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Abstract.

A generalized lens equation in Schwarzschild metric and valid for small light-

deflection angles is suggested. The magnitude of neglected terms in the generalized

lens equation is estimated to be smaller or equal than
15 π

4

m
2

d ′2
, where m is the

Schwarzschild radius of masive body and d
′ is Chandrasekhar’s impact vector.

The main applications of this generalized lens equation are extreme astrometrical

configurations, where Standard post-Newtonian approach as well as Classical lens

equation cannot be applied. It is shown that in the appropriate limits the proposed

lens equation yields the known post-Newtonian terms, ’enhanced’ post-post-Newtonian

terms and the Classical lens equation, thus provides a link between these both essential

approaches for determining the light-deflection.

PACS numbers: 95.10.Jk, 95.10.Ce, 95.30.Sf, 04.25.Nx, 04.80.Cc

1. Introduction

Todays astrometry necessitates theoretical predictions of light-deflection by massive

bodies on microarcsecond (µas) level, e.g. NASA mission SIM or ESA mission GAIA.

In principle, an astrometric precision on microarcsecond level can be achieved by

numerical integration of geodesic equations of light-propagation. On the other side,

modern astrometric missions like GAIA determine the positions and proper motions

of approximately one billion objects, each of which is observed about one hundred

times. The data reduction of such huge amount of observations implies the need of

analytical solutions, because the numerical investigation of geodesic equations is by far

too time-consuming. The metric of a massive body is usually expanded in terms of

multipoles, i.e. monopole term, quadrupole term and higher multipoles. Numerically,

the largest contributions of light-deflection originates from the spherically symmetric

part (Schwarzschild) of the massive body under consideration. The exact analytical

solution of light-propagation in Schwarzschild metric [5] inherits elliptic integrals, those

evaluation becomes comparable with the time effort needed for a numerical integration
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of geodesic equation. Thus, approximative analytical solutions valid on microarcsecond

level of accuracy are indispensible for a highly time-efficient data reduction.

Basically, two essential approximative approaches are known. The first one is the

Standard parameterized post-Newtonian approach (PPN) which is of the order O (m).

During the last decades, it has been the common understanding that the higher order

terms O (m2) are negligible even on microarcsecond level, except for observations in the

vicinity of the Sun. However, recent investigations [17, 1, 12, 18] have revealed that the

post-post-Newtonian approximation [3, 4], which is of the order O (m2), is needed for

such high accuracy. Both approximations are applicable for d � m, where d being the

impact vector.

The second one is the Classical lens equation. Soon after the light-deflection by the

Sun has been measured in 1919 [7], the gravitational lens effect at stars was discussed

[15, 6, 8]. In 1937 Fritz Zwicky hypothesized not only could stars act as lenses but galaxy

clusters could as well. Later in 1963, by detailed calculations it has been recognized that

quasars as pointlike sources are ideal in order to determine the gravitational lensing

effect [14, 16, 10]. One decisive advantage of classical lens equation is it’s validity for

arbitrarily small values of impact vector d. The classical lens equation is valid for

astrometrical configurations where source and observer are far ernough from the lens,

especially in case of a� d and b� d, where a = k · x1 and b = −k · x0, where x0 and

x1 are the three-vectors from the center of the massive body to the source and observer,

respectively, and k is the unit vector from the source to the observer.

However, there are astrometric configurations where neither the post-Newtonian

approach nor the classical lens equation are applicable. In order to investigate the light-

deflection in such systems a link between these both approaches is needed. Such a link

can be provided by a Generalized lens equation which, in the appropriate limits, coincides

with Standard post-Newtonian approach and Classical lens equation. Accordingly, the

aim of our investigation is an analytical expression for the generalized lens equation

having a form very similar to the classical lens equation. We formulate the following

conditions under which our generlized lens equation should be applicable (see Figure 1):

1. valid for d = 0 , a = x1 � m , b = x0 � m,

2. valid for a = 0 , d� m , b 6= 0,

3. valid for b = 0 , d� m , a 6= 0.

