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Abstract 13 

There is increasing interest in using GRACE (Gravity Recovery and Climate Experiment) 14 

satellite data to remotely monitor groundwater storage variations; however, comparisons with 15 

ground-based well data are limited but necessary to validate satellite data processing, 16 

especially when the study area is close to or below the GRACE footprint. The Central Valley is a 17 

heavily irrigated region with large-scale groundwater depletion during droughts. Here we 18 

compare updated estimates of groundwater storage changes in the California Central Valley 19 

using GRACE satellites with storage changes from groundwater level data. A new processing 20 

approach was applied that optimally uses available GRACE and water balance component data 21 

to extract changes in groundwater storage. GRACE satellites show that groundwater depletion 22 

totaled ~31.0±3.0 km3 for GRGS (Groupe de Recherche de Geodesie Spatiale) satellite data 23 

during the drought from Oct 2006 through Mar 2010. Groundwater storage changes from 24 

GRACE agreed with those from well data for the overlap period (Apr 2006 through Sep 2009) 25 

(27 km3 for both). General correspondence between GRACE and groundwater level data 26 

validates the methodology and increases confidence in use of GRACE satellites to monitor 27 

groundwater storage changes.  28 

Introduction 29 

Water scarcity is a critical issue globally with an estimated 1.1 billion people lacking access 30 

to safe drinking water globally (UN Development Program, 2006). Groundwater is increasingly 31 

being used for drinking water and serves an estimated 1.5 – 2.8 billion people globally and up to 32 

98% of rural populations (Morris et al., 2003). There has been a rising trend in groundwater use 33 

for irrigation since the 1940s and 1950s and groundwater now accounts for ~40% of irrigation 34 

water globally (Siebert and Döll, 2010). Increasing reliance on groundwater for drinking water 35 

and irrigation is attributed to ubiquity of groundwater resources, ease of development with 36 

minimal capital costs, generally good water quality because of filtering during recharge, and 37 

greater resilience to drought relative to surface water (Giordano, 2009). The importance of 38 

groundwater to water resources should continue to increase with projected reductions in 39 

reliability of surface water and soil moisture associated with climate extremes related to climate 40 

change (Kundzewicz and Döll, 2009).  41 

Groundwater is often referred to as the invisible resource and our understanding of the 42 

dynamics of groundwater resources is generally much less than that of surface water. 43 

Monitoring networks for groundwater are more limited than those of surface water. Even when 44 

monitoring networks are available, access to data is often restricted. Because of the general 45 
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lack of monitoring data, there has been great interest in use of remote sensing to monitor 46 

changes in groundwater storage, specifically in use of GRACE satellites. GRACE consists of 47 

two satellites that track each other at a distance of ~220 km and are ~450 km above the land 48 

surface. A rule of thumb for estimating GRACE footprint is to use the elevation of the satellites 49 

(450 × 450 km = ~ 200,000 km2 basin area).  Measurements of the distance between the 50 

satellites to within micron scale resolution are used to derive a global map of changes in the 51 

Earth’s gravity field at 10-day to monthly intervals. Gravity variations at monthly to annual 52 

timescales may be interpreted as changes in water distribution on the continents after correction 53 

for impacts of tidal, atmospheric, and oceanic contributions (Bettadpur, 2007; Bruinsma et al., 54 

2010).  55 

GRACE data provide vertically integrated estimates of changes in total water storage 56 

(TWS), which include changes in snow water equivalent storage (SWES), surface water 57 

reservoir storage (RESS), soil moisture storage (SMS), and groundwater storage (GWS). Using 58 

a priori monitoring or model-based estimates of SWES, RESS, and SMS, changes in GWS can 59 

be calculated as a residual from the disaggregation equation: GWS= TWSSWES - 60 

RESS - SMS. 61 

GRACE satellites provide continuous monitoring of TWS changes globally. GRACE has 62 

been used to monitor GWS changes in global hotspots of depletion (Wada et al., 2010) in NW 63 

India (Rodell et al., 2009; Tiwari et al., 2009), US High Plains (Strassberg et al., 2007; 64 

Longuevergne et al., 2010), and in the California Central Valley (Famiglietti et al., 2011). 65 

However, with the exception of the High Plains, where detailed groundwater level monitoring 66 

has been conducted since the 1980s in ~ 9000 wells annually (McGuire, 2009), GRACE-based 67 

estimates of GWS have not been compared with ground-based data in NW India or in the 68 

Central Valley. Other studies that have compared GRACE data with groundwater level 69 

monitoring data have generally focused on seasonal signals rather than long-term trends and 70 

groundwater level data have generally been limited to ≤100 wells (Yeh et al., 2006; Moiwo et al., 71 

2009; Rodell et al., 2007).   72 

GRACE satellites provide a spatially filtered image of real TWS that needs to be processed 73 

to produce information on changes in TWS over a space-limited area or basin (Swenson and 74 

Wahr, 2002; Klees et al., 2007; Longuevergne et al., 2010). A large number of processing steps 75 

and uncertainties in other water balance components used to estimate changes in GWS from 76 

