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A longstanding open problem in lambda calculus is whether there exist continuous models of the

untyped lambda calculus whose theory is exactly the λβ or the least sensible lambda-theory H

(generated by equating all the unsolvable terms). A related question is whether, given a class of

lambda models, there is a minimal lambda-theory represented by it. In this paper, we give a general

tool to answer positively to this question and we apply it to a wide class of webbed models: the

i-models. The method then applies also to graph models, Krivine models, coherent models and

filter models. In particular, we build an i-model whose theory is the set of equations satisfied in all

i-models.

1 Introduction

Lambda-theories are congruences on the set of λ -terms which contain β -conversion, providing (sound)

notions of program equivalence. Models of the λ -calculus are one of the main tools used to study the

lattice of λ -theories. Some of them, called webbed models, are built from lower level structures called

“webs” (see Berline [6] for an extensive survey). The simplest class of webbed models is the class of

graph models, which was isolated in the seventies by Plotkin, Scott and Engeler [15, 21, 23] within

the continuous semantics. The class of graph models contains the simplest models of λ -calculus, is

itself the easiest describable class, and represents nevertheless a continuum of (non-extensional) lambda-

theories. Another example of a class of webbed models, and the most established one, is the class of

filter models. It was isolated at the beginning of the eighties by Barendregt, Coppo and Dezani [4], after

the introduction of the intersection type discipline by Coppo and Dezani [12]. Not all filter models live in

Scott continuous semantics: for example some of them lack the property of representing all continuous

functions, and others were introduced for the stable semantics (see Honsell–Ronchi [16], Bastonero et

al. [5]).

In general, given a class C of models, a natural completeness problem arises for it: whether the class

is complete, i.e., for any lambda-theory T there exists a member of C whose equational theory is T .

A related question, raised in [6] is the following: given a class C of models of the λ -calculus, is there

a minimal lambda-theory represented by C ? If this is the case, we say that C enjoys the minimality

property. In [14] it was shown that the above question admits a positive answer for Scott’s continuous

semantics, at least if we restrict to extensional relexive CPO-models. Another result, in the same spirit,

is the construction of a model whose theory is λβη , a fortiori minimal, in the ω1-semantics. However,

the proofs of [14] use logical relations, and since logical relations do not allow to distinguish terms with

the same applicative behavior, the proofs do not carry out to non-extensional models. Similarly, in [9], it

is shown that the class of graph models enjoys the minimality property.

In this paper, we propose a method to prove that a given class of models enjoys the minimality prop-

erty, based on two main ingredients: the finite intersection property (fip) and the ultraproduct property

(upp). The finite intersection property is satisfied by a class C of models if for all models M1,M2 in C

there exists a model M in C whose theory is included in T h(M1)∩T h(M2. The ultraproduct property is
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satisfied in C if for every non-empty family {Mi}i∈I of members of C and for every proper ultrafilter U

of sets on P(I) the ultraproduct (∏i∈I Mi)/U can be embedded into a member of C . We show in Theo-

rem 3.1 that if these conditions are satisfied, then C has the minimality property. An important technical

device used in the proof of Theorem 3.1 is Lös Theorem: the ultraproduct of a family of models satisfies

an (in)equation beetwen λ -terms if and only if the set of indexes of the component models satisfying it

belongs to the ultrafilter. Hence, proving the minimality property boils down to exhibiting an appropriate

ultrafilter.

As an application of this general method, we prove that the class of i-models introduced in [10]

enjoys the minimality property. First of all, for every pair of i-models A,B we construct an i-model

C such that T h(C) ⊆ T h(A)∩ T h(B). This result is obtained via a sophisticated completion process

applied to the categorical product of A and B, adapted from [10]. In order to prove that the class of

i-models enjoys the ultraproduct property, we exploit the fact that i-models are webbed models. Given

an ultraproduct of i-models, P, we construct the ultraproduct of the corrisponding webs, P′, which turns

out to be a well defined web, and show that there exists an embedding of combinatory algebra from P to

the i-model associated to P′. We also show how our proof applies to smaller classes of webbed models,

like graph models, Krivine models, coherent models, and filter models.

The paper is organized as follows. In Section 2 we provide the preliminary notions and results

needed in the rest of the paper, in section 3 we present the general method for showing that a given class

of models of the λ -calculus has the minimality propery, and a couple of interesting corollaries of upp,

and in section 4 we apply this method to the class of the i-models.

2 Preliminaries

2.1 Lambda-theories and models of λ -calculus

With regard to the λ -calculus we follow the notation and terminology of [3]. By Λ and Λo, respectively,

we indicate the set of λ -terms and of closed λ -terms. We denote αβ -conversion by λβ . A λ -theory is

a congruence on Λ (with respect to the operators of abstraction and application) which contains λβ . A

lambda-theory is consistent if it does not equate all λ -terms, inconsistent otherwise. The set of lambda-

theories constitutes a complete lattice w.r.t. inclusion, whose top is the inconsistent lambda-theory and

whose bottom is the theory λβ . The lambda-theory generated by a set X of identities is the intersection

of all lambda-theories containing X .

It took some time, after Scott gave his model construction, for consensus to arise on the general

notion of a model of the λ -calculus. There are mainly two descriptions that one can give: the category-

theoretical and the algebraic one. Besides the different languages in which they are formulated, the two

approaches are intimately connected (see Koymans [18]). The categorical notion of model is well-suited

for constructing concrete models, while the algebraic one is rather used to understand global properties of

models (constructions of new models out of existing ones, closure properties, etc.) and to obtain results

about the structure of the lattice of lambda-theories.

2.2 Ultraproducts of λ -models

Reduced products result from a certain combination of the direct product and quotient constructions.

They were introduced in the 1950’s by Loś and the special case of ultraproducts has been a subject

worthy of at least one book.



A. Bucciarelli, A. Carraro & A. Salibra 3

Let I be a non-empty set and let {Ai}i∈I be a family of combinatory algebras. Let U be a proper

ultrafilter of the boolean algebra P(I) and define a relation ∼U given by a ∼U b ⇔ {i ∈ I : a(i) =
b(i)} ∈U . Then θ is a congruence on the combinatory algebra ∏i∈I Ai. The ultraproduct of the family

{Ai}i∈I , noted (∏i∈I Ai)/U is defined as the quotient of the product ∏i∈I Ai by the congruence ∼U . Now

if all members of {Ai}i∈I are λ -models, by a celebrated theorem of Loś we have that (∏i∈I Ai)/U is a

λ -model too, because λ -models are axiomatized by first-order sentences. The basic combinators of the

λ -model (∏i∈I Ai)/U are k∏i∈I Ai/U and s∏i∈I Ai/U and application is given by x/U · y/U = (x · y)/U ,

where the application x · y is defined pointwise.