These conditions imply that the light-path is always far enough from the lens, thus

inherit small light deflection angles. Our paper is organized as follows: In Section 2 we

present the standard post-Newtonian approach. In Section 3 we show the steps of post-

post-Newtonian approach relevant for our investigation, and we will briefly summarize

the main results of our paper [12]. The classical lens equation is derived in Section 4.

The generalized lens equation is obtained in Section 5 and discussed in Section 6. A

summary is given in Section 7.

We will use fairly standard notations:
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• G is the Newtonian constant of gravitation.

• c is the velocity of light.

• β and γ are the parameters of the Parametrized Post-Newtonian (PPN) formalism

which characterize possible deviation of the physical reality from general relativity

theory (β = γ = 1 in general relativity).

• Lower case Latin indices i, j, . . . take values 1, 2, 3.

• Lower case Greek indices µ, ν, . . . take values 0, 1, 2, 3.

• A dot over any quantity designates the total derivative with respect to the

coordinate time of the corresponding reference system: e.g. ȧ =
da

dt
.

• The 3-dimensional coordinate quantities (“3-vectors”) referred to the spatial axes

of the corresponding reference system are set in boldface: a = ai.

• The absolute value (Euclidean norm) of a “3-vector” a is denoted as |a| or, simply,

a and can be computed as a = |a| = (a1 a1 + a2 a2 + a3 a3)1/2.

• The scalar product of any two “3-vectors” a and b with respect to the Euclidean

metric δij is denoted by a · b and can be computed as a · b = δij a
i bj = ai bi.

• The vector product of any two “3-vectors” a and b is designated by a× b and can

be computed as (a × b)i = εijk a
j bk, where εijk = (i− j)(j−k)(k− i)/2 is the fully

antisymmetric Levi-Civita symbol.

• For any two vectors a and b, the angle between them is designated as δ(a, b).

Clearly, for an angle between two vectors one has 0 ≤ δ(a, b) ≤ π. Angle δ(a, b)

can be computed in many ways, for example, as δ(a, b) = arccos
a · b

a b
.

Throughout the paper, we work in harmonic gauge, where the components of

metric tensor of the Schwarzschild solution is given by g00 = −
1 − a

1 + a
, gi0 = 0,

gij = (1 + a)2 δij +
a2

x2

1 + a

1 − a
xi xj, where a =

m

x
, m =

GM

c2
, and M is the mass of

massive body.

2. Standard post-Newtonian solution

Let us consider the trajectory of a light-signal in post-Newtonian Schwarzschild metric:

g00 = −1 + 2 a + O (c−4), gi0 = 0, gij = δij + 2 γ a δij + O (c−4). The light-ray is being

emitted at a position x0 at time moment t0 and received at position x1 at a time moment

t1, see Figure 1.

Light propagation is governed by geodesic equation, in post-Newtonian order given by

ẍ = − (1 + γ) c2
ax

x2
+ 2 (1 + γ)

a ẋ (ẋ · x)

x2
+ O(c−2) . (1)

The unit tangent vector n at the point of observation is defined by

n =
ẋ(t1)

|ẋ(t1)|
, (2)
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Figure 1. A geometrical representation of the boundary problem under consideration

for a light-propagation from the source to the observer.

observer

deflecting body

source

light path

k

n
d

σ

light at
t =−∞

x1 x0

and the unit tangent vector σ = lim
t→−∞

ẋ(t)

c
. Furthermore, we define the unit vector

k =
R

R
, where R = x1 − x0 and the absolute value is R = |R|. In the post-Newtonian

standard approach [11], the transformation between n and k reads:

n = k − (1 + γ)
m

d

d

d

x0 x1 − x0 · x1

Rx1

+ O
(

c−4
)

, (3)

where d is the impact parameter

d = k × (x0 × k) = k × (x1 × k) . (4)

Eq. (3) is the standard post-Newtonian formula of light-deflection. By means of

sinϕ = |n × k|, we find the light-deflection angle ϕ = δ(n,k) in post-Newtonian

approximation:

ϕ = (1 + γ)
m

d

x0 x1 − x0 · x1

Rx1

+ O
(

c−4
)

. (5)

A post-post-Newtonian approximation shows that the neglected terms in Eq. (3) are of

the order O
(

m2

d2
x1

d

)

; see Eq. (94) in [12]. Due to the fact that x1

d can be arbitrarily

large, the contribution of the neglected terms in Eq. (3) can also be arbitrarily large in

general, depending on the concrete astrometrical configuration under consideration.

