

The particle content of the vacuum |0′〉 as seen by observers with an unprimed vacuum

notion can be calculated through Bogoliubov coefficients. In this paper we will only

worry about outgoing radiation, so we will forget about the φv
ω modes, which correspond

to rays going into the black hole. For each frequency ω, we have (see [11])

〈0′|Nu
ω |0′〉 = 〈0′|au†

ω au
ω|0′〉 =

∫
dω′ |βωω′ |2 , (12)

where βωω′ is the Bogoliubov coefficient defined by the scalar product

βωω′ := −〈φu
ω, (φU

ω′)∗〉, (13)

with φu
ω defined analogously to (8). Plugging the expressions for these modes into (9),

one arrives at

βωω′ =
1

4π
√

ωω′

(
ω

∫
due−i(ω′U+ωu) − ω′

∫
dUe−i(ω′U+ωu)

)
, (14)

or, integrating by parts the second term, at

βωω′ =
1

2π

√
ω

ω′

∫
due−iω′U(u)e−iωu, (15)

(where we have eliminated an irrelevant boundary term). Therefore, to determine the

particle content, one only needs to know the relation U(u).

3. Vacuum state choice

We are interested in analysing how Hawking radiation is perceived by different observers

in spacetime. In order to have Hawking radiation in the first place, we need to select an

appropriate vacuum state. Instead of making the obvious choice of the Unruh vacuum,

we shall choose as vacuum state a non-stationary state which somehow interpolates

between the Boulware state (with no radiation at both past and future asymptotic

infinities) at early times and the Unruh state at late times. This dynamical (or non-

stationary) state in a Schwarzschild static background will mimic what happens in

a collapse process, in which the black hole is generated from an initially (almost)

Minkowskian spacetime. As opposed to what happens in the Unruh vacuum, in this

situation Hawking radiation will not be present at early times, but will be switched on

at a particular ignition time (this would correspond to the time of the formation of the

black hole).
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To impose this vacuum state to the quantum field, we will consider a time-like

geodesic observer falling into the Schwarzschild black hole from infinity. We will

then calculate how this observer would label in a natural way the different outgoing

(ū = const) rays that he encounters in its way towards the horizon. This new label

U = p−1
vs (ū) will then be used to define the vacuum state via a positive-frequency mode

expansion, as explained in section 2.2 [see (7)].

So let us first calculate the radial time-like geodesic trajectories by solving the

geodesic equation

d2r

dτ 2 = −Γr
rr

(
dr

dτ

)2

− Γr
tt

(
dt

dτ

)2

. (16)

With this aim we will take into account the relation
(

dt

dτ

)2

=

(
1 − 2m

r

)−1
[
1 +

(
1 − 2m

r

)−1(
dr

dτ

)2
]

(17)

that follows from the spacetime interval (equivalently, we could use directly a variational

principle for the spacetime interval). Here, τ is the proper time of the trajectory, and

Γr
rr and Γr

tt are the only non-vanishing Christoffel symbols relevant for the calculation

of radial trajectories,

Γr
rr = −m

r2

(
1 − 2m

r

)−1

, Γr
tt =

m

r2

(
1 − 2m

r

)
. (18)

Replacing them in the radial geodesic equation yields

d2r

dτ 2 = −m

r2
, (19)

which has a form resembling Newton’s gravitational force. Integrating once, we obtain

dr

dτ
= −

√
2m

r

(
1 − r

r0

)1/2

, (20)

dt

dτ
=

(
1 − 2m

r

)−1(
1 − 2m

r0

)1/2

, (21)

in which we use the radius r0 at which the velocity vanishes as an integration constant.

For the time being, we are interested in describing a free-fall trajectory starting at radial

infinity, that is, with r0 → ∞. Then, integrating the radial equation we obtain

r =

[
3
√

2m

2
(τ0 − τ)

]2/3

, (22)

with τ0 being an integration constant. Note that τ runs from −∞ to τ0, at which time

the trajectory reaches r = 0. Before that, at τ0−4m/3 the event horizon is crossed. We

can also find the behaviour of the time coordinate t with respect to τ . Indeed, dividing

equations (20) and (21) (with r0 → ∞), we obtain

dr

dt
= −

√
2m

r

(
1 − 2m

r

)
, (23)
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which can be integrated to yield

t = t0 − 4m

[√
r

2m
+

1

3

( r

2m

)3/2

+
1

2
ln

(√
r/(2m) − 1√
r/(2m) + 1

)]
, (24)

where t0 is an integration constant. Finally, replacing the relation (22) for r(τ) in this

expression, we obtain

t = t0 − 4m

{[
3(τ0 − τ)

4m

]1/3

+
τ0 − τ

4m
+

1

2
ln

[
(3(τ0 − τ)/4m)1/3 − 1

(3(τ0 − τ)/4m)1/3 + 1

]}
. (25)

Now, having the pair (t, r) as a function of τ in (22) and (25), we can also write the

quantity ū in (3) as a function of τ ,

ū = t0 − 4m

{[
3(τ0 − τ)

4m

]1/3

+
1

2

[
3(τ0 − τ)

4m

]2/3

+
τ0 − τ

4m

+ ln

[(
3(τ0 − τ)

4m

)1/3

− 1

]}
. (26)

An observer following this world line can naturally use its proper time τ to label

the different rays he encounters in its way towards the horizon, namely, he can make

the assignment of the label U(ū) = τ , given by the inverse of (26), to the ray ū = const

that hits the observer at proper time τ . Then, defining UH := τ0 − 4m/3 and choosing

the two constants t0 = τ0 so that the two labels U and ū are synchronized at ū → −∞,

in the sense that U = U(ū → −∞) → ū, the final relation between both labels is

ū = pvs(U) := UH +
4m

3
− 4m

{[
3

4m
(UH − U) + 1

]1/3

+
1

2

[
3

4m
(UH − U) + 1

]2/3

+
1

3

[
3

4m
(UH − U) + 1

]
+ ln

[(
3

4m
(UH − U) + 1

)1/3

− 1

]}
. (27)

Note that, while the range of the original null label is ū ∈ (−∞, +∞), the range of

the new null label is U ∈ (−∞, UH), where UH marks the moment at which the falling

observer crosses the event horizon. As explained before, associated with this choice

U = p−1
vs (ū), we have a vacuum state, and it is this vacuum state which will be the

subject of our analysis.