We now recall the famous theorem Loś that we will use throughout this paper.

Theorem 2.1 (Loś). Let {Ai}i∈I be a family of first-order structures indexed by a non-empty set I an let

U be a proper ultrafilter of P(I). Then for every first-order L -formula ϕ(x1, . . . ,xn) and for every tuple

(a1, . . . ,an) ∈ ∏i∈I Ai we have that

(∏
i∈I

Ai)/U |= ϕ(a1/U, . . . ,an/U)⇔{i ∈ I : Ai |= ϕ(a1(i), . . . ,an(i))} ∈U

2.3 Information systems

Information systems were introduced by Dana Scott in [22] to give a handy representation of Scott

domains. An information system is a tuple A = (A,ConA,⊢A,νA), where A is a set and νA ∈ A, ConA ⊆
Pf(A) is a downward closed family containing all singleton subsets of A, and ⊢A ⊆ ConA ×A satisfies

the four axioms listed below:

(I1) if a ∈ ConA and a ⊢A b, then a∪b ∈ ConA (where a ⊢A b
def
= ∀β ∈ b. a ⊢A β )

(I2) if α ∈ a, then a ⊢A α

(I3) if a ⊢A b and b ⊢A γ , then a ⊢A γ

(I4) /0 ⊢A νA

We adopt the following notational conventions: letters α,β ,γ, . . . are used for elements of A (also

called tokens); letters a,b,c, . . . are used for elements of ConA, usually called consistent sets; letters

x,y,z, . . . are used for arbitrary elements of P(A). We usually drop the subscripts from ConA and ⊢A

when there is no danger of confusion.

Scott proposed information systems as structures where the “backbone” of a domain is introduced

by just a few axioms. Then the domain itself is defined as a certain construction from the backbone in

order to define the appropriate notion of element. Scott’s idea was not only to offer a simple alternative to

domains, but also to continuous functions: in fact his purpose was to describe at a “lower lever” the entire

category SD. For this reason he also defined an appropriate notion of morphism between information

systems.

An approximable relation between two information systems A ,B is a relation R ⊆ ConA ×B satis-

fying the following properties:

(AR1) if a ∈ ConA and a R b, then b ∈ ConB (where a R b
def
= ∀β ∈ b. a R β )

(AR2) if a′ ⊢A a, a R b, and b ⊢B β ′, then a′ R β ′

We will call Inf the category which has information systems as objects and approximable rela-

tions as arrows. The composition of two morphisms R ∈ Inf(A ,B) and S ∈ Inf(B,C ) is (using the

meta-notation) their usual relational composition: S ◦ R = {(a,γ) ∈ ConA ×C : ∃b ∈ ConB. (a,b) ∈
R and (b,γ) ∈ S}. The identity morphism of an information system A is ⊢A.
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The ccc structure of Inf is described in [22], and we recall it here for the sake of self-containment.

In what follows we use the projection functions fst and snd of a set-theoretic Cartesian product over

the first and second component, respectively.

Definition 2.1. The Cartesian product of A and B is given by A NB = (A⊎B,Con,⊢,ν) where

A⊎B = ({νA}×B)∪ (A×{νB}) ν = (νA,νB)
a ∈ Con iff fst∗(a) ∈ ConA and snd∗(a) ∈ ConB

a ⊢ α iff fst∗(a) ⊢A fst(α) and snd∗(a) ⊢B snd(α)

The terminal object is the information system ⊤ whose underlying set contains only one token.

Definition 2.2. The exponentiation of B to A is given by A ⇒ B = (A ⇒ B,Con,⊢,ν) where

A ⇒ B = ConA ×B ν = ( /0,νB)
{(a1,β1), . . . ,(ak,βk)} ∈ Con iff ∀I ⊆ [1,k]. (∪i∈Iai ∈ ConA ⇒{βi : i ∈ I} ∈ ConB

{(a1,β1), . . . ,(ak,βk)} ⊢ (c,γ) iff {βi : c ⊢A ai, i ∈ [1,k]} ⊢B γ

The categories SD and Inf are isomorphic, via a pair of mutually inverse ccc-functors (·)+ : Inf →
SD and (·)− : SD → Inf. In particular for an information system A , we have that A + = Inf(⊤,A ),
i.e., the set of points of an information system, ordered by inclusion, is a Scott domain. Moreover the

domains [A + →B+] and A +×B+ are ismorphic (in the category SD) to the domains (A ⇒B)+ and

(A NB)+, respectively.

2.4 Webbed models of λ -calculus

Some of the models of λ -calculus are called webbed models because they are built from lower level

structures called “webs” (see Berline [6, 7] for an accurate survey). Typically a web is a set with ad-

ditional structure and a webbed model is a partial order (usually a domain) whose elements are special

subsets of the web. We now introduce a class of webbed models of λ -calculus arising from information

systems that include many others, among which the filter models of λ -calculus living in CPO.

Let A be an information system. A subset x ⊆ A is finitely consistent if each of its finite subsets

belongs to ConA. We define a partial operator (·)↓A: P(A)⇀ P(A) by setting x↓A = {α ∈ A : ∃a ⊆f

x. a ⊢ α} if x is finitely consistent and undefined otherwise. We may drop the subscript when the

underlying information system is clear from the context. Note that (·)↓ is a monotone map satisfying the

following conditions: x ⊆ x↓, x↓↓= x↓ and x↓= ∪a⊆fxa↓.

Up to a trivial isomorphism, A + = Inf(⊤,A ) is the set finitely consistent subsets x ⊆ A such that

x = x↓. Therefore use the word point to denote these latter subsets.

Let A ,B be information systems and let f : A → B be a function. We define two Scott continuous

functions f • : A + → B+ and f• : B+ → A + as follows:

f •(x) = { f (α) : α ∈ x}↓B ; f•(y) = {α : f (α) ∈ y}↓A

for every point x of A and every point y of B. We want to give simple conditions under which f can

generate a continuous retraction from A + to B+: these conditions were introduced in [10].