3. Post-post Newtonian solution

Now we will consider the trajectory of a light-signal in post-post-Newtonian

Schwarzschild metric: g00 = −1 + 2 a − 2 β a2 + O (c−6), gi0 = 0, gij = δij + 2 γ a δij +

ε

(

δij +
xi xj

x2

)

a2 + O
(

c−6
)

. The geodesic equation of light-propagation in post-post-

Newtonian approximation is given by [12]

ẍ = − (1 + γ) c2
ax

x2
+ 2 (1 + γ)

a ẋ (ẋ · x)

x2

+ 2 c2 α (β − ε + 2 γ (1 + γ))
a2 x

x2
+ 2α ε

a2 x (ẋ · x)2

x4

+ 2α (2(1 − β) + ε− 2 γ2)
a2 ẋ (ẋ · x)

x2
+ O

(

c−4
)

. (6)
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The solution of (6) and the transformation between the unit vectors n and k in post-

post-Newtonian order has been given in [12]. Here, we will write this transformation in

the following form:

n = k − (1 + γ)
m

d

d

d

x0 x1 − x0 · x1

Rx1

+ (1 + γ)2 m
2

d2

d

d

(x0 x1 − x0 · x1)
2

R2 d x1

+ n
scaling
1 + n

ppN
1 + O

(

c−6
)

, (7)

where the terms n
scaling
1 and n

ppN
1 are given in Appendix A. While n

scaling
1 × k = 0, we

note the esimate (for a proof see [19, 20]):

ωppN
1 =

∣

∣

∣n
ppN
1 × k

∣

∣

∣ ≤
15 π

4

m2

d2
. (8)

From (7) we obtain

ϕ = (1 + γ)
m

d

x0 x1 − x0 · x1

Rx1

− (1 + γ)2 m
2

d2

(x0 x1 − x0 · x1)
2

R2 d x1

− ωppN
1 + O

(

c−6
)

. (9)

Accordingly, the post-post-Newtonian solution contains ’regular’ terms of order m2

which have been estimated in (8) and so-called ’enhanced’ terms of orderm2 (i.e. the last

term in the first line of Eq. (7) or second term in (9)) which can be much larger than the

’regular’ ones. Note, that the ’enhanced’ terms of order m2 contain only the parameter

γ, thus these terms come from the post-Newtonian terms in the metric and geodesic

equation. Therefore, their origin is the second-order (post-post-Newtonian) solution

of the first-order (post-Newtonian) geodesic equation given in (1). This fact has been

clarified in [12]. Furthermore, in [12] it has been demonstrated that the ’enhanced’

terms result from the use of impact vector (4). This impact vector is convinient for

determining the light-propagation when positions of source and observer are given in a

concrete reference systems, e.g. the BCRS [11].

The light-deflection formula in (7) can be transformed in a form which resembles

the post-Newtonian formula (3) by means of the coordinate-independent impact vector

d ′, cf. Eq. (57) of [12]:

d ′ = lim
t→−∞

σ × (x(t) × σ) . (10)

This impact parameter has the property d ′ ≥ d and is identical to Chandrasekhar’s

impact parameter (see Eq.(215) in chapter 20 of [5]), that means in vectorial form

d ′ = L
E , where L is the orbital three-momentum and E is the energy of the photon on

the light-trajectory. While the impact vector d is a simple expression in terms of x0

and x1, the impact parameter d ′ is uniquely determined by x0 and x1 and by the mass

of the light deflecting body, but a complicated expression in terms of elliptic integrals.