4. Radiation perception for different observers

In this section, we will investigate what is the particle content of the vacuum state

defined above for different types of observers, for which the notion of vacuum might or

might not coincide with this one. More specifically, we are going to define yet another

label u = p−1
ob (ū) associated, in each case, with a specific type of observer. Once we have

characterized the observer by the null-ray labelling function, we will find the function

U = p−1
vs [pob(u)] := U(u) which will inform us about the (observer dependent) particle

content of the chosen vacuum state.
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4.1. Variable temperature-like estimator

As an alternative to the calculation of the exact Bogoliubov coefficients using (15), we

can estimate the amount of particle content by calculating the function

κ(u) := −d2U

du2

(
dU

du

)−1

. (28)

As described thoroughly in [4, 13], when this function is constant κ(u) ' κ(u∗) =: κ∗

over a sufficiently large interval around a given u∗, one can assure that during this same

interval the system is producing a Hawking flux of particles with a temperature

kBT =
κ∗

2π
. (29)

If the variation of κ(u) is slow, then one can describe the system as a thermal

emitter with a slowly varying temperature. Whether κ(u) varies slowly or not in the

surroundings of u∗, is controlled by an adiabatic condition which, under mild technical

assumptions [13], reads

ε∗ :=
1

κ2
∗

∣∣∣∣
dκ

du

∣∣∣∣
u∗

∣∣∣∣� 1. (30)

However, even in the case in which the adiabatic condition is not satisfied, the

existence of a non-zero κ(u) is an indication that there is particle emission (in this case

the Bogoliubov β coefficients will not be zero). The spectrum of this particle content

does not follow a precise Planckian profile anymore, but still we will take κ(u) as an

estimator of the amount of particles perceived by the observer. In this work, for short

we will refer to κ(u) [or more precisely to κ(u)/(2π)] as a variable temperature, although

strictly speaking this term is correct only in the intervals in which the adiabatic condition

is satisfied. We will call

ε(u) :=
1

κ2

∣∣∣∣
dκ

du

∣∣∣∣ (31)

the adiabatic control function

4.2. Static observer at a fixed radius

Let us start by analysing the particle content as seen by a static observer sitting at

a radius rs. In order to find a new labelling ū = pso(u), now associated with this

static observer, we will repeat the same steps that we did before for the definition of the

vacuum state. (Here on we will replace the generic subscript ‘ob’ by a subscript denoting

the particular type of observer; in this case ‘so’ stands for static observer.) The world

line of an observer keeping its radial position can be described as r(τ) = rs = const and

t =

(
1 − 2m

rs

)−1/2

(τ − τ0), (32)

so that

ū =

(
1 − 2m

rs

)−1/2

(τ − τ0) − r∗(rs). (33)
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As before, an observer following this world line can naturally use its proper time τ to

label the different rays he encounters while standing in its radial position, namely, he can

make the assignment of the label u = p−1
so (ū) = τ given by the inverse of this equation

to the ray ū = const that hits the observer at proper time τ . Upon synchronization, we

obtain the relation between both labels

ū = pso(u) :=

(
1 − 2m

rs

)−1/2

u. (34)

Note that here one cannot demand u → ū in the past infinity, as we did in section 3.

The synchronization in this case reduces to eliminate an irrelevant additive constant.

At this point, we can already construct the relation U = U(u) we were after from

the equation ū = pvs(U) = pso(u). The complexity of (27) does not allow us to write

this relation explicitly, but we can write its inverse. Using (27) and (34), we obtain

u =

(
1 − 2m

rs

)1/2
{

UH +
4m

3
− 4m

[(
3

4m
(UH − U) + 1

)1/3

+
1

2

(
3

4m
(UH − U) + 1

)2/3

+
1

3

(
3

4m
(UH − U) + 1

)

+ ln

((
3

4m
(UH − U) + 1

)1/3

− 1

)]}
. (35)

One can study the behaviour of this function at the past and future infinities, u → −∞
and u → +∞, respectively. In the asymptotic past, the linear term on the right-hand

side is the most important, and this relation becomes

U ≈
(

1 − 2m

rs

)−1/2

u, when u → −∞ (U → −∞). (36)

By looking at the definition of κ(u) in (28), one can easily see that in this regime κ = 0,

so that there is not radiation at all.

On the other hand, at future infinity the behaviour of U(u) is dominated by the

logarithmic term in (35), yielding an approximate expression

U ≈ UH − 4m

3





[
exp

(
1

4m
(UH − 6m)

)
exp

(
−
(

1 − 2m

rs

)−1/2
u

4m

)
+ 1

]3

− 1





≈ UH − 4m exp

[
1

4m
(UH − 6m)

]
exp

[
−
(

1 − 2m

rs

)−1/2
u

4m

]
,

when u → ∞ (U → UH). (37)

From this expression, it is easy to recognize the well known asymptotic form [2]

U = UH − A exp(−κau), (38)

(where UH, A, κa are constants), which is associated with a Planckian spectrum of

particles with temperature kBT = κa/(2π). Thus, when the static observer waits long
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enough, it perceives a Hawking flux with temperature

kBT =

(
1 − 2m

rs

)−1/2
1

8πm
. (39)

This is precisely the asymptotic Hawking temperature kBTH = κH/(2π) = 1/(8πm),

multiplied by a gravitational blue-shift factor which runs from unity for observers close

to infinity, to arbitrarily large values for observers standing at positions closer and closer

to the event horizon.

4.2.1. Numerical κ(u) Let us describe now the particle perception of one of these

observers throughout its entire life outside the horizon. From the definition of κ(u)

in (28), it is easy to see that we can also write

κ(u) =
d2u

dU 2

(
du

dU

)−2
∣∣∣∣∣
U(u)

. (40)

Then, evaluating the derivatives we can obtain a close form for κ(u)

κ(u) =
1

4m

(
1 − 2m

rs

)−1/2{
3

4m
[UH − U(u)] + 1

}−4/3

. (41)

Solving numerically the relation U(u) from (35), we can plot κ(u) for different static

observers (figure 1).

-30 -20 -10 0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

u

ΚHu
L

Figure 1. Temperature as a function of u for different static observers at rs = (3m,
4m, 10m, 20m) [curves depicted respectively as (- - - -, · · · · · ·, — · —, ——)]. We use
2m = 1 units.

In these graphs, it is clearly seen how the vacuum state is such that in the past

it does not contain particles, but at some instant of time it starts to heat up reaching

asymptotically a final temperature. As we mentioned at the beginning, the vacuum

state that we have chosen in a static background mimics what would happen in the

formation of a black hole through gravitational collapse. Only once the black hole is

very close to formation one enters in the asymptotic regime (37), and Hawking radiation

is switched on. We can estimate when this happen, but for that let us first describe the

behaviour of the adiabatic control function in (31).
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4.2.2. Validity of the adiabatic approximation From the definition of ε in (31), we have

ε(u) =

∣∣∣∣
dκ

dU

∣∣∣∣
(

κ2 du

dU

)−1
∣∣∣∣∣
U(u)

= 4

{[
3

4m
(UH − U(u)) + 1

]1/3

− 1

}
. (42)

Thus, ε decays from infinity at the asymptotic past, to zero when the observer that fixes

the vacuum reaches the event horizon. This late time behaviour is consistent with the

fact that then the quantum field is finally switched on, so that the radiation that a static

observer sees is perfectly thermal. On the other hand, in the asymptotic past, ε becomes

unbounded, but this does not mean a failure of the adiabatic condition, because κ → 0

there. Again, we can numerically plot ε(u) for different static positions (figure 2). We

can see that its value crushes to nearly zero when the temperature enters its asymptotic

regime.
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Figure 2. Adiabatic control function ε as a function of u for different static observers
at rs = (3m, 4m, 10m, 20m) [curves depicted respectively as (- - - -, · · · · · ·, — · —,
——)]. We use 2m = 1 units.

Now we can introduce two different referential times. On the one hand, we can

define an ignition time of the black hole as the moment at which κ̈ = 0. If one

calculates this ignition time in terms of U , it does not depend on the value of rs. This

is perfectly reasonable, as the label U corresponds to the single free-fall trajectory used

to select the vacuum state. It is not difficult to see that this ignition time corresponds

to Uig = UH − (676/1029)m, or equivalently to the time when the free-fall trajectory

reaches rig ' 2m + 0.61m. On the other hand, we can define a thermality time as the

moment from which the outgoing radiation can be assumed to have a Planckian shape.

