Alberto Carraro 
email: acarraro@dsi.unive.it
  
Antonino Salibra 
email: salibra@dsi.unive.it
  
Antonio Bucciarelli 
  
Minimal lambda-theories by ultraproducts

A longstanding open problem in lambda calculus is whether there exist continuous models of the untyped lambda calculus whose theory is exactly the λ β or the least sensible lambda-theory H (generated by equating all the unsolvable terms). A related question is whether, given a class of lambda models, there is a minimal lambda-theory represented by it. In this paper, we give a general tool to answer positively to this question and we apply it to a wide class of webbed models: the i-models. The method then applies also to graph models, Krivine models, coherent models and filter models. In particular, we build an i-model whose theory is the set of equations satisfied in all i-models.

If x is added by clause

Introduction

Lambda-theories are congruences on the set of λ -terms which contain β -conversion, providing (sound) notions of program equivalence. Models of the λ -calculus are one of the main tools used to study the lattice of λ -theories. Some of them, called webbed models, are built from lower level structures called "webs" (see Berline [START_REF] Berline | From computation to foundations via functions and application: the λ -calculus and its webbed models[END_REF] for an extensive survey). The simplest class of webbed models is the class of graph models, which was isolated in the seventies by Plotkin, Scott and Engeler [START_REF] Engeler | Algebras and combinators[END_REF][START_REF] Plotkin | Set-Theoretical and Other Elementary Models of the lambda-Calculus[END_REF][START_REF] Scott | Data types as lattices[END_REF] within the continuous semantics. The class of graph models contains the simplest models of λ -calculus, is itself the easiest describable class, and represents nevertheless a continuum of (non-extensional) lambdatheories. Another example of a class of webbed models, and the most established one, is the class of filter models. It was isolated at the beginning of the eighties by Barendregt, Coppo and Dezani [START_REF] Barendregt | A filter lambda model and the completeness of type assignment[END_REF], after the introduction of the intersection type discipline by Coppo and Dezani [START_REF] Coppo | An Extension of the Basic Functionality Theory for the λ -Calculus[END_REF]. Not all filter models live in Scott continuous semantics: for example some of them lack the property of representing all continuous functions, and others were introduced for the stable semantics (see Honsell-Ronchi [START_REF] Honsell | Reasoning about interpretations in qualitative lambda models[END_REF], Bastonero et al. [START_REF] Bastonero | Structures for lazy semantics[END_REF]).

In general, given a class C of models, a natural completeness problem arises for it: whether the class is complete, i.e., for any lambda-theory T there exists a member of C whose equational theory is T . A related question, raised in [START_REF] Berline | From computation to foundations via functions and application: the λ -calculus and its webbed models[END_REF] is the following: given a class C of models of the λ -calculus, is there a minimal lambda-theory represented by C ? If this is the case, we say that C enjoys the minimality property. In [START_REF] Di Gianantonio | Uncountable limits and the lambda calculus[END_REF] it was shown that the above question admits a positive answer for Scott's continuous semantics, at least if we restrict to extensional relexive CPO-models. Another result, in the same spirit, is the construction of a model whose theory is λ β η, a fortiori minimal, in the ω 1 -semantics. However, the proofs of [START_REF] Di Gianantonio | Uncountable limits and the lambda calculus[END_REF] use logical relations, and since logical relations do not allow to distinguish terms with the same applicative behavior, the proofs do not carry out to non-extensional models. Similarly, in [START_REF] Bucciarelli | Graph lambda theories[END_REF], it is shown that the class of graph models enjoys the minimality property.

In this paper, we propose a method to prove that a given class of models enjoys the minimality property, based on two main ingredients: the finite intersection property (fip) and the ultraproduct property (upp). The finite intersection property is satisfied by a class C of models if for all models M 1 , M 2 in C there exists a model M in C whose theory is included in T h(M 1 ) ∩ T h(M 2 . The ultraproduct property is satisfied in C if for every non-empty family {M i } i∈I of members of C and for every proper ultrafilter U of sets on P(I) the ultraproduct (∏ i∈I M i )/U can be embedded into a member of C . We show in Theorem 3.1 that if these conditions are satisfied, then C has the minimality property. An important technical device used in the proof of Theorem 3.1 is Lös Theorem: the ultraproduct of a family of models satisfies an (in)equation beetwen λ -terms if and only if the set of indexes of the component models satisfying it belongs to the ultrafilter. Hence, proving the minimality property boils down to exhibiting an appropriate ultrafilter.