TWS make it imperative to compare GRACE GWS changes with ground-based data to assess 77 

their validity, especially when the size of the area of interest is close to or below GRACE 78 

footprint (~200,000 km²) (Yeh et al., 2006). Ground-based estimates of GWS changes are 79 
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generally derived from water table or potentiometric surface fluctuations and require information 80 

on aquifer storage coefficients to translate water level fluctuations to water storage (Domenico 81 

and Schwartz, 1998).   82 

The primary objective of this study was to compare GRACE-based estimates of GWS 83 

changes in the Central Valley of California with ground-based estimates from water-level data 84 

from wells to assess reliability of GRACE-based estimates of groundwater depletion. Secondary 85 

objectives include use of an updated processing approach for GRACE data that considers 86 

spatial variability in water balance components and should reduce uncertainties in GWS and 87 

evaluation of different temporal filters for estimation of long-term trends in storage. for GRACE 88 

data The area of the Central Valley (52,000 km2) is below the limit of GRACE footprint 89 

(~200,000 km2); however, large mass changes in the aquifer as a result of irrigation pumpage 90 

allow storage changes to be detected by GRACE. The Central Valley is an extremely important 91 

region for agricultural productivity in California and in the US with an economic value of ~ 20 92 

billion dollars in 2007 (NASS, 2007; http://www.nass.usda.gov/, accessed in 2010). Because 93 

this region plays a large role in table food production in the US it is critical to understand the 94 

dynamics of the groundwater system which is essential for irrigated agriculture, particularly in 95 

the Tulare Basin in the south. Previous groundwater modeling shows large-scale depletion 96 

during droughts (Faunt, 2009); therefore, the recent drought from ~ 2006 – 2009 should provide 97 

a large signal for GRACE analysis. This study expands on the recent analysis of GRACE data 98 

for the Central Valley described in Famiglietti et al. (2011) by comparing results from GRACE-99 

based estimates of GWS changes with those from groundwater level data and using a different 100 

processing approach 101 

Methods 102 

GRACE Data  103 

Water storage changes were estimated for the Sacramento and San Joaquin River Basins 104 

(154,000 km2 area), which include the Central Valley (52,000 km2 area) (Fig. 1). GRACE data 105 

from CSR (Center for Space Research, Univ. of Texas at Austin)and GRGS analysis centers 106 

were used because they represent two different processing strategies: one of the least 107 

constrained solutions, CSR RL04 (Bettadpur, 2007) and one of the most constrained, GRGS 108 

RL02 (Bruinsma et al., 2010). Comparison of these two products allows estimation of the 109 

confidence in GRACE-derived water storage changes. CSR provides data at monthly intervals 110 

and GRGS at 10 day intervals. The GRACE processing approach was updated in this study 111 

http://www.nass.usda.gov/
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relative to the regular processing approach applied in most studies. The following sections 112 

describe the regular processing approach which provides context for the updated approach.  113 

Regular GRACE Processing 114 

The regular processing approach estimates changes in TWS from GRACE data by filtering 115 

the data, applying corrections for bias and leakage (Swenson et al., 2002, Klees et al., 2007, 116 

Longuevergne et al., 2010) and solving the disaggregation equation to calculate changes in 117 

GWS as shown in Fig. 2. This processing is described in detail in Auxiliary Material (Section 1).  118 

Changes in TWS are estimated from GRACE data by recombining spherical harmonics up 119 

to degree 50 (truncation to degree 50) for GRGS and to degree 60 for CSR. Further filtering was 120 

applied to CSR data to remove north-south stripes (Swenson and Wahr, 2006) and to reduce 121 

high frequency noise (300 km Gaussian smoother). No further filtering beyond truncation at 122 

degree 50 was applied to GRGS data because there are no north-south stripes and the 123 

regularization process used on GRGS precludes the need for additional filtering. In the 124 

following, filtering will refer to both truncation and filtering. 125 

Because filtering removes TWS signal at small spatial scales, in addition to high frequency 126 

noise, the amplitude of the TWS signal has to be restored. Most studies calculate a rescaling or 127 

multiplicative factor to restore the signal amplitude by applying the same filtering as applied to 128 

GRACE data to a synthetic mass distribution and calculating the ratio between filtered and 129 

unfiltered data. Applying filtering to a synthetic mass distribution is sometimes referred to as 130 

“forward modeling” and generates a mass distribution similar to what GRACE sees. Ideally the 131 

synthetic mass distribution should match the actual mass distribution as closely as possible. For 132 

TWS, this mass distribution should include all components of the water budget. The synthetic 133 

mass distribution is generally derived from Global Land Data Assimilation System (GLDAS) land 134 

surface models (LSMs), such as CLM, MOSAIC, NOAH, and VIC. Output from the LSMs is 135 

generally used as a proxy for the true water mass distribution. The reliability of LSM outputs 136 

depends on the ability of the LSM to approximate the true water mass distribution in the system. 137 

LSMs are simplifications of the natural system with limited resolution and most simulate snow 138 

and soil moisture storage but generally do not include surface water or groundwater storage. 139 