This thermality time can be calculated in terms of U through the condition ε(Uth) = εf ,

meaning that the adiabatic control function has reached a fiduciary value εf , that here

we will take equal to 0.01. This specific condition happens at Uth ' UH − 0.01m,

which corresponds to the time when the free-fall trajectory reaches rth ' 2m + 0.01m.

Let us give you some figures. If a neutron star with 1.5 times the mass of the Sun

(Schwarzschild radius equal to 4.43 km) and a radius of 12 km started to undergo a

free-fall collapse at Schwarzschild time tini, it would reach rig ' 2m+1.357 km at a time
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tig ' tini + 0.13 × 10−3 s, and rth ' 2m + 0.022 km at a time tth ' tini + 0.20 × 10−3 s.

In this way, one can directly see that the detection of Hawking quanta at infinity does

not involve any long delay associated with the freezing of the collapsing structure as it

approaches the horizon formation.

Finally, let us comment that for different observers the previous two times are seen

to happen at different instants of their proper times (their respective u labels). The

closer to the horizon, the later the observer will see Hawking radiation to switch on and

to become Planckian.

4.3. Observers freely falling from infinity

In this subsection, we will analyse particle creation as seen by observers which are

freely falling from infinity. To find the relevant re-labelling ū = pffio(u) (where ‘ffio’

stands for falling-from-infinity observer), we have to use the form of the radial time-

like geodesic that starts at spatial infinity with zero velocity. However, recall that the

calculation done to fix the vacuum state of the field in section 3 was precisely using these

time-like trajectories. In that calculation, we had two constants of integration to play

with, namely t0 and τ0. We will now consider trajectories differing from the reference

trajectory in section 3 by a temporal delay ∆t0. Instead of using t0 = τ0 = UH + 4m/3,

we will use new values t0 = τ0 = UH +4m/3+∆t0 = uH +4m/3, where uH := UH +∆t0.

We then define the new relation ū = pffio(u) by [see (27)]

ū = pffio(u) := pvs(u − ∆t0) + ∆t0, (43)

which explicitly reads

ū = pffio(u) = uH +
4m

3
− 4m

{[
3

4m
(uH − u) + 1

]1/3

+
1

2

[
3

4m
(uH − u) + 1

]2/3

+
1

3

[
3

4m
(uH − u) + 1

]
+ ln

[(
3

4m
(uH − u) + 1

)1/3

− 1

]}
. (44)

Now, as we did for the static observer in section 4.2, we compare both labellings, U

in (27) and u in (44), and obtain an implicit relation U(u) from the equation

pvs(U) = pffio(u), (45)

which again explicitly reads

− 4m

{[
3

4m
(UH − U) + 1

]1/3

+
1

2

[
3

4m
(UH − U) + 1

]2/3

+
1

3

[
3

4m
(UH − U) + 1

]
+ ln

[(
3

4m
(UH − U) + 1

)1/3

− 1

]}

= ∆t0 − 4m

{[
3

4m
(uH − u) + 1

]1/3

+
1

2

[
3

4m
(uH − u) + 1

]2/3

+
1

3

[
3

4m
(uH − u) + 1

]
+ ln

[(
3

4m
(uH − u) + 1

)1/3

− 1

]}
. (46)
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Solutions to this non-algebraic equation must be found numerically. Nevertheless,

we can examine the past infinity and event horizon limits analytically. In the past

infinity, we obtain U ≈ u, owing to the synchronization we imposed. Near the event

horizon, the logarithmic functions provide the leading contribution and therefore,

Unear−hor(u) ≈ UH − 4m

3





[
e−∆t0/(4m)

((
3

4m
(uH − u) + 1

)1/3

− 1

)
+ 1

]3

− 1



 . (47)

The function κ(u) can be readily obtained from (43) and (45). Indeed, taking the

derivative of (45) with respect to u, we obtain

dU

du
=

dpvs(u − ∆t0)

du

[
dpvs(U)

dU

∣∣∣∣
U(u)

]−1

, (48)

and differentiating once more

d2U

du2 =

[
d2pvs(u − ∆t0)

du2 − d2pvs(U)

dU 2

∣∣∣∣
U(u)

(
dU

du

)2
](

dpvs(U)

dU

∣∣∣∣
U(u)

)−1

, (49)

so that κ(u) can be expressed as

κ(u) =

[
d2pvs(U)

dU 2

∣∣∣∣
U(u)

(
dU

du

)2

− d2pvs(u − ∆t0)

du2

](
dpvs(u − ∆t0)

du

)−1

. (50)

Therefore, the final result is

κ(u) =
1

4m

[
3

4m
(uH − u) + 1

]−1
{[

3

4m
(uH − u) + 1

]1/3

− 1

}−1

×

{[
(3/4m)(uH − u) + 1

(3/4m)(UH − U(u)) + 1

]4/3

− 1

}
. (51)

Note that this exact expression is explicit if we considered it as a function of both

u and U (although this does not mean that it is a function of two variables). The

dependence on ∆t0 is hidden in the implicit relation between both variables. We can

use the limiting expression of U(u) at the event horizon (47) (which is exact there) to

find what temperature would the freely-falling observer characterized by the delay ∆t0
see when he crosses the horizon. This temperature happens to be

κHC(∆t0) =
1

m

(
1 − e−∆t0/(4m)

)
. (52)

Therefore, the perceived radiation will run from an initial zero temperature to nearly

1/(2πm), which corresponds to four times the standard Hawking temperature, provided

that the waiting time ∆t0 is several times bigger than 4m. This is an interesting and,

at first, puzzling result. How can one interpret it? In section 5, we will offer and

explanation of this result, but in order to do that we still need to introduce several

additional material.
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4.3.1. Numerical κ(u) We can numerically plot the entire relation κ(u). Results

are shown in figure 3. For small values of ∆t0 (less than approximately 20m) the

temperature perceived by the freely-falling observer is nearly zero during most of its

trajectory towards the horizon. Only when approaching the horizon, the temperature

increases to reach a peak value given by (52). For large enough values of ∆t0, before this

final increase in the temperature, there appears an intermediate plateau in which the

temperature is nearly constant. It is easy to understand this behaviour: if the freely-

falling observer is still far from the horizon when Hawking radiation is switched on, at

some moment it will start detecting this radiation, which will stay nearly constant till

the observer becomes close to the horizon, where additional physics will come into play

(see section 5). The effective temperature value along the plateau is somewhat higher

than the Hawking radiation temperature, and slightly increasing. As we will see, this

is mostly due to a Doppler blue-shift associated with the radial velocity of the falling

observer (see also section 5).
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Figure 3. Temperature as a function of u for different freely-falling observers from
infinity with delays ∆t0 = (2m, 20m, 100m, 200m) [curves depicted respectively as
(- - - -, · · · · · ·, — · —, ——)]. We use 2m = 1 units and uH = 0.

It is interesting to look at how good is the functional approximation (47) when

plugged into (51), as compared with the exact result. This comparison is shown in

figure 4 for a long delay ∆t0. By construction, this approximation works perfectly well

in the surroundings of the horizon crossing. However, it is remarkable that it also fits

very well the plateau region.