An approximative relation between the impact vectors (4) and (10) has been given in

Eq. (62) in [12] and reads:

d ′ =
d

d

(

d+ (1 + γ)
m

d

x1 + x0

R

x0 x1 − x0 · x1

R

)

− (1 + γ)mk
x1 − x0 +R

R
+ O

(

c−4
)

,

(11)
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d ′ = d+ (1 + γ)
m

d

x0 + x1

R

x0 x1 − x0 · x1

R
+ O

(

c−4
)

. (12)

With the aid of the coordinate-independent impact vector Eq. (10), the transformation

between the vectors n and k in post-post-Newtonian order can be written as follows,

cf. Eqs. (108) and (109) of [12]:

n = k − (1 + γ)m
d ′

d ′2

x0 x1 − x0 · x1

Rx1

+ n
scaling
2 + n

ppN
2 + O

(

c−6
)

. (13)

The scaling term n
scaling
2 and n

ppN
2 are given in Appendix A. The expressions (7) and

(13) are identical. While n
scaling
2 × k = 0, we have the inequality (for a proof see [21])

ωppN
2 =

∣

∣

∣n
ppN
2 × k

∣

∣

∣ ≤
15 π

4

m2

d2
. (14)

From Eq. (13) we obtain the expression

ϕ = (1 + γ)
m

d ′

x0 x1 − x0 · x1

Rx1

− ωppN
2 + O

(

c−6
)

. (15)

The form of Eq. (15) resembles the post-Newtonian formula (3).

4. Classical lens equation

In this Section we consider some basic steps leading to the Classical lens equation.

According to the scheme in Figure 2, we obtain the following geometrical relations,

ϕ+ ψ = δ , (16)

a tanϕ = b tanψ , (17)

where the angles ϕ = δ(n,k), ψ = δ(k,µ), and the unit tangent vector µ =
ẋ(t0)

| ẋ(t0) |
.

Figure 2. A geometrical representation of gravitational lens.

a b

observer

source

a tan ϕ

δ (
µ

k

n
d

x1 x0



A generalized lens equation for small light-deflection angles 7

If source and observer are infinitely far from the massive body, then the total light-

deflection angle δ = δ (n,µ) in Schwarzschild metric reads [2]

δ = 2 (1 + γ)
m

d ′
+ O

(

m2

d ′2

)

+ O
(

c−6
)

, (18)

which is a coordinate independent result. The terms of order O

(

m2

d ′2

)

can be estimated

to be smaller or equal than
15 π

4

m2

d ′2
, see [2]. According to (16) in the limit x0 = x1 → ∞

we should have ϕ =
δ

2
, a strict condition which is satisfied by the expression (15) up to

the given order.

In classical lens approach, the approximation d ′ ' d+a tanϕ is used, see Figure 2.

Inserting this relation into (18), by means of geometrical relations (16) and (17), and

using tanϕ = ϕ+ O(ϕ3) and tanψ = ψ + O(ϕ3), we obtain the quadratic equation

ϕ2 +
d

a
ϕ− 2 (1 + γ)

m

a

b

a + b
= 0 . (19)

The solution of Eq. (19) is the classical lens equation,

ϕclass
1,2 =

1

2





√

d2

a2
+ 8(1 + γ)

m

a

b

a+ b
∓
d

a



 , (20)

where the solution with the upper (lower) sign is denoted by ϕ1 (ϕ2). The classical lens

equation is valid for arbitrary small values of d. Below we will see that (20) is restricted

for configurations where a � d and b � d. This is because relation (18) and the used

approximation for d ′ is only valid when source and observer are at infinity.

5. Generalized lens equation

There are extreme astrometrical configurations, where b ∼ d or even b � d are

possible. That means, in general astrometric configurations, neither
m

d
nor

d

b
are

small parameters. For instance, in binary systems the situations d = 0 or b = 0 are

possible. However, a small parameter it given by
m

d ′
� 1, because for b ≥ 0 the impact

parameter d ′ is always larger than the radius of massive body. Accordingly, the aim

of our investigation is to derive a generalized lens equation valid up to terms of the

order O

(

m2

d ′2

)

. Such a generalized lens equation will provide a link between Standard

post-Newtonian approach and Classical lens equation.