Runoff is simulated but is not routed, and cold processes are not simulated accurately 140 

(especially glaciated areas). Water redistribution from groundwater to soils through irrigation is 141 

also not simulated in most LSMs. The signal restoration process uses spatial variability from 142 

LSMs which may or may not be realistic and could lead to biased estimates in TWS 143 

(Longuevergne et al., 2010). Once the TWS signal is restored, the various water balance 144 
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components, including SWES, RESS, and SMS basin averages, are then subtracted from TWS 145 

to calculate GWS as a residual (Fig. 2). Therefore, this regular processing approach does not 146 

consider spatial variability of masses in a basin and uses a rescaling factor based on a priori 147 

LSM masses that ignore GWS. 148 

Updated GRACE Processing 149 

GRACE processing was updated in this study to provide more reliable estimates of GWS 150 

changes with optimal use of available information. The new processing approach differs from 151 

the regular approach in calculating GWS from TWS using filtered data at GRACE resolution 152 

before any rescaling is applied (Fig. 2). In this updated approach, GRACE data were 153 

recombined and filtered to provide filtered TWS as previously described. The various water 154 

balance components (SWES, SMS, and RESS) were then filtered in the same way as GRACE 155 

data, i.e. projection of model grids on spherical harmonics, recombination to maximum degree 156 

50 for comparison with GRGS data or degree 60 for comparison with CSR data and application 157 

of a 300 km Gaussian filter for comparison with CSR data. Gridded SWES and SMS data and 158 

point RESS data were used, allowing spatial variability in these different storage components to 159 

be incorporated in the processing, in contrast to the regular processing approach which uses 160 

basin means. Restoring the amplitude of the filtered GWS signal only requires bias correction 161 

(simple rescaling) and no leakage correction (no external groundwater masses leaking into the 162 

area of interest) because GWS changes are assumed to be concentrated inside the aquifer; 163 

therefore, errors associated with leakage corrections should be minimized. Bias correction was 164 

done using a multiplicative factor that was calculated from the ratio of unfiltered to filtered GWS 165 

changes from output from the USGS Central Valley hydrologic model. This is important because 166 

GWS changes are highly variable spatially, i.e. ~ 10 times greater in the Tulare Basin in the 167 

south than elsewhere in the Central Valley (Faunt, 2009). This updated processing approach 168 

minimizes reliance on a-priori information and allows GRACE to be used as independent 169 

observational data as much as possible. However, this updated approach requires knowledge of 170 

changes in SWES, SMS, and RESS inside and outside the basin and the quality of the GWS 171 

changes still depends on the quality of the models for these water balance components. 172 

Computation of GWS is independent of the TWS calculation at basin scale. 173 

Spatial distribution of water masses may differ among storage components and may have 174 

different signatures at GRACE resolution (i.e. filtered). For example, SMS is more or less 175 

distributed uniformly over the area of interest; however, SWE is concentrated in the mountains, 176 

generally at the edge of the basins, while GWS may be focused in on one part of the basin. The 177 
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importance of considering spatial variability in mass variations within the different storage 178 

components on GRACE GWS changes is shown by comparing the different multiplicative 179 

factors for converting filtered storages to true storages calculated separately for each 180 

component of the water budget. The equivalent multiplicative factor to restore the GRACE 181 

signal for GRGS (CSR) varies by up to 15% depending on spatial variability in water mass 182 

distribution (2.69 for GRGS (4.94 for CSR)) multiplicative factor for SWES, i.e. unfiltered SWES 183 

divided by filtered SWES, 2.30 (4.29) for RESS, 2.58 (4.74) for SMS, and 2.37 (4.28) for GWS). 184 

The more concentrated the mass distribution, the lower the multiplicative factor. Therefore, use 185 

of a single multiplicative factor applied to TWS in the regular processing approach ignores 186 

spatial variability in water storage in each of the components and increases propagation of 187 

uncertainties in GRACE GWS estimates. 188 

Water Storage Components and Uncertainties 189 

The following describes each of the water storage components and estimation of 190 

uncertainties. Changes in TWS over the Central Valley river basins were estimated from CSR 191 

and GRGS data as described previously and also in more detail in Auxiliary Material (Section 1). 192 

TWS was not used directly to calculate GWS but was only estimated to evaluate temporal 193 

variability in TWS in the system. Uncertainties in TWS changes were estimated from GRACE 194 

measurement uncertainties derived from residuals over the Pacific Ocean at the same latitude 195 

as the Sacramento and San Joaquin River Basins (Chen et al. 2009) with a magnitude 18 mm 196 

for GRGS and 22 mm for CSR.  While GRACE is corrected from Glacial Isostatic Adjustment 197 

(GIA) using the ICE5G PGR model from Paulson et al. (2007), impacts of GIA in the Central 198 

Valley are minimal.  199 

Uncertainties in GWS were estimated from propagating errors in SWE, RESS, and SMS 200 

from LSMs into GWS changes, resulting in 10 d (for GRGS) and monthly (for CSR) errors in 201 