Definition 2.3 ([10]). Let A ,B be information systems. A morphism from A to B is a function f : A →
B satisfying the following property:

(Mo) a ∈ ConA iff f ∗(a) ∈ ConB
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Definition 2.4 ([10]). A morphism f : A → B is a b-morphism (resp. f-morphism) if it satisfies the

following property (bMo) (resp. (fMo))

(bMo) if f ∗(a) ⊢B f (α), then a ⊢A α

(fMo) if a ⊢A α , then f ∗(a) ⊢B f (α)

The “b” (resp. “f”) in the name of the axiom stands for backward (resp. forward). We leave to the

reader the easy relativization of the various notions of morphism given in Definition 2.4 to the case in

which f is a partial map.

Proposition 2.2. Let f : A → B be a b-morphism. Then ( f•, f •) is a retraction pair from A + into B+.

Proof. From (bMo) it follows f• ◦ f • = idA + .

Definition 2.5. An i-web is a pair A=(A ,φA) where A is an information system and φA : A ⇒A →A

is a b-morphism.

The set of tokens of A is called the web of A.

Proposition 2.3. Let A = (A ,φA) be an i-web. Then A + is a reflexive object in the category SD.

Proof. As anticipated, there is a continuous isomorphism θ : (A ⇒A )+ → [A + →A +] and by Propo-

sition 2.2 the domain (A ⇒ A )+ can be embedded into A + via the retraction pair ((φA)•,(φA)
•).

Therefore (θ ◦ (φA)•,θ
−1 ◦ (φA)

•) is the desired retraction pair in the category SD.

We set A+ = (A +,θ ◦ (φA)•,θ
−1 ◦ (φA)

•) and call A+ an i-model. Of course, since A+ is a reflexive

object in SD, then A+ is also a λ -model and λ -terms are interpreted as elements of A + (i.e. as points of

A ) as follows:

JxiK
A+

ρ = ρ(x)

Jλy.MKA
ρ = {φA(a,α) : α ∈ JMKA+

ρ[y:=a↓]}↓A

JMNKA
ρ = {β ∈ A : ∃a ⊆f JNKA+

ρ . (a,β ) ∈ {(a′,β ′) : φA(a
′,β ′) ∈ JMKA+

ρ }↓A⇒A}

The λ -model structure associated to the i-model A+ is the following. The basic combinators are kA+
=

Jλxy.xKA+
and sA+

= Jλxyz.xz(yz)KB+
, and the application operation is given by

u · v = {β ∈ A : ∃a ⊆f v. (a,β ) ∈ {(a′,β ′) : φA(a
′,β ′) ∈ u}↓A⇒A}

for all points u,v.

2.4.1 Well-known instances of i-webs

An extended abstract type structure (EATS, for short, [13, Def. 1.1]) is a partially ordered algebra

(A,∧,→,ω), where “∧” and “→” are binary operations and “ω” is nullary one. Then the structure

A = (A,Pf(A),⊢,ω), where a ⊢ α iff (
∧

a)≤ α , is an information system. For two EATSs (A,∧A,→A

,ωA) and (B,∧B,→B,ωB) a bf-morphism ψ : A → B between the corresponding information systems

is a function satisfying α ≤A α ′ iff ψ(α) ≤B ψ(α ′). Recall from [13, Def. 2.12,Thm. 2.13] that the

Filter models living in the Scott semantics are obtained by taking the set of filters of EATSs satisfying

the following condition:

(∗)
∧n

i=1(αi → βi)≤ γ → δ , then (
∧

i∈{i:γ≤αi} βi)≤ δ



6 Minimal lambda-theories by ultraproducts

In such a case, defining φ : Pf(A)×A → A by φ(a,α) = (
∧

a) → α one obtains a b-morphism and

hence an i-web A = (A ,φA) and the corresponding filter model is exactly the i-model A+ (see [11] for

the details).

In Larsen & Winskel [19] the definition of information system is slightly different: there is no special

token ν . We remark that the corresponding class of i-models generated by the two definitions is the same.

We adopt Scott’s original definition just for technical reasons. With Larsen & Winskel’s definition we

can capture some other known classes of models, as illustrated below.

A preordered set with coherence (pc-set, for short) is a triple (A,≤,≎), where A is a non-empty set,

≤ is a preorder on A and ≎ is a coherence (i.e., a reflexive, symmetric relation on A) compatible with the

preorder (see [6, Def. 120]). A pc-set “is” an information system A = (A,Pcoh
f (A),⊢), where Pcoh

f (A)
is the set of finite coherent subsets of A and a ⊢ α iff ∃β ∈ a. β ≥ α . A pc-web (see [6, Def. 153]) is

determined by a pc-set together with a map φ : Pcoh
f (A)×A → A satisfying:

(1) φ(a,α)≎ φ(b,β ) iff (a∪b ∈ Pcoh
f (A)⇒α ≎β )

(2) if φ(a,α)≤ φ(b,β ), then α ≤ β and (∀γ ∈ b ∃δ ∈ a.γ ≤ δ ).

A pc-web is a particular instance of i-web and properties (1),(2) say exactly that φ is a b-morphism.

Krivine webs [6, Sec. 5.6.2] are pc-webs in which ≎ = A×A (so that Pcoh
f (A) = Pf(A)). Total pairs

[6, Sec. 5.5] are Krivine webs in which ≤ is the equality: in fact in this the requirement of φ to be a

b-morphism boils down to injectivity. Therefore a total pair is simply defined as a set A together with

an injection iA : Pf(A)×A → A; the underlying information system is A = (A,Pf(A),∋). The graph

model associated to the total pair is then the i-model A+, obtained by taking the powerset of A (see [6,

Def. 120]). There is usually some ambiguity in the terminology since by “graph model” sometimes is

meant the total pair (as in [8], for example) underlying the model itself.

3 Minimal models: general results

In general, given a class C of λ -models, a natural question to be asked is whether there exists a member

A of C such that Eq(A) is contained in the theories of all other members of C : one such model A is

called minimal in C . This point was raised in print by C. Berline [6] who was mainly referring to the

classes of webbed models of λ -calculus. If a positive answer is obtained, usually it is done by purely

semantical methods and Eq(A) does not need to be characterised in the syntactical sense: this is the case

of Di Giannantonio et al. [14], in which the authors prove that the class all extensional reflexive CPOs

has a minimal model. Of course if one is able to gather enough information about Eq(A), then one may

be in the position to answer the related completeness question for the class C : is λβ (or λβη) a theory

induced by a member of C ? An example of result of this kind can be found again in [14], where the

authors construct a model with theory λβη in the ω1-semantics.