On the other hand, this approximation is not useful when ∆t0 is not large enough

(see figure 5). The asymptotic approximation (47) correctly reproduces the horizon-

crossing value as should be by construction, but at early times it deviates from the

exact curve rather quickly.

4.3.2. Adiabatic approximation validity Having found an expression for κ in terms of

u and U(u), we can use it to obtain an expression for the adiabatic control function ε(u)

as defined in (31). The resulting expression, also explicit when considered as a function
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Figure 4. Temperature as a function of u for a freely-falling observer from infinity with
∆t0 = 200m using the exact expression (curve depicted ——) and using Unear−hor(u)
approximation (curve depicted - - - -). We use 2m = 1 units and uH = 0.
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Figure 5. Temperature as a function of u for a freely-falling observer from infinity
with ∆t0 = 4m using the exact expression (curve depicted ——) and using Unear−hor(u)
approximation (curve depicted - - - -). We use 2m = 1 units and uH = 0.

of both u and U , is rather involved, and we will not include it here. But, as we did

with κ, we can also replace the relation Unear−hor(u) (47) valid in the near-horizon limit

to find an explicit expression for ε(u) valid there; finally, we can take the u → uH limit

and find its value at horizon-crossing. The result is

εHC(∆t0) =
3

8
+

7

4 [e∆t0/(4m) − 1]
. (53)

This expression runs from 3/8 when ∆t0 is several times larger than 4m, growing to

infinity when ∆t0 goes to zero. This last value is comprehensible from the definition

of ε, as it is the temperature itself that goes to zero when the freely-falling observer

approaches the referential one. The adiabatic condition ε � 1 is never satisfied at

horizon crossing. However, it is remarkable that, for ∆t0 sufficiently large, it is always

still smaller than unity, so that the perceived particle spectrum should not be very

different from a Planckian spectrum.
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Nonetheless, this is just the horizon crossing value. We can see using the numerically

evaluated exact result (figure 6) that, for long waiting times, there is part of the

trajectory for which the adiabatic condition is with no doubt valid, as there ε crushes

to nearly zero. This of course coincides with the plateau region (in the cases in which it

appears), in which κ takes a nearly constant value. Once the final increase in κ shows

up, the adiabatic condition starts to be violated, although in a rather mild manner.
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Figure 6. Adiabatic control function ε as a function of u for different freely-falling
observers from infinity with delays ∆t0 = (100m, 200m) [curves depicted respectively
as (— · —, ——)]. We use 2m = 1 units and uH = 0.

4.4. Observers freely falling from a finite radius

The last situation we shall consider in this paper is the particle perception of a freely-

falling observer left to fall from a radius r0, with zero initial velocity at some waiting

time ∆̃t0 (in Schwarzschild time) after the reference trajectory used to define the vacuum

state had crossed this radial position. Again, we start by calculating this new trajectory.

For that, we have to integrate (20), but now keeping r0 a finite constant. This yields

τ̃0 − τ = −r0

√
r0

2m

{(r0

r
− 1
)1/2 r

r0
+ arctan

[(r0

r
− 1
)1/2

]}
, (54)

where τ̃0 represents the time at which the observer starts to fall (note that, in all

expressions in this subsection, 2m < r ≤ r0). The time of horizon-crossing for this

trajectory is

ũH := τ̃0 + 2m

√
r0

2m

{( r0

2m
− 1
)1/2

+
r0

2m
arctan

[( r0

2m
− 1
)1/2

]}
. (55)

By means of (20) and (21), we obtain

dr

dt
= −

√
2m

r

(
1 − 2m

r

)(
1 − r

r0

)1/2 (
1 − 2m

r0

)−1/2

, (56)
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which can be readily integrated to yield

t(r) = t̃0 + r0

( r0

2m
− 1
)1/2

{(r0

r
− 1
)1/2 r

r0

+

(
1 +

4m

r0

)
arctan

[(r0

r
− 1
)1/2

]}

+ ln

{[
r

2m
+ 2

(
1 − 2m

r0

)1/2 (
1 − r

r0

)1/2√
r

2m
− 2r

r0
+ 1

]

×
( r

2m
− 1
)−1
}

, (57)

where t̃0 is again an integration constant, in this case representing the time at which

the observer starts to fall from r0. If we call tvs(r) the expression in (24), we can define

t̃0 as a function of r0, t0 and the delay time ∆̃t0

t̃0 = tvs(r0) + ∆̃t0

= t0 − 4m

[√
r0

2m
+

1

3

( r0

2m

)3/2

+
1

2
ln

(√
r0/(2m) − 1√
r0/(2m) + 1

)]
+ ∆̃t0. (58)

Substituting in (57) the function r(τ) which is implicitly defined in (54), we can find

the function t(τ).

Let us now construct the spacetime trajectory of an observer that remains at a

fixed position r = r0 until τ = τ̃0, at which time he starts to fall freely towards the black

hole. This trajectory (t(τ), r(τ)) is made out of two pieces jointed together at τ = τ̃0:

the first piece, for τ < τ̃0, is such that the radius is fixed r = r0 and the Schwarzschild

time satisfies

t(τ) = t̃0 +

(
1 − 2m

r0

)−1/2

(τ − τ̃0); (59)

the second piece, for τ ≥ τ̃0, is constituted by the previously found implicit expressions

r(τ ; r0, τ̃0) in (54) and t(r(τ ; r0, τ̃0); r0, t0, ∆̃t0) = t(τ ; r0, τ̃0, t0, ∆̃t0) as defined in (57);

the t0 and ∆̃t0 dependence of this last expression comes from the dependence of t̃0 on

t0 and ∆̃t0 in (58).

As explained in previous sections, substituting τ by u, using an appropriate

synchronization between t0 and τ̃0, and substituting τ̃0 by ũH as defined in (55), we

can construct the function

ū = pffro(r) := t(r; r0, ũH, ∆̃t0) − r∗(r), (60)

where ‘ffro’ stands for freely-falling-from-a-radius observer. Finally, the U(u) relation

we were looking for can be found from the implicit relation

ū = pvs(U) = pffro(r(u)). (61)

Our next step is to find the form of κ(u) for these observers. Taking derivatives of

(61) with respect to u, we obtain

dU

du
=

(
dpvs

dU

)−1
dpffro

dr

dr

du
, (62)
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where dr/du is nothing but (20) with u instead of τ , and differentiating again,

d2U

du2 =

[
d2pffro

dr2

(
dr

du

)2

+
dpffro

dr

d2r

du2 − d2pvs

dU 2

(
dU

du

)2
](

dpvs

dU

)−1

. (63)

In this way, κ(u) can be expressed as

κ(u) =

(
dpvs

dU

)−1
d2pvs

dU 2

dU

du
−
(

dpffro

dr

)−1
d2pffro

dr2

dr

du
−
(

dr

du

)−1
d2r

du2 . (64)

Substituting explicitly the corresponding expressions and simplifying, it becomes

κ(u) =
1

4m

(
1 − 2m

r0

)−1/2 [
3

4m
(UH − U) + 1

]−4/3

, for u < u0, (65)

κ(u) =
1

4m

{
r

2m
+ 1 +

r

m

[(
1 − 2m

r0

)1/2
√

2m

r

(
1 − r

r0

)1/2

− 2m

r0

]}

×
{[(

1 − 2m

r0

)1/2

+

√
2m

r

(
1 − r

r0

)1/2
]( r

2m
− 1
)}−1

×

{[
3

4m
(UH − U) + 1

]−4/3

−
(

2m

r

)2
}

, for u ≥ u0, (66)

where r and U must be understood as functions of u (again, these can only be obtained

numerically). This function has a finite jump at u = u0 (= τ̃0), the moment at which

the observer at r0 is released from its previously fixed position.