In the indroductionary Section we have formulated the three conditions under which

the generalized lens equation should be valid. We first notice that according to d ′ = L
E ,

the impact vector d′ is finite in the limit d → 0. On the other side, the approximative

relation (12) is not finite in this limit. However, up to the given order we can rewrite

(12) as follows:

d ′ = d+ (1 + γ)
m

d′
x0 + x1

R

x0 x1 − x0 · x1

R
+ O

(

c−4
)

, (21)
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which is a quadratic equation for Chandrasekhar’s impact parameter, having the solution

d ′ =
d

2
+

√

d2

4
+ (1 + γ)m

x0 + x1

R

x0 x1 − x0 · x1

R
+ O

(

c−4
)

. (22)

We note, that expression (22) is finite for d → 0 as well as in the limit R → 0. A

comparison of (21) with (15) yields the relation

d ′ = d+ x1 ϕ+
x0 + x1 − R

R
x1 ϕ+ O

(

c−4
)

, (23)

where ϕ is given by (15). By inserting (23) into (15) we obtain the quadratic equation

ϕ2 +
d

x1

ϕ− (1 + γ)
m

x1

x0 x1 − x0 · x1

R x1

+ δ1 + δ2 = O(c−6) , (24)

where δ1 =
d

x1

ωppN and δ2 =
x0 + x1 − R

R
ϕ2, and we note δ1 � ϕ2 and δ2 � ϕ2. The

solution of quadratic equation (24) reads

ϕ1,2 =
1

2

(
√

d2

x2
1

+ 4 (1 + γ)
m

x1

x0 x1 − x0 · x1

R x1

∓
d

x1

)

+ ΩppN + O
(

c−6
)

, (25)

where ϕ1 (ϕ2) is the solution with the upper (lower) sign. Eq. (25) represents the

generalized lens equation, which is valid in all those extreme astrometrical configurations

defined in 1. - 3. in the introductionary Section. One can show, that expression ΩppN

can be estimated as follows:

ΩppN =
1

4
(δ1 + δ2)

(

d2

x2
1

+ 4 (1 + γ)
m

x1

x0 x1 − x0 · x1

R x1

)−1/2

≤
15 π

4

m2

d′2
. (26)

In the following Section we will show that the formula (25) represents a link between

Standard post-Newtonian approach and Classical lens equation.

6. Discussion of generalized lens equation

6.1. Comparison with post-Newtonian and post-post-Newtonian solution

In this Section we compare the generalized lens equation (25) with the standard post-

Newtonian and post-post-Newtonian approach of light-deflection. A series expansion of

the solution ϕ1 in Eq. (25) for d� m yields

ϕ1 = ϕpN + ϕppN + ΩppN + O
(

c−6
)

, (27)

with

ϕpN = (1 + γ)
m

d

x0 x1 − x0 · x1

Rx1

, (28)

ϕppN = − (1 + γ)2 m
2

d2

(x0 x1 − x0 · x1)
2

R2 d x1

. (29)

This expression coincides with (9) up to the given order. That means, a series expansion

of the generalized lens equation (25) yields the standard post-Newtonian solution (3)

and the ’enhanced’ post-post-Newtonian term in (7); cf. Eqs. (3) and (4) in [21]. A

further series expansion of Eq. (25) would yield the ’enhanced’ terms beyond post-post-

Newtonian terms.
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6.2. Derivation of classical lens equation from generalized lens equation

In order to consider the relation of generalized lens equation (25) and classical lens

equation (20), we rewrite (25) in terms of a and b and obtain

ϕ1,2 =
1

2













√

√

√

√

√

√

d2

a2
+ 2(1 + γ)

m

a

(a+ b)2 −
(

a
√

1 + ε21 − b
√

1 + ε22

)2

(a+ b) a
∓
d

a













1
√

1 + ε21

+ ΩppN + O
(

c−6
)

, (30)

where ε1 =
d

a
and ε2 =

d

b
. The classical lens equation (20) is valid in case of a, b � d.

A corresponding series expansion of generalized lens equation (30) in terms of ε1 and ε2
leads to (see Appendix B)

ϕ1,2 = ϕclass
1,2 + O

(

m

a

d

a

)

+ O

(

m

a

d

b

)

+ ΩppN + O
(

c−6
)

, (31)

where ϕclass
1,2 is defined by Eq. (20). For astrometry the relevant configurations are such

that d � a, while in extreme but nevertheless real astrometrical configurations the

situation b� d is possible, e.g. in binary systems. Therefore, the classical lens equation

is not applicable for such configurations.