In this section we give general conditions for a class C of λ -models under which we have the guar-

antee that C has a minimal model. In the forthcoming section 4 we will apply this general result to the

class of i-models and some of its well-known classes of models.

Definition 3.1. A class C of λ -models has the finite intersection property (fip, for short) if for every two

members A, B of C , there exists a member C of C such that Eq(C)⊆ Eq(A)∩Eq(B).

For example the class of all λ -models has the fip, and in general every class closed under direct

products has the fip. Every subclass which is axiomatized over the λ -models by first-order universal

sentences has the fip, but of course these conditions do not hold in general for the classes of webbed

models, e.g. for the i-models. We will see that they do hold for the filter models.
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The fip is a property which is weaker than the closure under direct products. Of course a class which

is closed under arbitrary (non-empty) direct products has a minimal model. The next definition isolates a

property that, together with the fip, can overcome the lack of direct products and guarantee the existence

of minimal models.

Definition 3.2. A class C of λ -models has the ultraproduct property (upp, for short) if for every non-

empty family {Ai}i∈I of members of C and for every proper ultrafilter U of sets on P(I) the ultraproduct

(∏i∈I Ai)/U can be embedded into a member of C .

For example the class of all λ -models has the upp, and in general every class closed under ultraprod-

ucts has the upp. Every subclass which is axiomatized over the λ -models by first-order sentences has the

upp, but of course these conditions do not hold in general for the known classes of webbed models, e.g.

for the i-models.

Theorem 3.1. Let C be a class of λ -models having both the fip and the upp. Then C has a minimal

model.

Proof. Let I be the set of all equations e betweeen closed combinatory terms for which there exists a

model A in C such that A 6|= e. For every e ∈ I, consider the set Ke = {J ⊆f I : e ∈ J}. Since Ke ∩Ke′ =
{J ⊆f I : e,e′ ∈ J} 6= /0 for all e,e′ ∈ I, then there exists a non-principal ultrafilter U on Pf(I) containing

the family (Ke : e ∈ I). By the finite intersection property of the class C , for every J ⊆f I there exists

a model AJ in C such that e 6∈ Eq(AJ) for every e ∈ J. Let {AJ}J⊆fI be the family composed by these

models and consider the ultraproduct PU = (∏J⊆fI
AJ)/U . Let e ∈ I be a closed equation and let Xe =

{J ⊆f I : AJ 6|= e}. Then Xe ⊇ Ke ∈U , so that Xe belongs to the ultrafilter U . Since e is a closed first-order

formula, by Loś Theorem 2.1 PU 6|= e. Since e was an arbitrary equation in I, we have that PU 6|= e for

every e ∈ I, so that Eq(PU)⊆
⋂

A∈C Eq(A). Finally, since the class C has the ultraproduct property, then

there exists a model B in C such that PU embeds into B. Then Eq(B) = Eq(PU)⊆
⋂

A∈C Eq(A)⊆ Eq(B)
and we get the desired conclusion.

Corollary 3.2. Let C be a class of λ -models which has the fip and is closed under ultraproducts. Then

C has a minimal model.

We conclude the section by giving some other general results that can be proved by just assuming

the fip and the upp for a class C of λ -models. In particular we can prove a compactness theorem for

lambda-theories whose equations hold in members of C . Another result that can be proved is that if there

exists a λ -term that can be proved easy in C , then there exists a continuum of C -theories i.e. there are

uncountably many different lambda-theories induced by models of the class C .

Theorem 3.3 (Compactness). Let C be a class of λ -models having the upp, and let E be a set of equa-

tions between closed λ -terms. If every finite subset of E is satisfied by a member of C , then E itself is

satisfied by a member of C .

Proof. For every J ⊆f E, let KJ = {I ⊆f E : J ⊆ I} and let AJ ∈ C be a model satisfying J. Let U be a

proper ultrafilter on Pf(E) containing KJ for every J ⊆f E. Then the ultraproduct (∏J⊆fE
AJ)/U satisfies

E. Finally by the upp there exists a model B in C such that (∏J⊆fE
AJ)/U embeds into B, and thus has

the same lambda-theory. We conclude that B satisfies E.

Let C be a class of λ -models. A closed λ -term M is C -easy if for every closed λ -term N there exists

a member B of C such that JMKB = JNKB.

Theorem 3.4. Let C be a class of λ -models having the upp such that there exists a C -easy λ -term. Then

there exist uncountably many C -theories.
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Proof. Let M be a C -easy λ -term. For n ≥ 1, we let πn ≡ λx1 . . .xn.xn. We prove that for every n ≥ 1

the term Mπn is C -easy.

Let X = (Nn)n≥1 be an arbitrary infinite sequence of closed βη-normal λ -terms and define E(X) =
{Mπn = Nn : n ≥ 1}. Let K = {Mπn1

= Nn1
, . . . ,Mπnk

= Nnk
} be a finite subset of E(X). Without loss of

generality, we may assume that n1 < · · ·< nk. Let y be a fresh variable and define inductively

Z1 := yI · · ·I︸︷︷︸
n1−1

Nn1
; Zm+1 := Zm I · · ·I︸︷︷︸

nm+1−nm−1

Nnm

Now set Z = λy.Zk. Since M is C -easy, then there is a member A of C such that A |= M = Z. Therefore

A |= Mπni
= Zπni

= Nni
for all i = 1, . . . ,k so that K ⊆ Eq(A). Since every finite subset of E(X) is

satisfied by a member of C , then by Theorem 3.3 E(X) itself is satisfied by a member of C , i.e. there

exists a member AX of C such that E(X) ⊆ Eq(AX). Moreover if X and Y are two different infinite

sequences of closed βη-normal λ -terms, then Eq(AX) 6= Eq(AY ). The result then follows from the fact

that there are uncountably many infinite sequences of closed βη-normal λ -terms.

4 Applications

In the present section we apply the general results developed in §3. In particular we prove that the class

of i-models has both the finite intersection property and the ultraproduct property. Then we comment on

how these general results also apply to other well-known classes of webbed models.