As an application of this general method, we prove that the class of i-models introduced in [10] enjoys the minimality property. First of all, for every pair of i-models A, B we construct an i-model C such that T h(C) ⊆ T h(A) ∩ T h(B). This result is obtained via a sophisticated completion process applied to the categorical product of A and B, adapted from [START_REF] Carraro | Reflexive Scott domains are not complete for the extensional lambdacalculus[END_REF]. In order to prove that the class of i-models enjoys the ultraproduct property, we exploit the fact that i-models are webbed models. Given an ultraproduct of i-models, P, we construct the ultraproduct of the corrisponding webs, P ′ , which turns out to be a well defined web, and show that there exists an embedding of combinatory algebra from P to the i-model associated to P ′ . We also show how our proof applies to smaller classes of webbed models, like graph models, Krivine models, coherent models, and filter models.

The paper is organized as follows. In Section 2 we provide the preliminary notions and results needed in the rest of the paper, in section 3 we present the general method for showing that a given class of models of the λ -calculus has the minimality propery, and a couple of interesting corollaries of upp, and in section 4 we apply this method to the class of the i-models.

Preliminaries

Lambda-theories and models of λ -calculus

With regard to the λ -calculus we follow the notation and terminology of [START_REF] Barendregt | The Lambda calculus: Its syntax and semantics[END_REF]. By Λ and Λ o , respectively, we indicate the set of λ -terms and of closed λ -terms. We denote αβ -conversion by λ β . A λ -theory is a congruence on Λ (with respect to the operators of abstraction and application) which contains λ β . A lambda-theory is consistent if it does not equate all λ -terms, inconsistent otherwise. The set of lambdatheories constitutes a complete lattice w.r.t. inclusion, whose top is the inconsistent lambda-theory and whose bottom is the theory λ β . The lambda-theory generated by a set X of identities is the intersection of all lambda-theories containing X.

It took some time, after Scott gave his model construction, for consensus to arise on the general notion of a model of the λ -calculus. There are mainly two descriptions that one can give: the categorytheoretical and the algebraic one. Besides the different languages in which they are formulated, the two approaches are intimately connected (see Koymans [START_REF] Koymans | Models of the Lambda Calculus[END_REF]). The categorical notion of model is well-suited for constructing concrete models, while the algebraic one is rather used to understand global properties of models (constructions of new models out of existing ones, closure properties, etc.) and to obtain results about the structure of the lattice of lambda-theories.

Ultraproducts of λ -models

Reduced products result from a certain combination of the direct product and quotient constructions. They were introduced in the 1950's by Loś and the special case of ultraproducts has been a subject worthy of at least one book.

Let I be a non-empty set and let {A i } i∈I be a family of combinatory algebras. Let U be a proper ultrafilter of the boolean algebra P(I) and define a relation ∼ U given by a ∼ U b ⇔ {i ∈ I : a(i) = b(i)} ∈ U. Then θ is a congruence on the combinatory algebra ∏ i∈I A i . The ultraproduct of the family {A i } i∈I , noted (∏ i∈I A i )/U is defined as the quotient of the product ∏ i∈I A i by the congruence ∼ U . Now if all members of {A i } i∈I are λ -models, by a celebrated theorem of Loś we have that (∏ i∈I A i )/U is a λ -model too, because λ -models are axiomatized by first-order sentences. The basic combinators of the λ -model (∏ i∈I A i )/U are k ∏ i∈I A i /U and s ∏ i∈I A i /U and application is given by x/U • y/U = (x • y)/U, where the application x • y is defined pointwise.

We now recall the famous theorem Loś that we will use throughout this paper.