At early times, κ follows the same pattern described in section 4.2, in (41). It

increases from zero and tries to reach the asymptotic value associated with the observer

at rest at position r0. However, at some moment u0 the observer is released to fall freely.

In this moment, κ undergoes a finite jump. The value of κ just after the jump, which

we will denote κreleased, is found by evaluating (66) at r = r0, which gives

κreleased(r0, ∆̃t0) =
1

4m

(
1 − 2m

r0

)−1/2

×
{[

3

4m
(UH − U0(r0, ∆̃t0)) + 1

]−4/3

−
(

2m

r0

)−2
}

. (67)

Here U0 = U(u0) is the value of the label U associated with u0, and depends on the

parameter ∆̃t0. A particular case is ∆̃t0 = 0, which means that the observer starts to

fall just when the observer that fixes the vacuum state passes by its side. This implies

of course U0 = U(r0), as determined by the trajectory in section 3 [it can be obtained

by reversing (22), noting that U acts as τ now]. Doing this one can check that κreleased is

zero, as one should expect. This is because in this case, at the starting point, between

the observer that determines the vacuum state and our observer there is no difference

but in their velocity. If the former one sees nothing, the latter shall see “nothing times

a red-shift factor”, that is, nothing at all.



Hawking radiation as perceived by different observers 19

On the other hand, if the observer waits long enough so that the black hole is nearly

completely switched on (Unruh state), that is, ∆̃t0 → ∞, which amounts to substituting

U by UH in equation (67), then κreleased takes the value

κUnruh(r0) := κreleased(r0)|f∆t0→∞ =
1

4m

(
1 +

2m

r0

)(
1 − 2m

r0

)1/2

. (68)

The limit r0 → 2m gives zero, and the limit r0 → ∞ gives the usual Hawking

temperature κ = 1/(4m), as happens in the Unruh state. This agrees with the fact

that our state reproduces the Unruh state for late times.

Another interesting quantity we can calculate is the value of the jump in κ, ∆κrelease,

at the instant of releasing. We can directly subtract from (65) the expression in (67),

and find the jump ∆κrelease,

∆κrelease(r0) =
1

4m

(
1 − 2m

r0

)−1/2 (
2m

r0

)2

=

(
1 − 2m

r0

)−1/2
m

r2
0

. (69)

It is remarkable that it does not depend on U or, in other words, does not depend on

the waiting time ∆̃t0. This is reasonable, as by switching off the rockets the observer

is just loosing the radiation that comes from its own acceleration, and this acceleration

only depends on the radius it was staying at. In fact, in the last expression we can

directly spot the surface gravity associated with position r0 [see (19)] multiplied by

its corresponding gravitational blue-shift factor. We can conclude then that ∆κrelease is

nothing but Unruh radiation associated with an accelerating observer [8, 11]. In figure 7,

we plot the value of κ around the release point for different waiting times. There, one

can directly see that the jump in the temperature is always the same.
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Figure 7. Temperature around the releasing point as a function of u for r0 = 10m

and delays ∆̃t0 = (0, 12m, 24m, ∞) [curves depicted respectively as (- - - -, · · · · · ·,
— · —, ——)]. We use 2m = 1 units and u0 = 0.

Now, let us study the radiation perception at horizon crossing. The procedure is

analogue to the one followed in section 4.3: in (61) we identify the diverging terms at

the event horizon and, from the resulting equation, isolating U we find an expression

Unear−hor(r) valid near the event horizon. The expression is quite complex and not really
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useful by itself, but again, plugging it into (66) we obtain an expression κ(r) valid near

the event horizon. Finally, performing the limit r → 2m we find the horizon crossing

value κHC, which in this case is

κHC(r0, ∆̃t0) =
1

m





(
1 − 2m

r0

)1/2

−

(√
r0/(2m) − 1√
r0/(2m) + 1

)1/2

× exp

[
−5

6
− r0 + ∆̃t0

4m
+

√
r0

2m
+

1

3

( r0

2m

)3/2

−
( r0

4m
+ 1
)( r0

2m
− 1
)1/2

arctan

(( r0

2m
− 1
)1/2

)]}
. (70)

When the observer waits for a sufficiently long time before being released from its

position (mathematically, ∆̃t0 → ∞), it simplifies to

κHC|f∆t0→∞ =
1

m

(
1 − 2m

r0

)1/2

, (71)

which reproduces the result κ = 1/m for an observer freely falling from infinity [see the

∆t0 → ∞ limit of (52)]. It is also interesting to analyse the limit of κHC(r0, ∆̃t0) when

r0 → ∞. The result is

κHC|r0→∞ =
1

m
, (72)

which, surprisingly at first sight, does not depend on ∆̃t0. That is, we cannot reproduce

the entire formula (52) by taking the r0 → ∞ limit. The reason is that the trajectory

used to fix the vacuum state does never coincide with the trajectory of a released observer

even if the release point r0 is taking close to infinity. Although the velocity difference

of these two trajectories at r0 tends to zero when r0 → ∞, they arrive at positions

close to the horizon at very different Schwarzschild times. The freely-falling-from-a-

radius observer for far enough releasing radius arrives to the horizon always so late with

respect to the reference trajectory, that it sees the black hole as virtually switched on

(in its final Unruh state).

Plotting expression (70) (figure 8), we can see that the parameter ∆̃t0 plays almost

no role in the temperature seen when crossing the horizon.

4.4.1. Numerical κ(u) Let us now plot some examples of exact numerical resolution

of κ(u) for different trajectories. The aim is just to have a visual and qualitative

understanding of the global evolution of the temperature, as well as to see how the

calculated exact limits and behaviours are reproduced. First, we will plot the value of

κ(u) for observers starting to fall from the radius r0 = 10m with different waiting times

(figure 9). Graphs show how κ(u) starts from very different values when the observer is

released, but converges to virtually the same final value no matter the waiting time, as

the starting radius is far enough.

If the radius r0 is quite near the event horizon (r0 = 4m in figure 10), there is a

small but appreciable difference in the value of κ(u) when crossing it, depending on the
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Figure 8. Temperature when crossing the horizon as a function of r0 for delays ∆̃t0 =
(0, 2m, 5m, ∞) [curves depicted respectively as (- - - -, · · · · · ·, — · —, ——)]. We use
2m = 1 units.
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Figure 9. Temperature as a function of u for r0 = 10m and delays ∆̃t0 = (0, 12m,
24m, ∞) [curves depicted respectively as (- - - -, · · · · · ·, — · —, ——)]. We use 2m = 1
units and u0 = 0.

waiting time. We can also see that the jump in κ(u) when releasing the observer is more

important in this case, as acceleration to stay at the fixed radius is much bigger here.

On the other hand, if the radius is really far from the event horizon (r0 = 30m

in figure 11), the jump in κ(u) is completely negligible. Different waiting times in this

case just determine when you start perceiving the radiation, which can happen before

or after the releasing point. The plateau found in section 4.3, and of course the final

peak, are again reproduced, as should happen for a large radius. But note that, as we

already argued, it is not possible to reproduce the cases in section 4.3 for which ∆t0 is

small. The limit r0 → ∞ here yields the same limit than ∆t0 → ∞ in section 4.3, no

matter the value of ∆̃t0 here.