4.1 Finite intersection property for i-models

The goal of the first part of this section is to prove that for every pair A1,A2 of i-webs there exists an

i-web B such that Eq(B+) ⊆ Eq(A+
1 )∩Eq(A+

2 ). Such result would be trivial if the categorical product

A1NA2 could always be endowed with a suitable structure of i-web, but this is not the case. The best

that we can do in general is to make A1NA2 into a partial i-web. A partial i-web in general is a pair

A = (A ,φA), where φA : A ⇒ A ⇀ A is a partial b-morphism. In particular we can set

φ(a,α) =





(νA1
,νA2

) if a ⊆ {(νA1
,νA2

)} and α = (νA1
,νA2

)

(νA1
,φA2

(snd∗(a),snd(α))) if a∪{α} ⊆f {νA1
}×A2

(φA1
(fst∗(a), fst(α)),νA2

) if a∪{α} ⊆f A1 ×{νA2
}

obtaining that A1NA2 = (A1NA2,φ) is a partial i-web. A partial i-web does not give in general an i-

model, but we can complete it to an i-web through a limit process that involves countably many extension

steps.

We say that B is an extension of S , notation S � B, if S ⊆ B, ConS = ConB ∩Pf(S), ⊢S = ⊢B

∩(ConS ×S). We say that B is an extension of S, notation S � B, if S � B and φS is the restriction of

φB to ConS ×S.

Let us call B the extension of result of the (yet undefined) completion process. Of course B must be

somehow related to the original i-webs A1 and A2. In particular, we want that for every closed λ -term

M if (νA1
,β ) ∈ JMKB+

(resp. (α,νA2
) ∈ JMKB+

), then β ∈ JMKA+
2 (resp. α ∈ JMKA+

1 ) because this will

guarantee that Eq(B+) ⊆ Eq(A+
1 )∩Eq(A+

2 ). We will achieve this property by means of the notion of

f-morphism of partial i-webs.

Notation. Let f : A → B be a function. We define f ∗ : Pf(B) → Pf(C) and f̃ : (Pf(B)×B) →
(Pf(C)×C) as follows: f ∗(b) = { f (β ) | β ∈ b, β ∈ do( f )} and f̃ (b,β ) = ( f ∗(b), f (β )). Hence f̃ ∗ :
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Pf(Pf(B)×B)→ Pf(Pf(C)×C). If f is a partial function, we write do( f ) to indicate the domain of

f .

Definition 4.1 ([10]). Let B,C be partial i-webs. An f-morphism from B to C is an f-morphism ψ : B →
C satisfying the following additional property:

(iMo) if (a,β ) ∈ do(φB), then (ψ∗(a),ψ(β )) ∈ do(φC) and ψ(φB(a,β )) = φC(ψ
∗(a),ψ(β ))

The following proposition explains that, in general, f-morphisms of i-webs “commute” well to the

interpretation of λ -terms.

Proposition 4.1 ([10]). Let B,C be i-webs, let ψ : B → C be an f-morphism of i-webs, and let M be a

closed λ -term. If α ∈ JMKB+
, then ψ(α) ∈ JMKC+

.

We remark that the two projection functions fst and snd are f-morphisms of partial i-webs from

A1NA2 to A1 and A2, respectively.

Our goal now is to construct a series of triples {(Sn,ψ
1
n ,ψ

2
n )}n≥0 such that Sn � Sn+1 and ψ i

n : Sn →Ai

(i = 1,2) is an f-morphism of partial i-webs such that ψ i
n+1 extends ψ i

n (i = 1,2). The idea is that the

input parameter of the whole construction is the triple (S0,ψ
1
0 ,ψ

2
0 ) where S0 := A1NA2, ψ1

0 = fst, and

ψ2
0 = snd. All subsequent triples are constructed via an algorithm that, given (Sn,ψ

1
n ,ψ

2
n ) as input,

returns (Sn+1,ψ
1
n+1,ψ

2
n+1). The union of all partial i-webs and all f-morphisms of partial i-webs finally

gives an i-web Sω (called completion) and two f-morphisms ψ i
ω (i = 1,2) of i-webs that allow to show

that Eq(S+
ω)⊆ Eq(A+

1 )∩Eq(A+
2 ).

The 0-th stage of the completion process, i.e., the triple (S0,ψ
1
0 ,ψ

2
0 ) has already been described.

Now assuming we reached stage n, we show how to carry on with stage n+1.

Definition 4.2. • Sn+1 = Sn ∪do(φSn
)

• ConSn+1
is the smallest family of sets x ⊆f Sn ∪do(φSn

) such that either

(1) there exist a ∈ Conn and X ∈ ConSn⇒Sn
such that X ⊆ do(φSn

) and x = a∪X and ψ i
n
∗
(a)∪

φAi

∗(ψ̃ i
n

∗
(X)) ∈ ConAi

(i = 1,2) or

(2) there exists X ∈ ConSn⇒Sn
such that x ⊆f (X ∩do(φSn

))∪ (φSn

∗(X ∩do(φSn
)))↓Sn

• a ⊢Sn+1
α iff either a∩Sn ⊢Sn

α or α ∈ a

• νSn+1
= νSn

• φSn+1
(a,α) =





φSn
(a,α) if (a,α) ∈ do(φSn

)

(a,α) if (a,α) ∈ do(φSn
)

undefined if (a,α) ∈ (Sn+1 ⇒ Sn+1)− (Sn ⇒ Sn)

• for i = 1,2 we set ψ i
n+1(α) =

{
ψ i

n(α) if α ∈ Sn

φAi
(ψ i

n
∗
(b),ψ i

n(β )) if α = (b,β ) ∈ Sn+1 −Sn

Theorem 4.2. We have that

(i) Sn+1 = (Sn+1,ConSn+1
,⊢Sn+1

,νSn+1
) is an information system such that Sn � Sn+1,

(ii) Sn+1 = (Sn+1,φSn+1
) is a partial i-web such that Sn � Sn+1,

(iii) ψ i
n+1 : Sn+1 → Ai (i = 1,2) is an f-morphism of partial i-webs.

Proof. (i) We show that Sn+1 is an information system, checking the four properties of Definition ??.
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(I1) Suppose a ∈ ConSn+1
and a ⊢Sn+1

b. If a has been added to ConSn+1
by clause (1), then exists

i ∈ {1,2}, a′ ∈ ConSn
and X ∈ ConSn⇒Sn

such that X ⊆ do(φSn
) and a = a′ ∪ X and ψ i

n
∗
(a′)∪

φAi

∗(ψ̃ i
n

∗
(X)) ∈ ConAi

. Since a ⊢Sn+1
b, then b = b′ ∪X , for some b′ ∈ ConSn

such that a′ ⊢Sn
b′.