Theorem 2.1 (Loś). Let {A i } i∈I be a family of first-order structures indexed by a non-empty set I an let U be a proper ultrafilter of P(I). Then for every first-order L -formula ϕ(x 1 , . . . , x n ) and for every tuple (a 1 , . . . , a n ) ∈ ∏ i∈I A i we have that

( ∏ i∈I A i )/U |= ϕ(a 1 /U, . . . , a n /U) ⇔ {i ∈ I : A i |= ϕ(a 1 (i), . . . , a n (i))} ∈ U

Information systems

Information systems were introduced by Dana Scott in [START_REF] Scott | Domains for Denotational Semantics[END_REF] to give a handy representation of Scott domains. An information system is a tuple A = (A, Con A , ⊢ A , ν A ), where A is a set and ν A ∈ A, Con A ⊆ P f (A) is a downward closed family containing all singleton subsets of A, and ⊢ A ⊆ Con A × A satisfies the four axioms listed below:

(I1) if a ∈ Con A and a ⊢ A b, then a ∪ b ∈ Con A (where a ⊢ A b def = ∀β ∈ b. a ⊢ A β ) (I2) if α ∈ a, then a ⊢ A α (I3) if a ⊢ A b and b ⊢ A γ, then a ⊢ A γ (I4) / 0 ⊢ A ν A
We adopt the following notational conventions: letters α, β , γ, . . . are used for elements of A (also called tokens); letters a, b, c, . . . are used for elements of Con A , usually called consistent sets; letters x, y, z, . . . are used for arbitrary elements of P(A). We usually drop the subscripts from Con A and ⊢ A when there is no danger of confusion.

Scott proposed information systems as structures where the "backbone" of a domain is introduced by just a few axioms. Then the domain itself is defined as a certain construction from the backbone in order to define the appropriate notion of element. Scott's idea was not only to offer a simple alternative to domains, but also to continuous functions: in fact his purpose was to describe at a "lower lever" the entire category SD. For this reason he also defined an appropriate notion of morphism between information systems.

An approximable relation between two information systems A , B is a relation R ⊆ Con A × B satisfying the following properties:

(AR1) if a ∈ Con A and a R b, then b ∈ Con B (where a R b def = ∀β ∈ b. a R β ) (AR2) if a ′ ⊢ A a, a R b, and b ⊢ B β ′ , then a ′ R β ′
We will call Inf the category which has information systems as objects and approximable relations as arrows. The composition of two morphisms R ∈ Inf(A , B) and S ∈ Inf(B, C ) is (using the meta-notation) their usual relational composition:

S • R = {(a, γ) ∈ Con A × C : ∃b ∈ Con B . (a, b) ∈ R and (b, γ) ∈ S}.
The identity morphism of an information system A is ⊢ A .

The ccc structure of Inf is described in [START_REF] Scott | Domains for Denotational Semantics[END_REF], and we recall it here for the sake of self-containment. In what follows we use the projection functions fst and snd of a set-theoretic Cartesian product over the first and second component, respectively.

Definition 2.1. The Cartesian product of A and B is given by

A B = (A ⊎ B, Con, ⊢, ν) where A ⊎ B = ({ν A } × B) ∪ (A × {ν B }) ν = (ν A , ν B ) a ∈ Con iff fst * (a) ∈ Con A and snd * (a) ∈ Con B a ⊢ α iff fst * (a) ⊢ A fst(α) and snd * (a) ⊢ B snd(α)
The terminal object is the information system ⊤ whose underlying set contains only one token.