4.4.2. Validity of the adiabatic approximation Repeating what we have done for the

observers studied so far, here we can find a formula for the adiabatic condition ε(u), in
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Figure 10. Temperature as a function of u for r0 = 4m and delays ∆̃t0 = (0, 4m,
10m, ∞) [curves depicted respectively as (- - - -, · · · · · ·, — · —, ——)]. We use 2m = 1
units and u0 = 0.
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Figure 11. Temperature as a function of u for r0 = 30m and delays ∆̃t0 = (0,
60m, 140m, ∞) [curves depicted respectively as (- - - -, · · · · · ·, — · —, ——)]. We use
2m = 1 units and u0 = 0.

this case as an explicit function of both U = U(u) and r = r(u). Also, once more we

can plug the expression Unear−hor(r) valid near the event horizon, and find a function

ε(r) valid there. Finally, we may take the limit r → 2m and obtain the value εHC at

the horizon crossing. Unfortunately, in this case the approximation Unear−hor(r), and

the exact expression ε(U, r) are extremely complex in their functional forms. Thus, it

seems neither possible, nor interesting, to find an explicit expression of εHC in terms of

the parameters r0 and ∆̃t0. Nonetheless, it is still possible to obtain an expression for

ε(r, r0) (not only in the horizon crossing) when ∆̃t0 → ∞,

ε(r, r0)|f∆t0→∞ =

[
3 − 4r

r0

+
( r

2m

)2

− 4

(
1 − 2m

r0

)1/2 (
1 − r

r0

)1/2√
r

2m

]

×
[( r

2m

)2

− 1

]−2

. (73)
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In this expression, one can now take the limit r → 2m and obtain εHC when ∆̃t0 → ∞
in terms of r0,

εHC(r0)|f∆t0→∞ =
1

8

[
3 +

( r0

2m
− 1
)−1
]

. (74)

This result runs from 3/8 when r0 � 2m, to infinity when r0 → 2m. With the first

limit 3/8, we reproduce again the result obtained in section 4.3 for long delays [see the

limit of (53)]. The second divergent limit reflects the fact that observers released from

positions near the horizon by no means perceive thermal radiation. In figure 12, we plot

the function in (74), together with some numerically solved graphs of εHC for zero and

finite waiting times ∆̃t0. Note that the limit 3/8 when r0 → ∞ is common for all the

graphs.
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Figure 12. Adiabatic control function ε when crossing the horizon as a function of
r0 for delays ∆̃t0 = (0, 2m, 5m, ∞) [curves depicted respectively as (- - - -, · · · · · ·,
— · —, ——)]. We use 2m = 1 units.

Also, we can find an expression for εreleased at the beginning of the falling part of

the path, again for ∆̃t0 → ∞. We obtain

εreleased(r0)|f∆t0→∞ =

[( r0

2m

)2

− 1

]−1

. (75)

This yields zero for r0 � 2m, and infinity when r0 → 2m. The zero value appears

because, at large radius and for large waiting times, what the observer initially sees

is a perfect Hawking radiation. The divergent value for r0 near the horizon has the

same explanation as in the case of εHC: for trajectories starting too close to the horizon,

the adiabatic approximation is never valid. Neither at the beginning of the fall, nor at

horizon crossing.

Finally, we will plot the value of ε(u) for the same cases we plotted κ(u) in

section 4.4.1 (figures 13, 14, and 15). As a consequence of the sudden change in κ

at the release time, these graphs should exhibit a Dirac-delta peak in there. This has

been avoided in the figures for simplicity. Apart from that, graphs need few comments.

They of course reproduce the limit values already found. As happened in section 4.3,
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when plateaus appear ε becomes nearly zero, and so the radiation is perfectly thermal,

with the temperature determined by κ. For earlier parts of the trajectory, ε diverges,

but as we have already explained, this is only reflecting that the temperature there goes

to zero.
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Figure 13. Adiabatic control function ε as a function of u for r0 = 10m and delays
∆̃t0 = (0, 12m, 24m, ∞) [curves depicted respectively as (- - - -, · · · · · ·, — · —, ——)].
We use 2m = 1 units and u0 = 0.
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Figure 14. Adiabatic control function ε as a function of u for r0 = 4m and delays
∆̃t0 = (0, 4m, 10m, ∞) [curves depicted respectively as (- - - -, · · · · · ·, — · —, ——)].
We use 2m = 1 units and u0 = 0.
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Figure 15. Adiabatic control function ε as a function of u for r0 = 30m and delays
∆̃t0 = (0, 60m, 140m, ∞) [curves depicted respectively as (- - - -, · · · · · ·, — · —,
——)]. We use 2m = 1 units and u0 = 0.

5. Final increase of the effective temperature

At this stage, we have all the necessary ingredients to explain the, at first sight puzzling,

final increase of κ for freely-falling observers. For sufficiently long waiting times, we are

sure the vacuum state is indistinguishable from Unruh state (see also next section). As

standard lore in the literature, one can read that this state is a vacuum for observers

freely falling at the horizon. However, we have here several of these observers and

the value of κHC is non-zero for almost all of them: recall for instance the value of

κHC for observers freely falling from infinity (52) and for observers freely falling from a

finite radius (70). The only exceptions are the observer closely following the reference

trajectory and the one with zero instantaneous radial velocity at the horizon.

Indeed, once Hawking radiation is switched on, there is only one effective

temperature that does vanish at the horizon: the Unruh temperature κUnruh/(2π) (68).

As we explained, this is the κ associated with an observer in free fall at a radial position

r and with an instantaneous zero radial velocity in there (we will call this observer an

Unruh observer),

κUnruh(r) =
1

4m

(
1 +

2m

r

)(
1 − 2m

r

)1/2

. (76)

Let us now make the reasonable hypothesis that all the physics concerning the

behaviour of κ(u) can be understood in terms of local properties of the observer’s

trajectory: its position, its velocity and its acceleration. We will see that this is indeed

the case. Under this hypothesis, the only characteristic that distinguishes the Unruh

observer from any of the other freely-falling observers is that the latter have non-zero

radial velocity. The difference in radial velocities between the freely-falling observers

and the Unruh observer implies that their respective radiation perceptions have to be

related by a Doppler shift factor. In fact, the Unruh observer is such that in the

horizon limit would travel with the very outgoing null ray. Therefore, to obtain κ(u) for
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Figure 16. Temperature for the Unruh observer κUnruh as a function of r. We use
2m = 1 units.

the freely-falling observers from κUnruh, one has to extract from it a Doppler red-shift

factor (going to zero at the horizon), or equivalently multiply it by a Doppler blue-shift

factor (its inverse, diverging at the horizon). As we are going to show, this divergence

counterbalance the zero value of κUnruh at the horizon yielding the appropriate finite

result for the different κHC’s.

Which is the precise form of this Doppler blue-shift factor? Our guess is

Dr0(r) :=

(
drl

dt
− drr0

dt

)1/2 (
drl

dt
+

drr0

dt

)−1/2

. (77)

Here, rl(t) represents the trajectory of a null ray going away from the horizon and rr0(t)

the freely-falling trajectory that starts with zero velocity at r = r0. In addition, we have

put a subscript r0 in Dr0(r) to distinguish the different Doppler factors associated with

freely-falling observers released at different radial distances r0. The reason behind this

guess is the following.