GWS with a magnitude of 55 mm for GRGS and 67 mm for CSR. As the rescaling or 202 

multiplicative factor has a direct impact on the amplitude of GWS changes, we also computed 203 

an error estimate on the bias correction for GWS. Sources of uncertainty in the multiplicative 204 

factor are twofold: (1) numerical calculation in the integration process, estimated to be ≤1% 205 

when integrating on a 0.25 degree grid (Longuevergne et al., 2010), and (2) uncertainty in mass 206 

distribution within the area of interest. For the latter uncertainty, the multiplicative factor was 207 

calculated with different realistic mass distributions: USGS Central Valley hydrologic model, 208 

considering simulated mass depletion in the different subbasins during the previous droughts 209 

and well analysis (see later), considering spatial variability in water level variations, variability in 210 
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specific yield, or multiplication of both. Variability among computed multiplicative factors is ~ 211 

6%.  212 

Water storage changes from snow cover were based on snow data assimilation system 213 

(SNODAS). Because SNODAS assimilates ground-based snow water equivalent (SWE) 214 

estimates in California (Barret, 2003), it is considered the most reliable model for this study. As 215 

SNODAS output is only available after October 2003, the time series was supplemented with 216 

SWE output from the National Land Data Assimilation System (NLDAS) MOSAIC land surface 217 

model, LSM rescaled with SNODAS data. The scaling factor was calculated by comparing 218 

standard deviations from SNODAS and NLDAS MOSAIC SWE for overlapping times. 219 

Uncertainties in SWES were estimated from variability between SNODAS and scaled NLDAS 220 

MOSAIC model. Calculated monthly uncertainties in SWES are 28 mm based on differences 221 

between the models; however, calculated uncertainties do not include potential model bias.  222 

Variations in surface water reservoir storage were estimated from changes in water storage 223 

in the 26 largest reservoirs in the Sacramento-San Joaquin basins (California Department of 224 

Water Resources (http://cdec.water.ca.gov/) (Auxiliary Material, Section 2, Table S1). Because 225 

information on uncertainties in reservoir storage volumes is not available (only uncertainties in 226 

water level changes of ~3 mm from California Department of Water Resources), a conservative 227 

estimate of 10% reservoir volume error was assumed. To estimate changes in soil moisture 228 

storage, output from GLDAS LSMs (MOSAIC and VIC at 1° resolution and NOAH at 0.25° 229 

resolution) and NLDAS (MOSAIC at 0.125° resolution) were averaged. Uncertainties in SMS 230 

were estimated from variability among the LSMs (~ 3 mm/yr). Kato et al. (2007) showed that the 231 

variability among GLDAS models is greater than variability among forcing datasets and that the 232 

root mean square (RMS) error of SMS from the LSMs can be used as a conservative estimate 233 

of SMS uncertainty.  234 

Trends in each of the water budget components were calculated to estimate storage 235 

depletion in response to the drought. Various temporal filters were applied to assess their 236 

impact on calculated water storage changes. Some suggest that the raw data should be used to 237 

estimate trends; however, most studies apply a temporal filter to remove seasonal fluctuations 238 

and high frequency noise to estimate long-term trends. One filtering approach was to remove 239 

seasonal components of the data series using a six-term harmonic series (sine and cosine 240 

periodic waves with annual, semiannual, and 3-month periods). A centered 12 month moving 241 

average was also applied. A fourth order Butterworth low-pass filter was finally tested. Trends in 242 

water storage changes and associated standard errors were estimated using weighted linear 243 

least squares regression, considering the inverse of squared errors in the weighting process.  244 

http://cdec.water.ca.gov/
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Groundwater Level Data 245 

Groundwater data were obtained from the California Department of Water Resources 246 

(www.water.ca.gov/waterdatalibrary) to estimate GWS changes for comparison with GRACE-247 

based estimates (Fig. 1). The Central Valley includes a shallow unconfined aquifer and deeper 248 

confined aquifers (Faunt, 2009). The unconfined aquifer provides water through drainable 249 

porosity related to water table decline times aquifer storage coefficient, termed specific yield. In 250 

contrast, the confined aquifer provides water through compressibility of water and the skeletal 251 

matrix and the aquifer storage coefficients are orders of magnitude less than those in the 252 

unconfined aquifer. In this analysis we focused on water storage changes in the unconfined 253 

aquifer because they are generally greater than those in the confined aquifer and many wells 254 

penetrate both aquifers, increasing hydraulic connectivity between the unconfined and confined 255 

systems (Faunt, 2009). Changes in GWS were computed from water-level time series from 256 

wells using the Karhunen-Loève transform which extracts the temporal signal in the regional 257 

groundwater behavior from a set of well observations with local representativity [Longuevergne 258 

et al., 2007]. Other terms used to describe KLT analysis in different fields include singular value 259 

decomposition (SVD) and empirical orthogonal functions (EOFs). Linear interpolation was used 260 

to recompute seasonal variations because KLT requires monitoring data for the same dates. 261 

The first three eigenvectors were considered which account for ~ 80% of the total variance. 262 