Definition 2.2. The exponentiation of B to A is given by

A ⇒ B = (A ⇒ B, Con, ⊢, ν) where A ⇒ B = Con A × B ν = ( / 0, ν B ) {(a 1 , β 1 ), . . . , (a k , β k )} ∈ Con iff ∀I ⊆ [1, k]. (∪ i∈I a i ∈ Con A ⇒ {β i : i ∈ I} ∈ Con B {(a 1 , β 1 ), . . . , (a k , β k )} ⊢ (c, γ) iff {β i : c ⊢ A a i , i ∈ [1, k]} ⊢ B γ
The categories SD and Inf are isomorphic, via a pair of mutually inverse ccc-functors (•) + : Inf → SD and (•) -: SD → Inf. In particular for an information system A , we have that A + = Inf(⊤, A ), i.e., the set of points of an information system, ordered by inclusion, is a Scott domain. Moreover the domains [A + → B + ] and A + × B + are ismorphic (in the category SD) to the domains (A ⇒ B) + and (A B) + , respectively.

Webbed models of λ -calculus

Some of the models of λ -calculus are called webbed models because they are built from lower level structures called "webs" (see Berline [START_REF] Berline | From computation to foundations via functions and application: the λ -calculus and its webbed models[END_REF][START_REF] Berline | Graph models of λ -calculus at work, and variations[END_REF] for an accurate survey). Typically a web is a set with additional structure and a webbed model is a partial order (usually a domain) whose elements are special subsets of the web. We now introduce a class of webbed models of λ -calculus arising from information systems that include many others, among which the filter models of λ -calculus living in CPO.

Let A be an information system. A subset x ⊆ A is finitely consistent if each of its finite subsets belongs to Con A . We define a partial operator (•) ↓ A : P(A) ⇀ P(A) by setting x ↓ A = {α ∈ A : ∃a ⊆ f x. a ⊢ α} if x is finitely consistent and undefined otherwise. We may drop the subscript when the underlying information system is clear from the context. Note that (•)↓ is a monotone map satisfying the following conditions: x ⊆ x ↓, x ↓ ↓= x ↓ and x ↓= ∪ a⊆ f x a ↓.

Up to a trivial isomorphism, A + = Inf(⊤, A ) is the set finitely consistent subsets x ⊆ A such that x = x ↓. Therefore use the word point to denote these latter subsets.

Let A , B be information systems and let f : A → B be a function. We define two Scott continuous functions f • : A + → B + and f • : B + → A + as follows:

f • (x) = { f (α) : α ∈ x} ↓ B ; f • (y) = {α : f (α) ∈ y} ↓ A
for every point x of A and every point y of B. We want to give simple conditions under which f can generate a continuous retraction from A + to B + : these conditions were introduced in [10].

Definition 2.3 ([10]).

Let A , B be information systems. A morphism from A to B is a function f : A → B satisfying the following property:

(Mo) a ∈ Con A iff f * (a) ∈ Con B Definition 2.4 ([10]). A morphism f : A → B is a b-morphism (resp. f-morphism) if it satisfies the following property (bMo) (resp. (fMo)) (bMo) if f * (a) ⊢ B f (α), then a ⊢ A α (fMo) if a ⊢ A α, then f * (a) ⊢ B f (α)
The "b" (resp. "f") in the name of the axiom stands for backward (resp. forward). We leave to the reader the easy relativization of the various notions of morphism given in Definition 2.4 to the case in which f is a partial map.

Proposition 2.2. Let f : A → B be a b-morphism. Then ( f • , f • ) is a retraction pair from A + into B + . Proof. From (bMo) it follows f • • f • = id A + . Definition 2.5. An i-web is a pair A = (A , φ A ) where A is

an information system and φ

A : A ⇒ A → A is a b-morphism.
The set of tokens of A is called the web of A. Proposition 2.3. Let A = (A , φ A ) be an i-web. Then A + is a reflexive object in the category SD.

Proof. As anticipated, there is a continuous isomorphism θ :

(A ⇒ A ) + → [A + → A + ]
and by Proposition 2.2 the domain (A ⇒ A ) + can be embedded into A + via the retraction pair

((φ A ) • , (φ A ) • ). Therefore (θ • (φ A ) • , θ -1 • (φ A ) • )
is the desired retraction pair in the category SD.