Finally, we also note that in the limit d → 0, known as Einstein ring solution, we

obtain

lim
d→0

ϕ1,2 =

√

2 (1 + γ)
m

x1

x0

x0 + x1

. (32)

In the limit d→ 0 the classical lens equation coincides with (32); note, that in this limit

a = x1 and b = x0. In the extreme configuration b = 0 (in this limit ϕ2 does not exist)

we obtain the finite result

lim
b→0

ϕ1 =
1

2





√

√

√

√

d2

x2
1

+ 4 (1 + γ)
m

x1

d a

(x1 + d) x1

−
d

x1



 , (33)

while the classical lens equation yields simply ϕclass
1 = 0. Obviously, in the limit a → 0

the expression (33) yields zero as it has to be.

6.3. Comparison with exact solution

The accuracy of (25) and the estimate (26) has been confirmed by a comparison with

the exact numerical solution. For that, we have solved the geodesic equations in

Schwarzschild metric by numerical integrator ODEX [9] for several extreme astrometrical

configurations. Using forth and back integration a numerical accuracy of at least 10−24

in the components of position and velocity of the photon is guaranteed. Thus, the

numerical integration can be considered as an exact solution of geodesic equation. This

numerical approach has been described in some detail in [12]. In all considered extreme



A generalized lens equation for small light-deflection angles 10

configurations the validity of (25) and the estimate (26) have been confirmed. As a

typical example, in Figure 3 we present the results for light-deflection of a grazing ray

at Sun and Jupiter. The accuracy of generalized lens equation (25) is considerably

better than the post-post-Newtonian solution investigated in detail in [19], cf. FIG. 3

(B) with FIG. 2 in [19].

Figure 3. Comparison of generalized lens equation (25) with exact numerical solution.

(A) for the case of a grazing ray at Sun (m� = 1476.6 m, d
′ = 696.0× 106 m). (B) for

the case of a grazing ray at Jupiter (m = 1.40987 m, d
′ = 71.492× 106 m).
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7. Summary

Modern astrometry of microarcsecond level, e.g. ESA mission GAIA, needs highly

precise approximative solutions for light-deflection. In order to determine the light

deflection analytically, there are two essential approaches: Standard post-Newtonian

approach valid for m � d and Classical lens equation valid for source and observer

far enough from the lens, especially when a � d and b � d. However, there are

astrometrical configurations, where none of them are applicable, e.g. in binary systems.

In order to investigate the light-deflection in such systems a link between these both

approaches is needed. Such a link can be provided by a Generalized lens equation

which, in the appropriate limits, coincides with Standard post-Newtonian approach and

Classical lens equation. In our study we have suggested a generalized lens equation

(25) for Schwarzschild metric which is valid for small light-deflection angles. The

derivation is based on the solution of geodesic equation in post-Newtonian metric and

Chandrasekhar’s coordinate independent impact parameter d ′ (10). The neglected

terms in (25) can be estimated by ΩppN ≤ 15 π
4

m2

d ′2
. The accuracy of generalized lens

equation (25) is considerably better than the post-post-Newtonian solution investigated

in some detail in [19].

The generalized lens equation satisfies three conditions formulated in the

introductionary Section. Especially, we have shown that in the appropriate limits

we obtain the post-Newtonian terms, ’enhanced’ post-post-Newtonian terms and the

Classical lens equation. Thus, the generalized lens equation (25) provides a link
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between these both essential approaches to determine the light-deflection. Numerical

investigations have confirmed the analytical results obtained. The generalized lens

equation (25) will allow an analytical understanding and investigation of light-deflection

in extreme astrometric configurations.
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Appendix A. The terms n
scaling
1 , n

ppN
1 and n

scaling
2 , n

ppN
2

According to Eq. (87) in [12], the transformation between n and k in post-post-

Newtonain order is given by Eq. (13), where the scaling term is given by

n
scaling
1 = −

1

8
(1 + γ)2 m

2

d2
k

((x1 − x0)
2 − R2)

2

R2 x2
1

. (A.1)

Furthermore,

n
ppN
1 = m2 k × (x0 × x1)