Kriging was used for analysis of spatial variability in water level data. 263 

To evaluate results of the KLT well analysis, we compared GWS changes from well data 264 

with storage changes estimated from a groundwater model of the Central Valley that simulated 265 

flow from 1962 – 2003 (Faunt, 2009). While this comparison is not a true test of the KLT well 266 

analysis approach because the water level data were used in the groundwater model 267 

calibration, the Central Valley hydrologic model provides a much more comprehensive 268 

description of the groundwater system and this comparison provides a check on the well 269 

analysis technique. While data from 2,256 wells are available, this analysis requires temporally 270 

continuous data; therefore, only 670 wells were used from 1982 through 2010. Selected wells 271 

are generally sampled twice a year, during high and low water times, allowing general 272 

reconstruction of seasonal variations. Mean groundwater level changes over the aquifer were 273 

then computed using kriging and GWS changes were derived considering distributed specific 274 

yield data from Faunt (2009). A 10% uncertainty in specific yield data was also included 275 

because there are no published estimates on uncertainties in specific yield. Relative errors from 276 

the two sources of uncertainties were added up (10% specific yield, 2% kriging). 277 

278 
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Results and Discussion  279 

Changes in precipitation are one of the primary drivers of water storage variations. 280 

Precipitation anomalies from 2002 through 2010 ranged from -11 to -69 mm during 2002 281 

through 2004 but were high (surplus) during 2005 (227 mm) and 2006 (110 mm) (Fig. 3). 282 

Negative precipitation anomalies (deficit) were recorded during the drought with the lowest 283 

values in 2007 (-259 mm) with lesser deficits in 2008 (-155 mm) and 2009 (-81 mm). The 284 

drought ended in 2010 with a positive precipitation anomaly of 290 mm.  285 

Monthly TWS changes from GRGS and CSR TWS are highly correlated (r2=0.93) and 286 

amplitude ratios are close to one, even after removal of seasonal variations (Fig. 3). Moreover, 287 

the difference between CSR and GRGS TWS time series (~26 mm) is slightly larger but very 288 

similar to estimated monthly RMS errors (18 mm for GRGS and 22 mm for CSR). Similarity in 289 

TWS changes from GRGS and CSR increases confidence in GRACE output from different 290 

processing centers. TWS changes are highest in spring (Feb/Mar) and lowest in fall (Sept/Oct) 291 

with amplitudes ranging from 15 to 30 km3 at different times. TWS changes were relatively 292 

uniform during 2002 to 2004 and increased by ~15 km3 (Apr 2004 – Mar 2006, GRGS and CSR) 293 

in response to increased precipitation. Depletion in TWS during the drought was greatest during 294 

the beginning of the drought, when precipitation was lowest in 2007 (-259 mm). The drought has 295 

been documented to persist during water years 2007 through 2009 (i.e. Oct 2006 through Sept 296 

2009) (Jones, 2010). The maximum depletion in TWS occurred from Jan 2006 through Jul 2009 297 

and ranged from 39.0±2.5 km3 (CSR) to 40.8±0.9 km3 (GRGS) based on a Butterworth filter to 298 

remove seasonal signals and high frequency noise. Different filters were evaluated; however, 299 

errors in the Butterworth filter were among the lowest (Auxiliary Material, Section 3, Fig. S1).  300 

The largest reductions in snow water equivalent and soil moisture storage occurred during 301 

winter of 2006 – 2007 because this was the driest period of the drought (Fig. 4). The snowpack 302 

reservoir decreased markedly during the winter of 2006 – 2007 but increased after that resulting 303 

in essentially zero overall change in storage during the drought. Surface water reservoir storage 304 

from the 26 largest reservoirs decreased by 7.3±0.6 km3 from Oct 2006 through Sep 2009. The 305 

largest reductions in simulated SMS from the various LSMs also occurred during the first year of 306 

the drought with recovery after that time. Simulated changes in SMS may not be highly reliable 307 

because the LSMs do not simulate redistribution of water from the aquifer to the soil zone from 308 

irrigation.  309 

310 



 11 2/13/2012 

GRACE Estimates of GWS Changes and Comparison with Groundwater Level Data 311 

While the GWS change signal varies around that of TWS (standard deviation TWS [CSR & 312 

GRGS] 20 km3, GWS CSR 21 km3; GWS GRGS 13 km3), uncertainties in GWS changes are 313 

about a factor of three higher than those in TWS (RMS errors: CSR: GWS 10.2 km3; TWS 3.3 314 

km3; GRGS GWS 8.4 km3; TWS 2.8 km3). The following discussion focuses on GWS changes 315 

from GRGS data because they are less noisy than those from CSR data (Fig. 5; Auxiliary 316 

Material, Section 4, Fig. S3). The temporally filtered GWS data show that GWS increased 317 

slightly from Apr 2004 through Mar 2006 (2.7±0.5 km3) when precipitation was high. However, 318 

GWS decreased sharply during the drought by 31.0±3.0 km3 from Oct 2006 through March 2010 319 

(Table 1). Use of raw data resulted in depletion of only 5.1 km3, showing the importance of 320 

temporally filtering the data to remove seasonal signals and high frequency noise. The 321 