We set

A + = (A + , θ • (φ A ) • , θ -1 • (φ A ) • ) and call A + an i-model. Of course, since A + is a reflexive object in SD, then A + is
also a λ -model and λ -terms are interpreted as elements of A + (i.e. as points of A ) as follows:

x i A + ρ = ρ(x) λ y.M A ρ = {φ A (a, α) : α ∈ M A + ρ[y:=a↓] } ↓ A MN A ρ = {β ∈ A : ∃a ⊆ f N A + ρ . (a, β ) ∈ {(a ′ , β ′ ) : φ A (a ′ , β ′ ) ∈ M A + ρ } ↓ A⇒A }
The λ -model structure associated to the i-model A + is the following. The basic combinators are k A + = λ xy.x A + and s A + = λ xyz.xz(yz) B + , and the application operation is given by

u • v = {β ∈ A : ∃a ⊆ f v. (a, β ) ∈ {(a ′ , β ′ ) : φ A (a ′ , β ′ ) ∈ u} ↓ A⇒A }
for all points u, v.

Well-known instances of i-webs

An extended abstract type structure (EATS, for short, [13, Def. 1.1]) is a partially ordered algebra (A, ∧, →, ω), where "∧" and "→" are binary operations and "ω" is nullary one. Then the structure A = (A, P f (A), ⊢, ω), where a ⊢ α iff ( a) ≤ α, is an information system. For two

EATSs (A, ∧ A , → A , ω A ) and (B, ∧ B , → B , ω B ) a bf-morphism ψ : A → B between the corresponding information systems is a function satisfying α ≤ A α ′ iff ψ(α) ≤ B ψ(α ′ ).
Recall from [13, Def. 2.12,Thm. 2.13] that the Filter models living in the Scott semantics are obtained by taking the set of filters of EATSs satisfying the following condition:

( * ) n i=1 (α i → β i ) ≤ γ → δ , then ( i∈{i:γ≤α i } β i ) ≤ δ
In such a case, defining φ : P f (A) × A → A by φ (a, α) = ( a) → α one obtains a b-morphism and hence an i-web A = (A , φ A ) and the corresponding filter model is exactly the i-model A + (see [START_REF] Carraro | Easy lambda-terms are not always simple[END_REF] for the details).

In Larsen & Winskel [19] the definition of information system is slightly different: there is no special token ν. We remark that the corresponding class of i-models generated by the two definitions is the same. We adopt Scott's original definition just for technical reasons. With Larsen & Winskel's definition we can capture some other known classes of models, as illustrated below.

A preordered set with coherence (pc-set, for short) is a triple (A, ≤, ≎), where A is a non-empty set, ≤ is a preorder on A and ≎ is a coherence (i.e., a reflexive, symmetric relation on A) compatible with the preorder (see [START_REF] Berline | From computation to foundations via functions and application: the λ -calculus and its webbed models[END_REF]Def. 120]). A pc-set "is" an information system A = (A, P coh f (A), ⊢), where P coh f (A) is the set of finite coherent subsets of A and a ⊢ α iff ∃β ∈ a. β ≥ α. A pc-web (see [START_REF] Berline | From computation to foundations via functions and application: the λ -calculus and its webbed models[END_REF]Def. 153]) is determined by a pc-set together with a map φ :

P coh f (A) × A → A satisfying: (1) φ (a, α) ≎ φ (b, β ) iff (a ∪ b ∈ P coh f (A) ⇒ α ≎ β ) (2) if φ (a, α) ≤ φ (b, β ), then α ≤ β and (∀γ ∈ b ∃δ ∈ a.γ ≤ δ ).
A pc-web is a particular instance of i-web and properties (1),(2) say exactly that φ is a b-morphism. Krivine webs [6, Sec. 5.6.2] are pc-webs in which ≎ = A × A (so that P coh f (A) = P f (A)). Total pairs [6, Sec. 5.5] are Krivine webs in which ≤ is the equality: in fact in this the requirement of φ to be a b-morphism boils down to injectivity. Therefore a total pair is simply defined as a set A together with an injection i A : P f (A) × A → A; the underlying information system is A = (A, P f (A), ∋). The graph model associated to the total pair is then the i-model A + , obtained by taking the powerset of A (see [START_REF] Berline | From computation to foundations via functions and application: the λ -calculus and its webbed models[END_REF]Def. 120]). There is usually some ambiguity in the terminology since by "graph model" sometimes is meant the total pair (as in [START_REF] Bucciarelli | The minimal graph model of lambda calculus[END_REF], for example) underlying the model itself.