A physical Doppler factor has to compare the velocity of the massive objects with

the velocity of light,

D =

√
c − v

c + v
. (78)

However, note that using (t, r) coordinates the velocity of light is different from unity;

that is why we have included drl/dt. The Doppler factor (77) can be alternatively

written as

Dr0(r) =

(
1 − drr0

drl

)1/2 (
1 +

drr0

drl

)−1/2

. (79)

In this way, one would compare the real local velocity of the observer with respect to

the local velocity of light (which is always equal to one).

We can take drr0/dt from (56) and calculate drl/dt from the outgoing rays equation

t − r∗(rl) = const,

drl

dt

∣∣∣∣
rl=r

=
dr

dr∗
=

(
1 − 2m

r

)
. (80)
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After some manipulation, we finally find

Dr0(r) =

[(
1 − 2m

r0

)1/2

+

√
2m

r

(
1 − r

r0

)1/2
]1/2

×
[(

1 − 2m

r0

)1/2

−
√

2m

r

(
1 − r

r0

)1/2
]−1/2

. (81)

If we compute now

κUnruh(r)Dr0(r), (82)

and take the limit r → 2m, we can check that one obtains precisely (71). So, as we

advanced, it is really the extraction of a huge Doppler red-shift factor the reason why the

freely-falling observers perceived some effective temperature even at horizon crossing.

In other words, for long enough waiting times, a generic freely-falling observer sees a

small but non-zero κ when crossing the horizon. Only a hypothetical observer with zero

radial velocity at the horizon (the Unruh observer there) would see a zero κ, but because

of the huge red-shift factor associated to its instantaneous trajectory (this observer is

instantaneously travelling with the null ray).

The final increase in κ always present for freely-falling observers is caused by the

Doppler shift factor. Take the case of an observer freely falling from infinity. As we

explained, the perceived radiation starts at zero temperature. Then, if one waits long-

enough, a plateau region is formed with an almost constant κ. Finally, when the observer

approaches the horizon, κ increases up to the value 1/m, which corresponds to four times

the standard Hawking temperature. The value of κ from the appearance of the plateau

on is due to the competition between Unruh’s switching off of the radiation emission

when going towards the horizon, which surprisingly passes through an intermediate

increasing phase (see figure 16), and the multiplication by a Doppler blue-shift factor

due to the velocity of the freely-falling observer with respect the Unruh observer. The

final result of this competition is the exact numerical computations we have shown

throughout the paper (considering always sufficiently long waiting times).

For instance, let us plot

κUnruh(r(u))Dr0→∞(r(u)) (83)

against the exact numerical κ(u) of section 4.3. Here r(u) is the position of the observer

falling from infinity as a function of the label u. From (22) one obtains r(u)

r(u) = 2m

[
3

4m
(uH − u) + 1

]2/3

. (84)

In figure 17, we compare this approximation with the exact result for κ(u) for a long

waiting time ∆t0 = 200m. We can see that the approximation is perfect from the

starting of the plateau till horizon crossing. Obviously, the previous approximation fails

to capture the switching on of Hawking radiation.

Actually, this perfect fit for long waiting times can also be checked analytically,

and not only for observers falling from infinity, but for the generic case of freely-falling
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Figure 17. Temperature as a function of u for a freely-falling observer from
infinity with ∆t0 = 200m using exact expression (curve depicted ——) and using
(κUnruhDr0→∞) (u) approximation (curve depicted - - - -). We use 2m = 1 units and
uH = 0.

observers from any radius. For instance, one just has to approximate the κ(U, r) in (66)

for ∆̃t0 → ∞ (this is equivalent to assuming U ' UH), which yields

κ(r) =
1

4m

{
r

2m
+ 1 +

r

m

[(
1 − 2m

r0

)1/2
√

2m

r

(
1 − r

r0

)1/2

− 2m

r0

]}

×
{[(

1 − 2m

r0

)1/2

+

√
2m

r

(
1 − r

r0

)1/2
]( r

2m
− 1
)}−1

×
[
1 −

(
2m

r

)2
]

, (85)

and then see that it is precisely equal to

κUnruh(r)Dr0(r) =
1

4m

(
1 +

2m

r

)(
1 − 2m

r

)1/2

×
[(

1 − 2m

r0

)1/2

+

√
2m

r

(
1 − r

r0

)1/2
]1/2

×
[(

1 − 2m

r0

)1/2

−
√

2m

r

(
1 − r

r0

)1/2
]−1/2

. (86)

With hindsight, we could have used this equality to obtain all the previous partial

results. But we can go now even further: if we put κreleased(r, ∆̃t0) instead of κUnruh(r)

in (86), then it is possible to see that we reproduce the entire formula for the effective

temperature in (66). This is because between two freely-falling observers at the same

position the only difference is a Doppler shift, and this fact has nothing to do with

being in the Unruh state or not. We checked this first for the Unruh state because we

wanted to explain the appearance of the final peak in κ, a peak whose appearance was

in apparent contradiction with the vanishing value we expected for that state.



Hawking radiation as perceived by different observers 29

6. Comparison with the Unruh state

One might worry that some of the results shown in this paper related with the late-time

behaviour of the system, are peculiarities of an unusual choice of the vacuum state.

However, this is not the case. In this section, we will briefly show that at late times

this state is really equivalent to the Unruh vacuum state. Thus, all the properties found

in the previous sections that applies for late times, are immediately present also in the

Unruh state.

The equivalence between the states for late times can be directly seen from (27).

In that expression, late times means just U ' UH. So, as we did in (37), we can reverse

the approximate relation to find

U ≈ UH − 4m

3

{[
exp

(
1

4m
(UH − 6m)

)
e−ū/(4m) + 1

]3

− 1

}

≈ UH − 4m exp

[
1

4m
(UH − 6m)

]
e−ū/(4m). (87)

But this is precisely the relation which defines the coordinate U that appears in the

Unruh modes [8] (apart from the irrelevant origin of the coordinates). Thus, if we are

using this coordinate to define the vacuum state, we are in fact choosing the Unruh

state for late times.

Nonetheless, just as an example, let us perform a specific calculation entirely based

in the Unruh state choice. For instance, let us calculate the case of a freely-falling

observer from infinity. With this aim, consider a redefinition of U using the usual and

simple form

U := −4me−ū/(4m), (88)

and take (44) as the definition of u. That is, U defines the vacuum and is the coordinate

that appears in the Unruh modes; and u is the proper time that a freely-falling observer

from infinity uses to label the rays. Replacing (44) in (88) we obtain a relation U(u),

from which we can directly compute κ(u). The result is

κ(u) =
1

4m

{[
3

4m
(uH − u) + 1

]−1/3

+ 2

[
3

4m
(uH − u) + 1

]−2/3

+ 1

}
. (89)

From here one can check the limits

κ(u → −∞) =
1

4m
and κ(u → uH) =

1

m
(90)

with the naked eye. The first limit is the usual Hawking radiation temperature, which

in the Unruh state is always present, even at the asymptotic past. It is as if we extended

the plateau to the u → −∞ limit (see figure 18). The second limit is equal to the one

obtained at the horizon crossing for long enough delays in section 4.3 [see (52)], and

also for far enough releasing radius in section 4.4 [see (72)]. Thus, the final peak in the

temperature is not something coming from an eccentric selection of the state: it is a

characteristic of the Unruh state.