Butterworth and centered 12 month moving average filters provided similar results whereas the 322 

seasonal sine/cosine function did not smooth the data and resulted in the largest errors (±5 km3) 323 

(Auxiliary Material, Section 3, Fig. S2). Mean GWS depletions from this study are 16% 324 

(27.7±5.2 km3 CSR) and 44% (34.4±3.2 km3 GRGS) higher than that based on analysis by 325 

Famiglietti et al. (2011) for CSR (23.9±5.8 km3) for the same time period (Apr 2006 through Mar 326 

2010). Therefore GWS depletions during the drought in this study are within the error bars for 327 

CSR data and slightly higher for GRGS data relative to the estimate from Famiglietti et al. 328 

(2011).  329 

Although there is a seasonal component to the GRACE based GWS changes (~30 mm) for 330 

GRGS, ~47 mm for CSR, which is below the 10 d to monthly error estimate (GRGS 55 mm; 331 

CSR 67 mm), it is not considered reliable because it is the residual of seasonal fluctuations in 332 

other water balance components, including SWES, RESS, and SMS, and reflects uncertainties 333 

in seasonal storage changes in these components with associated phase lags that can result in 334 

large differences after subtraction.  335 

GWS changes were also calculated from well data by converting water level changes to 336 

water volumes using spatially distributed specific yield (Fig. 6). Typical well hydrographs for the 337 

different basins indicate minimal water level declines in the north and all declines focused in the 338 

Tulare Basin in the south (Fig. 1). GWS changes using KLT for time series analysis and kriging 339 

for spatial variability in this study compared favorably with simulated GWS changes from the 340 

Central Valley hydrologic model for the overlap period of the groundwater model (r2 = 0.98; Fig. 341 

7). Well analysis for the 1987 – 1992 drought yielded a GWS decline of 8.2 km3/yr, similar to the 342 

simulated GWS decline from the model of 8.2 km3/yr. This comparison gives confidence in the 343 
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KLT/kriging approach used to analyze the well data. Although the Central Valley model also 344 

used the well data for calibration, the model represents a much more comprehensive evaluation 345 

of the groundwater system.  346 

To compare GWS changes from the well data with those from the GRACE data, 347 

groundwater depletion from the well data was forward modeled to determine what GRACE can 348 

see (Auxiliary Material, Section 5, Fig. S4). The same spatial filtering was applied to the well 349 

data as is applied to GRACE products (Fig. 2). Although there is 10 times more depletion in the 350 

Tulare Basin in the southern part of the Central Valley, it is not possible to determine this at 351 

GRACE resolution (Figs. S4a and S4b). The GWS anomaly is spread above the CV aquifer, 352 

shifted towards the south. Spatial trends in GWS depletion from CSR and GRGS data (Figs. 353 

S4c and S4d) generally correspond to the modeled impact of depletion on groundwater (Figs. 354 

S4a and b), with equivalent amplitude and position.  In addition to using standard errors in trend 355 

estimates of GWS from GRACE and well data, we also estimated the GWS signal in the oceans 356 

for the same area as the Central Valley. The signal in the ocean should be zero if all 357 

background models for mass disaggregation were perfect (oceanic & atmospheric model in 358 

GRACE processing, SWES, SMS, and RESS for GWS extraction); therefore, nonzero values 359 

suggest errors in GWS of ~ 30% of groundwater depletion after integration over an area as 360 

large as the Central Valley river basins. These error estimates may be more reliable than the 361 

standard errors in trends and in multiplicative factors, which probably underestimate total error. 362 

While the main negative GWS anomaly is located above the Central Valley aquifer, it is shifted 363 

towards the mountains for both GRGS and CSR solutions. The north-south trending anomaly, 364 

along the mountain range, suggests that snow water equivalent was not properly corrected for 365 

when extracting the GWS contribution.  366 

Because the well data only extend to December 2009, GWS changes from the well data 367 

were compared with GRACE-based estimates for the period Apr 2006 through Sep 2009 to 368 

avoid problems with filtering toward the end of the data record (Table 1). Groundwater depletion 369 

from the well data is the same as that from GRACE GRGS data (both ~27 km3) for the 3.5 yr 370 

period (Table 1). These comparisons indicate that the GRACE based estimates of GWS 371 

changes are generally consistent with those from well data.   372 

Reduction in GWS from GRACE during the recent drought (8.9 km3/yr) is similar to GWS 373 

reductions from previous droughts from the Central Valley hydrologic model (1976 – 1977; 12.3 374 

km3/yr; 1987 – 1992; 8.2 km3/yr). Although precipitation during the recent  drought was not as 375 

low as the 1976 – 1977 drought or the length of the recent drought was much shorter than the 376 

six year drought from 1987 – 1992, the impact of the recent drought on GWS was as large or 377 



 13 2/13/2012 

larger than that of previous droughts because surface water diversions from north to south were 378 

reduced to 10% by the third year of the drought to protect the endangered delta smelt species in 379 

response to the Central Valley Improvement Act of 1992 (California Dept. of Water Resources, 380 