Now ψ i
n is a morphism, so that ψ i

n
∗
(b′)∪φAi

∗(ψ̃ i
n

∗
(X)) ∈ ConAi

. Therefore b is added to ConSn+1

by clause (1).

If a has been added to ConSn+1
by clause (2), then also b is added to ConSn+1

by the same clause.

(I2) If α ∈ a, then a ⊢Sn+1
α by definition of ⊢Sn+1

.

(I3) Suppose a ⊢Sn+1
{α1, . . . ,αk} and {α1, . . . ,αk} ⊢Sn+1

γ . If γ ∈ {α1, . . . ,αk} then clearly a ⊢Sn+1
γ .

Otherwise {α1, . . . ,αk}∩Sn ⊢Sn
γ and since a∩Sn ⊢Sn

{α1, . . . ,αk}∩Sn we can conclude using the

property (I3) of Sn.

(I4) Immediate.

Finally it is immediate to see that Sn � Sn+1.

(ii) Note that the fact that Sn � Sn+1 automatically implies Sn ⇒ Sn � Sn+1 ⇒ Sn+1. Now we prove

that φSn+1
: Sn ⇒Sn →Sn+1 is a total b-morphism, so that it is automatically a partial b-morphism from

Sn+1 ⇒ Sn+1 to Sn+1.

(Mo) We must show that X ∈ ConSn⇒Sn
iff (X ∩ do(φSn

)) ∪ (φSn

∗(X ∩ do(φSn
))) ∈ ConSn+1

. If X ∈
ConSn⇒Sn

, then (X ∩do(φSn
))∪ (φSn

∗(X ∩do(φSn
))) is in ConSn+1

by clasuse (2).

Let x = (X ∩ do(φSn
))∪ (φSn

∗(X ∩ do(φSn
))) ∈ ConSn+1

. If x is added to ConSn+1
by clause (1),

then there exist i ∈ {1,2}, a ∈ Conn and Y ∈ ConSn⇒Sn
such that Y ⊆ do(φSn

) and x = a∪Y and

ψ i
n
∗
(a)∪φAi

∗(ψ̃ i
n

∗
(Y )) ∈ ConAi

. Therefore Y = (X ∩ do(φSn
)) and a = (φSn

∗(X ∩ do(φSn
))). Now

we have

ψ i
n
∗
(a)∪φAi

∗(ψ̃ i
n

∗
(Y )) = ψ i

n
∗
((φSn

∗(X ∩do(φSn
))))∪φAi

∗(ψ̃ i
n

∗
((X ∩do(φSn

))))

= φAi

∗(ψ̃ i
n

∗
((X ∩do(φSn

))))∪φAi

∗(ψ̃ i
n

∗
((X ∩do(φSn

))))

= φAi

∗(ψ̃ i
n

∗
(X))

Since ψ i
n
∗
(a)∪φAi

∗(ψ̃ i
n

∗
(Y )) is in ConAi

by hypothesis, then so is φAi

∗(ψ̃ i
n

∗
(X)) and since both φAi

and ψ i
n are morphisms of information systems, then so is their composition φAi

◦ψ i
n, meaning that

X ∈ ConSn⇒Sn
.

If x is added to ConSn+1
by clause (2), then evidently X ∈ ConSn⇒Sn

.

(bMo) We must show that φSn+1

∗(X) ⊢Sn+1
φSn+1

(a,α) implies X ⊢Sn+1⇒Sn+1
(a,α). There are two cases

to be dealt with. If (a,α) ∈ do(φSn
), then φSn

∗(X)∩ Sn ⊢Sn
φSn

(a,α) and we derive φSn

∗(X ∩
do(φSn

)) ⊢Sn
φSn

(a,α) so that by (bMo) for φSn
we have that X ∩do(φSn

) ⊢Sn⇒Sn
(a,α) and hence

X ⊢Sn⇒Sn
(a,α).

If (a,α) 6∈ do(φSn
), then (a,α) = φSn+1

(a,α) ∈ φSn+1

∗(X), so that (a,α) ∈ X and thus X ⊢Sn⇒Sn

(a,α).

(iii) Now we prove that ψ i
n+1 (i = 1,2) is an f-morphism of i-webs.

(Mo) (⇒) Suppose x ∈ ConSn+1
. We consider the clauses (1) and (2) of the definition of ConSn+1

.

If x is added by clause (1), i.e. x = a ∪ X for suitable a and X , then ψ i
n+1

∗
(x) = ψ i

n
∗
(a) ∪

φAi

∗(ψ̃ i
n

∗
(X)) ∈ ConAi

, by clause (1) itself.
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If x is added by clause (2), then x ⊆f (X ∩ do(φSn
)) ∪ (φSn

∗(X ∩do(φSn
))) ↓Sn

, for some X ∈
ConSn⇒Sn

. Now let y = (X ∩do(φSn
))∪φSn

∗(X ∩do(φSn
)). We first observe that

ψ i
n+1

∗
(y) = φAi

∗(ψ̃ i
n

∗
(X ∩do(φSn

)))∪ψ i
n
∗
(φSn

∗(X ∩do(φSn
)))

= φAi

∗(ψ̃ i
n

∗
(X ∩do(φSn

)))∪φAi

∗(ψ̃ i
n

∗
(X ∩do(φSn

)))

= φAi

∗(ψ̃ i
n

∗
(X))

This proves that ψ i
n+1

∗
(y) ∈ ConAi

. Now using property (fMo) ψ i
n we obtain that ψ i

n+1

∗
(y) ⊢Ai

ψ i
n+1

∗
(x), and hence ψ i

n+1

∗
(x) ∈ ConAi

.

(⇐) By the very definition of ConSn+1
, in particular by the clause (1).