[

1

2
(1 + γ)2 R

2 − (x1 − x0)
2

x2
1 |x1 × x0|2

+
1

4
α ε

1

R

(

1

Rx2
0

−
1

Rx2
1

− 2
k · x1

x4
1

)

−
1

4
( 8(1 + γ − αγ)(1 + γ) − 4αβ + 3α ε ) R

k · x1

x2
1 |x1 × x0 |2

+
1

8
(8(1 + γ − α γ)(1 + γ) − 4αβ + 3α ε)

x2
1 − x2

0 −R2

|x1 × x0|3
δ(x1,x0)

]

+ (1 + γ)2 m
2

d2

d

d

(x0 x1 − x0 · x1)
2

R2 d x1

x0 + x1 − R

R
. (A.2)

In Eq. (13) we have introduced the scaling term

n
scaling
2 = n

scaling
1 − (1 + γ)2 m

2

d2
k
x0 x1 − x0 · x1

Rx1

x1 − x0 +R

R
, (A.3)

and

n
ppN
2 = n

ppN
1 − (1 + γ)2

m2

d2

d

d

(x0 x1 − x0 · x1)
2

R2 d x1

x0 + x1 −R

R
. (A.4)

In case of general theory of relativity we have β = γ = ε = 1. The choice α = 0 means

that we obtain the solution of post-Newtonian geodesic equation (1).
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Appendix B. Series expansion of generaized lens equation

The series expansion of generalized lens equation (25) in the form (30) yields

ϕ1,2 = ϕclass
1,2 −

1

4
ϕclass

1,2 ε21 + (1 + γ)
m

a

b− a

a+ b

1
√

d2

a2
+ 8 (1 + γ)

m

a

b

a + b

ε21

+ (1 + γ)
m

a

b

a

a− b

a+ b

1
√

d2

a2
+ 8 (1 + γ)

m

a

b

a+ b

ε22 + O
(

ε41
)

+ O
(

ε42
)

+ O
(

ε21 ε
2
2

)

.

(B.1)

By means of
| b− a |

a+ b
≤ 1 and

(

d2

a2
+ 8 (1 + γ)

m

a

b

a+ b

)−1/2

≤
a

d
we obtain (31).

References

[1] Ashby N and Bertotti B 2009 arXiv:0912.2705

[2] Bodenner J and Will C M 2003 Am. J. Phys. 71 770

[3] Brumberg V A 1987 Kinematica i physika nebesnykh tel 3 8 (in Russian)

[4] Brumberg V A 1991 Essential Relativistic Celestial Mechanics (Bristol: Adam Hilder)

[5] Chandrasekhar S 1983 The mathematical Theory of Black Holes (Oxford: Clarendon Press)

[6] Chwolson O 1924 Astronomische Nachrichten 221 329

[7] Dyson F W, Eddington A S and Davidson C 1920 Philos. Trans. Royal Soc. London 220 A 291

[8] Einstein A 1936 Science (New Series) Vol. 84 No. 2188 506

[9] Hairer E, Norsett S P and Wanner G 1993 Solving Ordinary Differential Equations 1. Nonstiff

problems (Berlin: Springer); the software is available from http://www.unige.ch/~hairer/

software.html

[10] Klimov Yu G 1963 Dokl. Akad. Nauk. SSSR 148 789

[11] Klioner S A 2003 Astron.J. 125 1580

[12] Klioner S A and Zschocke S 2010 Class. Quantum Grav. 27 075015

[13] Klioner S A and Zschocke S 2009 arXiv:0911.2170

[14] Liebes P 1964 Phys. Rev. 133 B 835

[15] Lodge O J 1919 Nature 104 354

[16] Refsdal S 1964 Mon. Not. R. Astron. Soc. 128 295

[17] Teyssandier P and Le Poncin-Lafitte Chr 2008 Class. Quantum Grav. 25 145020

[18] Teyssandier P 2010 arXiv:1012.5402

[19] Zschocke S and Klioner S A 2009 arXiv:0904.3704

[20] Zschocke S and Klioner S A 2009 arXiv:0907.4281

[21] Zschocke S and Klioner S A 2010 arXiv:1007.5175

[22] Zwicky F 1937 Phys. Rev. Lett. 51 290