2010). Reductions in surface water diversions resulted in large increases in groundwater 381 

pumpage and amplified the impact of the drought on GWS changes. 382 

Future Work 383 

There are many areas of potential future work that would improve application of GRACE 384 

data for monitoring water storage changes in the Central Valley region. Updating the Central 385 

Valley hydrologic model to include the time period evaluated by GRACE would provide another 386 

estimate of GWS changes for comparison with GRACE-based estimates. This work is currently 387 

being conducted by the U.S. Geological Survey (Faunt, pers. comm. 2011). Improving the 388 

ground-based well monitoring network would greatly enhance estimates of GWS changes from 389 

this dataset. Basic information on wells, such as length and depth of screened intervals and 390 

whether wells penetrate only unconfined aquifers or unconfined/confined aquifers would be very 391 

helpful. Additional information on storage coefficients for converting water level data to water 392 

volumes is extremely important in this type of analysis. Expanding the well network, particularly 393 

in the Tulare Basin in the south, where most of the depletion has occurred, and including more 394 

continuous monitoring of water levels would provide improved information for estimating GWS 395 

changes. Information on soil moisture currently relies on output from LSMs; however, these 396 

models do not simulate irrigation. Developing a ground-based network of soil moisture sensors 397 

would be very beneficial for application to GRACE studies and would also provide a comparison 398 

of output from LSMs. Because LSMs play an integral role in GRACE processing, reliable water 399 

storage change estimates from GRACE depends on accurate LSMs. Improving LSMs to 400 

simulate soil moisture, groundwater, and irrigation is very important for applications of GRACE 401 

to groundwater depletion studies related to irrigated agriculture. The study of Famiglietti et al. 402 

(2011) used unconstrained CSR GRACE data whereas this study also used constrained or 403 

regularized GRGS GRACE data. The next GRACE CSR release will include some type of 404 

regularization or constraint (Save et al., 2010); therefore, filtering beyond truncation may no 405 

longer be required and spatial resolution may be improved.  406 

Conclusions 407 

While the area of the CV aquifer is less than the GRACE footprint (~ 200,000 km2), 408 

extensive groundwater depletion caused by irrigation results in a large signal that can be 409 
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detected by GRACE. A new processing approach was applied to GRACE data that calculates 410 

changes in GWS from TWS by subtracting SWES, RESS, and SMS using filtered data at 411 

GRACE spatial resolution minimizing uncertainties associated with LSMs for bias and leakage 412 

corrections. Moreover, this method takes into account the specific spatial distribution of each 413 

water storage component (including SWES, SMS, and RESS) resulting in different signatures 414 

on GRACE. In the case of the Central Valley, availability of high-resolution validated models 415 

(SNODAS, NLDAS) and accurate ground measurements for surface water storage reservoirs, 416 

greatly improved the ability to resolve GWS changes for this relatively small basin.  417 

TWS changes from GRGS and CSR processing centers were similar (r2 = 0.93). Reductions 418 

in TWS during the drought ranged from 39.0±2.5 km3 (CSR) to 40.8±0.9 km3 (GRGS) 419 

(Butterworth filter) (Jan 2006 through July 2009). SWES and SMS decreased markedly in the 420 

early phase of the drought (2006 – 2007) but partially recovered after that resulting in overall 421 

negligible to low water storage changes. Reservoir storage decreased continuously during the 422 

drought by 7.3±0.6 km3 (Oct 2006 through Sep 2009).  423 

Analysis of GWS changes focused on GRGS data because CSR data are noisier. GWS 424 

declined by 31.0±3.0 km3 based on maximum depletion from Oct 2006 through Mar 2010. 425 

Annual decline rates (8.9 km3/yr) are consistent with typical decline rates from previous 426 

droughts (1976 – 1977; 12.3 km3/yr; 1987 – 1992; 8.2 km3/yr). GRACE based estimates of 427 

groundwater depletion during the drought are similar to those from well data based on the 428 

uppermost unconfined aquifer for the overlap period (Apr 06 – Jul 09; both 27 km3). The general 429 

consistency of GWS changes from GRACE and ground-based estimates increases confidence 430 

in application of GRACE for monitoring groundwater depletion.  431 
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 525 

 526 

Figure 1. Central Valley aquifer subdivided into Sacramento, Delta, Eastside, San Joaquin, and 527 

Tulare basins and enclosed in the Sacramento River Basin in the north and San Joaquin River 528 

Basin in the south. Distribution of monitoring wells (~2,300 wells) is also shown. Well data were 529 

obtained from the California Department of Water Resources. Typical well hydrographs are 530 

shown for the Sacramento, San Joaquin, and Tulare basins. Note large groundwater depletion 531 

typical of the Tulare Basin.  532 

533 



 19 2/13/2012 

 534 

Figure 2: Synthesis of regular and updated method for processing GRACE data to extract 535 

changes in GWS. Subscript F represents spatial filtering, applied equivalently to GRACE and 536 

water budget data (SWES, SMS, and RESS), i.e. truncation to degree 50 (GRGS) and degree 537 