Hawking radiation as perceived by different observers 30

-200 -150 -100 -50 0
0.0

0.5

1.0

1.5

2.0

u

ΚHu
L

Figure 18. Temperature as a function of u for a freely-falling observer from infinity
in the Unruh state. We use 2m = 1 units and uH = 0.

7. Summary and conclusions

In this paper we have considered a quantum scalar field over a Schwarzschild black hole

geometry. As a first step, we have set up the quantum scalar field in a specific vacuum

state that interpolates between Boulware vacuum state at early times and Unruh vacuum

state at late times. In other words, we have chosen a non-stationary vacuum state so

that it simulates the physics of a dynamical collapse scenario. In this scenario, before

the black hole forms there is no radiation at infinity but, after its formation, observers

at infinity start receiving a Hawking flux of radiation: the black hole Hawking emission

switches on at some particular ignition time (of course, it is not an instantaneous event).

This vacuum state has been fixed by requiring that a reference observer freely falling

from infinity detects no radiation.

As a second step, we have analysed the radiation associated with this vacuum

state in terms of how it is perceived by different observers: static observers at a fixed

radius; freely-falling observers from infinity, with different time delays with respect to

the reference observer; and observers maintained at a fix radius for some time, and

then, after being surpassed by the reference observer in its way in, released to fall freely

towards the horizon at different releasing times.

The method used follows the recent analysis in [4, 13]. For each observer we define

a function κ varying along the observer’s trajectory. We also define an adiabatic control

function ε as ε = | dκ/du |/κ2. In the portions of the trajectory in which κ stays almost

constant (ε � 1) one can be sure that the observer detects thermal radiation at a slowly

varying temperature kBT = κ/2π. When this is not exactly the case, the radiation

perceived is non-thermal, but still, we take the value of κ as an estimate of the amount

of perceived radiation and, somewhat abusing of the language, we talk about a time

varying effective temperature.

• Static observers at fixed radius. We show that they perceived an effective

temperature that starts from zero, at early times, and after a transient period,
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stabilizes at Hawking’s temperature 1/(8πm) multiplied by the gravitational blue-

shift factor associated with the particular radial position of the observer. This

description clearly reflects the ignition associated with the formation of a black hole

we were seeking for. We also see that the transient period is quite sort: 0.07×10−3 s

for a collapsing neutron star with 1.5 times the mass of the Sun and a radius of

12 km, when detected from far enough positions. Observers closer to the horizon

will perceive this process with a slower pace due to the gravitational slow down of

their clocks.

• Observers freely falling from infinity. When their delay with respect to the reference

trajectory used to fix the vacuum state is small, they perceive almost no radiation

at all. The physical picture is the following: If an observer sitting at the very surface

of a star that is collapsing in free fall to form a black hole perceived vacuum at the

beginning of the collapse, he would perceive vacuum during his entire collapsing

trajectory (this is reasonable, as he has not perceived any gravitational field).

On the contrary, when the delay is long enough, the observer has time enough to

see that the black hole is emitting Hawking radiation. He first sees the switching

on of this radiation. Then, during some time he perceives an almost constant

temperature radiation passing by. The temperature at this plateau is essentially

the result of multiplying Hawking’s temperature by a Doppler shift factor associated

with the velocity of the observer. In this region the adiabatic condition is perfectly

satisfied, so here to describe the perceived radiation as having a temperature is

strictly correct. Finally, in the last stages of his approach to the horizon, and

surprisingly at first sight, the effective temperature rises reaching exactly four times

Hawking’s temperature. The adiabatic condition is only mildly violated in these

last stages, so although the perceived radiation is not exactly Planckian, it is not

hugely different from Planckian either.

• Observers freely falling from a radius. These observers are standing still at a fix

radial distance r0 from the horizon (supporting themselves against the gravitational

pull with some rockets) till a release time (when the rockets are switched off), which

happens some waiting time after the reference observer, in free fall, has overtaken

them. If this waiting time is long enough, the observers will see Hawking radiation

appear and settle down to a constant value, right in the same way as described

above for static observers. Once the observer is released, the value of the effective

temperature undergoes a jump with a value equal to the surface gravity associated

with position r0 times the gravitational blue-shift factor associated with this same

position. We calculated the value of the effective temperature after the release and

called it kBTreleased(r) = κreleased(r)/(2π). From the release time on, the effective

temperature starts to rise, first slowly and later quicker, so as to reach a finite value

at horizon crossing. The precise behaviour of the effective temperature depends on

the release radius, and so does the asymptotic value of it, which becomes 4TH when

r0 → ∞.
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Once Hawking radiation is switched on, the value of kBTUnruh(r) = κUnruh(r)/(2π),

that is, the effective temperature as perceived by an observer freely falling at r and with

a vanishing instantaneous radial speed, interpolates from TH when r → ∞ to zero when

r → 2m. This is consistent with the idea that the Unruh state is vacuum for freely

falling observers at the horizon. However, in general one has to be careful with this

assertion. We have shown that after Hawking radiation is switched on, generic freely-

falling observers at the horizon do not perceive vacuum, but a finite effective temperature

higher than their initial Unruh effective temperature. The reason is that the Unruh

observer experiences a Doppler red-shift factor with respect to a generic observer (due

to their velocity difference), or in other words, a generic observer experiences a Doppler

blue-shift factor with the respect to the Unruh observer. This Doppler blue-shift factor

diverges at the horizon in such a way that, when multiplied by the vanishing value of

Unruh’s temperature at the horizon, results in a finite temperature for a generic observer.

In fact, we have proved the following completely general result: for any freely-falling

observer the exact effective temperature T (r) perceived at position r is precisely the

product of the temperature when released there Treleased(r) by the Doppler blue-shift

factor associated with the radial velocity of the observer when passing through that

position.

Regarding the observability of Hawking radiation, in pure theoretical terms the

discussed results lead to the idea that the closer to the horizon one supports oneself

against gravity, the better the chances of detecting its radiation, due to the gravitational

blue-shift factor. However, in practical astrophysical scenarios the tiny Hawking

temperature of a stellar mass black hole, about a few nano-Kelvins, will be masked by the

∼ 3 Kelvin of the cosmic microwave background. This radiation would also experience a

gravitational blue shift if detected by observers close to the horizon, so that going closer

to the horizon would not improve in principle the chances of detection. Another matter

is the detection of Hawking radiation in analogue models of General Relativity. There

exist quantum systems, as Bose-Einstein condensates, in which Hawking temperature is

not that much masked by the environment temperature. In those situations one could

think that analysing the presence of radiation close to the horizon would improve the

detection chances, but this is not that clear. These systems exhibit modified dispersion

relations so that when blue shifting the modes, they would enter into the non-relativistic

regime, behaving very differently to what has been found and discussed in this paper.

In addition, the size of the entire system in the lab will be so small that to control the

physics localized close to horizon, a tiny fraction of the total size of the system seems

implausible. Other ways of detection that could prove better are the so called correlation

measurements between outgoing and ingoing partners of the Hawking radiation [14, 15].

Let us finish the paper by mentioning that the results presented here will also

constitute an adequate preparatory background material for a future work dealing with

analyses of buoyancy over black hole horizons.
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