(fMo) Suppose a ⊢Sn+1
α . If α ∈ a, then of course ψ i

n+1

∗
(a) ⊢Ai

ψ i
n+1(α). If a∩Sn ⊢Sn

α , then

ψ i
n+1

∗
(a) = ψ i

n+1

∗
(a−Sn)∪ψ i

n

∗
(a∩Sn) ⊢Ai

ψ i
n

∗
(a∩Sn) ⊢Ai

ψ i
n(α)

(iMo) Let (a,α) ∈ Sn ⇒ Sn. Then ψ i
n+1(φSn+1

(a,α)) = φAi
(ψ i

n
∗
(a),ψn(α)) = φAi

(ψ i
n+1(a),ψ

i
n+1(α)), by

definition of ψ i
n+1 and the fact that it extends ψ i

n.

The completion of the triple (A1NA2,π1,π2) is the triple (Sω ,ψ
1
ω ,ψ

2
ω), where Sω = (Sω ,ConSω ,⊢Sω

,νSω ) and Sω = (Sω ,φSω ) are given by the following data:

Sω :=
⋃

m<ω Sm ConSω :=
⋃

m<ω ConSm
⊢Sω :=

⋃
m<ω ⊢Sm

νSω := νA1NA2
φSω :=

⋃
m<ω φSm

ψ i
ω :=

⋃
m<ω ψ i

m (i = 1,2)

Lemma 4.3. Sω is an i-web and ψ i
ω : Sω → Ai (i = 1,2) is an f-morphism of i-webs.

Proof. Indeed Sω is an information system as a consequence of Theorem 4.2(i). Moreover the map φSω

is total and it is easy to prove that it is a b-morphism from Sω ⇒ Sω using the fact that for every n the

map φSn+1
is a partial b-morphism (Theorem 4.2(ii)). Similarly one can prove that ψ i

ω is an f-morphism

of i-webs from Sω to Ai (i = 1,2) simply using the fact that for every n the map ψ i
n is an f-morphism

from the partial i-web Sn to the i-webs Ai (i = 1,2) (Theorem 4.2(iii)).

Theorem 4.4. Eq(S+
ω)⊆ Eq(A+

1 )∩Eq(A+
2 ).

Proof. Suppose M = N 6∈ Eq(A+
1 )∩Eq(A+

2 ). Suppose, w.l.o.g., that M = N 6∈ Eq(A+
1 ). Then there exists

α ∈ A1 such that α ∈ JMKA+
1 − JNKA+

2 . It is not difficult to check that α ∈ JMKA+
1 implies (α,νA2

) ∈
JMKS+

ω , since Sω extends A1NA2. Now suppose, by way of contradiction, that (α,νA2
) ∈ JNKS+

ω . Since

ψ1
ω(α,νA2

) = α , by Proposition 4.1 we have that α ∈ JNKA+
1 , which is a contradiction. This proves that

(α,νA2
) ∈ JMKS+

ω − JNKS+
ω , so that M = N 6∈ Eq(S+

ω).

In §2.4.1 we indicate how some of the most known classes of webbed models are recovered as

particular instances of i-models (more details for Filter Models are in [11]). Along these lines the notion

of partial i-web generalizes those of partial pair [6] (related to graph models) as well as the notions of

partial webs of the other types.

The idea of partial pair and of a completion for obtaining a graph model generalizes the construction

of the Engeler model and the of the Plotkin–Scott Pω model. It was initiated by Longo in [20] and

further developed and applied by Kerth [17]. Definition 4.2 is the core of a completion of i-webs that
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further generalizes Longo and Kerth’s work. As such, it can be adapted case by case so that the entire

completion adapts to the various instances of i-webs in the sense that if we start with partial pair, at the

end we obtain a total pair, if we start with a partial pcs-web, we end up in a total pcs-web etc.

Of course Theorem 4.4 proves the finite intersection property for the class of i-models, but in view

of the above discussion it can also give proofs of the finite intersection property for the sublcasses of

models mentioned in section 2.4.1.

For the particular case of graph models the fip was proved by Bucciarelli&Salibra [9, 8], via a con-

struction that they call weak product which has the same spirit of our completion method. For the other

classes of models the fip was not known to hold. For the particular case of filter models one may prove

the fip as a simple consequence of the closure of filter models under the contruction of direct products, a

result that does not appear in the literature and we do not sketch here.

4.2 Ultraproduct property for i-models

In this subsection we deal with the ultraproduct property for the class of i-models: for every non-empty

family {Ai}i∈I of i-webs and every ultrafilter U on P(I) the ultraproduct (∏i∈I A+
i )/U can be embedded

into an i-model.

Let J be a non-empty set and let {A j} j∈J be a family of information systems and let U be a proper

ultrafilter on P(J). Define a binary relation θU on ∏ j∈J A j by setting (α,β ) ∈ θU ⇔ { j ∈ J : α( j) =
β ( j)} ∈U .

Note that θU is an equivalence relation on ∏ j∈J A j. As a matter of notation, for every finite subset

a ⊆f ∏ j∈J A j, we let a/θU = {α/θU : α ∈ a}, i.e., a/θU is the finite subset of (∏ j∈J A j)/θU constituted

by the θU -equivalence classes of the tokens of a. Since each element α ∈ a is a J-indexed sequence, we

denote by α( j) the j-th projection of α and we let a( j) = {α( j) : α ∈ a}.

Definition 4.3. We define an information system PU = (PU ,ConU ,⊢U ,νU) as follows:

PU = (∏ j∈J A j)/θU

νU = (λλ j.νA j
)/θU

a/θU ∈ ConU iff { j ∈ J : a( j) ∈ ConA j
} ∈U

a/θU ⊢U α/θU iff { j ∈ J : a( j) ⊢A j
α( j)} ∈U

We also define an i-web PU = (PU ,φPU
) by setting φPU

(a/θU ,α/θU) = (λλ j.φA j
(a( j),α( j)))/θU .

We leave to the reader the easy verification of the fact that PU and PU indeed are an information

system and an i-web, respectively.

We conclude the second main theorem of the section, the one that deals with the ultraproduct prop-

erty. Let {A j} j∈J be a family of i-webs, let U be an ultrafilter over P(J) and let PU be the i-web of

Definition 4.3. Since PU is an i-web, then P+
U is a reflexive Scott domain and hence a λ -model. On

the other hand each i-web A j gives rise to a reflexive Scott domain A+
j , which is a λ -model. Then

(∏ j∈J A+
j )/U is an ultraproduct of λ -models, and thus again a λ -model.

Theorem 4.5. There exists an embedding of combinatory algebras from the λ -model (∏ j∈J A+
j )/U into

the λ -model P+
U .