60 (CSR), removal of north-south stripes (for GRACE data only), and 300 km Gaussian filtering 538 

(CSR). Regular processing involves filtering GRACE data to estimate TWS, rescaling TWS 539 

using bias and leakage correction based on LSMs, and subtraction of changes in SWES, SMS, 540 

and RESS to calculate changes in GWS. Updated processing calculates changes in GWS from 541 

TWS using filtered models and data at GRACE resolution and rescaling GWSF to GWS using 542 

bias correction, no leakage correction required. The updated approach also uses spatial 543 

variability of SWES, SMS, and RESS within the area of interest rather than mean values as in 544 

the regular approach. Bolded text refers to available data from GRACE or models.  545 

546 
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 547 

Figure 3. Total water storage (TWS) change anomaly (in km3 and mm of water) from CSR 548 

monthly data and GRGS 10 d data for the Sacramento and San Joaquin River Basins. Shaded 549 

areas represent monthly errors. Estimation of TWS is described in Auxiliary Material (Section 1). 550 

A Butterworth filter was applied to the GRGS data to remove the seasonal signal and high 551 

frequency noise. The depletion trend during the drought is shown (40.8 km3 from January 2006 552 

through July, 2009). The precipitation anomaly is based on gridded data from PRISM (Daly et 553 

al., 2009).  554 

 555 

 556 

 557 
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 558 

Figure 4. Surface water reservoir storage (RESS), snow water equivalent storage (SWES), and 559 

soil moisture storage (SMS) change anomalies for the Sacramento and San Joaquin River 560 

basins. Note large reduction in water storages in response to the 2006 through 2009 drought, 561 

particularly in the first year of the drought. The precipitation anomaly is based on gridded data 562 

from PRISM (Daly et al., 2009). 563 

564 
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 565 

 566 

Figure 5. Groundwater storage (GWS) change anomaly from GRGS data and monthly changes 567 

GWS from well data from the upper unconfined aquifer. GWS change anomalies for CSR and 568 

GRGS data are shown in Auxiliary Material, Section 4, Fig. S3. A Butterworth filter for removal 569 

of seasonal trends and high frequency noise is shown. Application of other filters is shown in 570 

Auxiliary Material, Section 3, Fig. S2. Depletion during the drought (31.0±3.0 km3) is shown from 571 

Oct. 2006 through March 2010. The precipitation anomaly is based on gridded data from PRISM 572 

(Daly et al., 2009). 573 
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 574 

Figure 6 . Variations in specific yield from Faunt (2009).  575 

 576 

577 
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 578 

Figure 7. Comparison of GWS changes from well analysis relative to simulated GWS changes 579 

from the Central Valley hydrologic model (CVHM; Faunt, 2009). Drought periods are shaded 580 

(1976 – 1977; 1987 – 1992; and 2006 – 2009).  581 

582 
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Table 1. Trends in groundwater storage (GWS) changes during the drought in mm/yr, km3/yr, 583 

and in total km3 for the different time periods shown based on GRGS and CSR GRACE data 584 

and well data (920 wells from the monitoring network). Depletion trends for different time 585 

periods and associated standard errors were estimated using weighted linear least squares 586 

regression, considering the inverse of squared errors (monthly for CSR and 10 d for GRGS) in 587 

the weighting process. Oct 1 2006 through Mar 31, 2010 represents the maximum depletion of 588 

GWS during the drought (Fig.  ). Trends from Apr 1 2006 – Mar 31 2010 were calculated for 589 

comparison with depletion estimates from Famiglietti et al. (2011). Trends from Apr 1 2006 – 590 

Sep 30 2009 were calculated to compare depletion estimates from GRACE with those from 591 

analysis of 920 wells (Fig. 5). Results from application of different filters to remove seasonal 592 

fluctuations and high frequency noise are provided, including Butterworth, centered 12 month 593 

moving average (MA), a six-term harmonic series (sine and cosine periodic waves with annual, 594 

semiannual, and 3-month periods) (Seas.), and no temporal filter (trend from raw data).  595 

Time Interval Model Filter 
Trend 
(mm/a) 

Error 
(mm/a) 

Trend 
(km

3
/a) 

Error 
(km

3
/a) 

Volume 
(km

3
) 

Error 
(km

3
) 

Oct 1, 2006 to 
Mar 31, 2010 

GRGS 

Butterworth 57.6 5.5 8.9 0.8 31.0 3.0 

Moving average 58.1 5.6 8.9 0.9 31.3 3.0 

Seasonal 57.8 9.2 8.9 1.4 31.2 5.0 

None 9.4 - 1.4 - 5.1 - 

Apr 1, 2006 to 
Mar 31, 2010 

GRGS Butterworth 55.9 5.3 8.6 0.8 34.4 3.3 

CSR Butterworth 44.9 8.5 6.9 1.3 27.7 5.2 

Apr 1, 2006 to 
Sep 30, 2009 

GRGS Butterworth 49.9 4.8 7.7 0.7 26.9 2.6 

Wells Butterworth 49.7 0.5 7.7 0.1 26.8 0.3 

 596 

  597 