The proof of Theorem 4.5 is rather technical and cumbersome. For this reason we state and prove

a particular case of Theorem 4.5 that only deals with graph models; the proof will appear clear and

readable, and at the same time gives the core idea about the proof of the more genereal result.
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Theorem 4.6. There exists an embedding of combinatory algebras from the λ -model (∏ j∈J A+
j )/U into

the λ -model P+
U .

Proof. We let x,y, . . . range over elements of ∏ j∈J A+
j , so that x( j) ∈ A+

j is a point of the graph model

A j. We write x/U for the equivalence class of x w.r.t. the congruence on ∏ j∈J A+
j given by x ∼U y ⇔

{ j ∈ J : x( j) = y( j)} ∈U , i.e., x/U = {y ∈ ∏ j∈J A+
j : x ∼U y}.

Recall that θU is the relation on ∏ j∈J A j given by (α,β ) ∈ θU ⇔ { j ∈ J : α( j) = β ( j)} ∈ U . We

define a map f : (∏ j∈J A+
j )/U → P+

U as follows:

f (x/U) = {α/θU : α ∈ ∏
j∈J

A j, ∀ j ∈ J. α( j) ∈ x( j)}

It is easy to show that the definition of f is independent of the choice of the representatives of ∼U -

equivalence classes as, for all y ∈ x/U , we have { j ∈ J : y( j) = x( j)} ∈U .

We prove that f is injective. Suppose x/U 6= y/U and let Z = { j ∈ J : x( j) = y( j)}. Define X = {k ∈
J : x(k) ⊆ y(k)} and Y = {k ∈ J : y(k) ⊆ x(k)}. Then X ∩Y = Z 6∈U . This means that it is not possible

that both X and Y belong to the ultrafilter U . Assume that X 6∈ U . Then for every k ∈ J −X we have

x(k) 6⊆ y(k), so that for each k ∈ J −X there exists an element γk ∈ Ak such that γk ∈ x(k)− y(k). Let

δ ∈∈ ∏ j∈J A j be an arbitrary sequence and let β ∈ ∏ j∈J A j be defined by β (i) = γi for i ∈ J −X and

β (i) = δ (i) for i 6∈ J −X . By definition of f we have β/θU ∈ f (x/U), while β/θU 6∈ f (y/U), so that

f (x/U) 6= f (y/U).
Now we prove that f is homomorphism of combinatory algebras. We start proving that f preserves

application. We have

f (x/U) · f (y/U) = {α/θU : α ∈ ∏ j∈J A j, ∃a/θU ⊆f f (y/U). φPU
(a/θU ,α/θU) ∈ f (x/U)}

= {α/θU : α ∈ ∏ j∈J A j, ∃a ⊆f ∏ j∈J A j.∀γ ∈ a.∀ j ∈ J. γ( j) ∈ y( j)∧∀i ∈ J. φAi
(a(i),α(i)) ∈ x(i)}

= {α/θU : α ∈ ∏ j∈J A j, ∀ j ∈ J.∃a ⊆f y( j). φA j
(a,α( j)) ∈ x( j)}

= {α/θU : α ∈ ∏ j∈J A j, ∀ j ∈ J. α( j) ∈ {β ∈ A j : ∃a ⊆f y( j). φA j
(a,β ) ∈ x( j)}}

= {α/θU : α ∈ ∏ j∈J A j, ∀ j ∈ J. α( j) ∈ x( j) · y( j)}
= f ((x · y)/U)
= f (x/U · y/U)

We now regard the basic combinators. Recall that by definition for each j ∈ J we have kA+
j = Jλxy.xKA+

j =
{φA j

(a,φA j
(b,β )) : β ∈ a}. Then

f (k(∏ j∈J A+
j )/U) = f ((k∏ j∈J A+

j )/U)

= {α/θU : α ∈ ∏ j∈J A j, ∀ j ∈ J. α( j) ∈ kA+
j }

= {φPU
(a/θU ,φPU

(b/θU ,β/θU)) : β/θU ∈ a/θU}

= Jλxy.xKP+
U

= kP+
U

Similarly f (s(∏ j∈J A+
j )/U) = sP+

U .

We remark that in the general case in which all the A j ( j ∈ J) and PU are i-webs the map f : (∏ j∈J A+
j )/U → P+

U

is defined as f (x/U) = {α/θU : α ∈ ∏ j∈J A j, ∀ j ∈ J. α( j) ∈ x( j)}↓PU
.

We commented at the end of §4.2 that the fip can be derived for subclasses by suitably modifying the

general construction detailed for i-models. Also the upp holds vor the various classes of models. Here
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we proved it for graph models, because it looks it looks very clear for this case, but the proof can be

adapted (adding details and complication) to the other cases.

Summing up, graph models, pcs-models, Krivine models, filter models and in general i-models have

both the fip and the upp. For this reason Theorem 3.1 applies to all these classes, producing a minimal

model in each case. It is known that there exist filter-easy terms [1] as well as graph-easy terms [2]

(for example (λx.xx)(λx.xx)), and every graph-easy term is also pcs-easy and Krivine-easy, since the

latter classes contain the graph models. Therefore Theorem 3.3 and Theorem 3.4 both hold for all these

classes, saying that each one of them induces a continuum of lambda-theories.

5 Conclusions

We have presented a method for proving that a given class of models of the λ -calculus possesses a

minimal element, i.e. an element whose λ -theory is the intersection of all the λ -theories represented in

the class.

Then, we have applied this method to the class of i-models, a subclass of Scott models defined in

[10], containing several well-known instances of “webbed” models like the graph-models and the filter

models living in the category of Scott domains.

Various extensions of this work can be explored, both toward the proof that the whole class of Scott

models has the minimality property, and more generally toward the application of the method to other

classes of models of the λ -calculus.

Concerning the former extension, a preliminary result would be the finite intersection property for

the whole class of Scott models, the completion method described in section 4 being adapted to i-models.

More generally, it is interesting to notice that webs, even beyond i-webs, are first-order axiomatis-

able, hence closed by ultraproducts (by the way, this observation is an alternative way of showing that

Definition 4.3 is sound).

By providing a first-order axiomatisation of sentences like A+

 M 6= N, for given terms M,M and

web A, we could invoke Los theorem for showing that (∏ j∈J A j)/θU)
+ and (∏ j∈J A+

j )/U have the

same theory, and hence for deriving a strong form of the ultraproduct property for the class of models

corresponding to the considered webs.
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