Minimal models: general results

In general, given a class C of λ -models, a natural question to be asked is whether there exists a member A of C such that Eq(A) is contained in the theories of all other members of C : one such model A is called minimal in C . This point was raised in print by C. Berline [START_REF] Berline | From computation to foundations via functions and application: the λ -calculus and its webbed models[END_REF] who was mainly referring to the classes of webbed models of λ -calculus. If a positive answer is obtained, usually it is done by purely semantical methods and Eq(A) does not need to be characterised in the syntactical sense: this is the case of Di Giannantonio et al. [START_REF] Di Gianantonio | Uncountable limits and the lambda calculus[END_REF], in which the authors prove that the class all extensional reflexive CPOs has a minimal model. Of course if one is able to gather enough information about Eq(A), then one may be in the position to answer the related completeness question for the class C : is λ β (or λ β η) a theory induced by a member of C ? An example of result of this kind can be found again in [START_REF] Di Gianantonio | Uncountable limits and the lambda calculus[END_REF], where the authors construct a model with theory λ β η in the ω 1 -semantics.

In this section we give general conditions for a class C of λ -models under which we have the guarantee that C has a minimal model. In the forthcoming section 4 we will apply this general result to the class of i-models and some of its well-known classes of models. Definition 3.1. A class C of λ -models has the finite intersection property (fip, for short) if for every two members A, B of C , there exists a member C of C such that Eq(C) ⊆ Eq(A) ∩ Eq(B).

For example the class of all λ -models has the fip, and in general every class closed under direct products has the fip. Every subclass which is axiomatized over the λ -models by first-order universal sentences has the fip, but of course these conditions do not hold in general for the classes of webbed models, e.g. for the i-models. We will see that they do hold for the filter models.

The fip is a property which is weaker than the closure under direct products. Of course a class which is closed under arbitrary (non-empty) direct products has a minimal model. The next definition isolates a property that, together with the fip, can overcome the lack of direct products and guarantee the existence of minimal models. Definition 3.2. A class C of λ -models has the ultraproduct property (upp, for short) if for every nonempty family {A i } i∈I of members of C and for every proper ultrafilter U of sets on P(I) the ultraproduct (∏ i∈I A i )/U can be embedded into a member of C .

For example the class of all λ -models has the upp, and in general every class closed under ultraproducts has the upp. Every subclass which is axiomatized over the λ -models by first-order sentences has the upp, but of course these conditions do not hold in general for the known classes of webbed models, e.g. for the i-models. Theorem 3.1. Let C be a class of λ -models having both the fip and the upp. Then C has a minimal model.

Proof. Let I be the set of all equations e betweeen closed combinatory terms for which there exists a model A in C such that A |= e. For every e ∈ I, consider the set K e = {J ⊆ f I : e ∈ J}. Since K e ∩ K e ′ = {J ⊆ f I : e, e ′ ∈ J} = / 0 for all e, e ′ ∈ I, then there exists a non-principal ultrafilter U on P f (I) containing the family (K e : e ∈ I). By the finite intersection property of the class C , for every J ⊆ f I there exists a model A J in C such that e ∈ Eq(A J ) for every e ∈ J. Let {A J } J⊆ f I be the family composed by these models and consider the ultraproduct P U = (∏ J⊆ f I A J )/U. Let e ∈ I be a closed equation and let X e = {J ⊆ f I : A J |= e}. Then X e ⊇ K e ∈ U, so that X e belongs to the ultrafilter U. Since e is a closed first-order formula, by Loś Theorem 2.1 P U |= e. Since e was an arbitrary equation in I, we have that P U |= e for every e ∈ I, so that Eq(P U ) ⊆ A∈C Eq(A). Finally, since the class C has the ultraproduct property, then there exists a model B in C such that P U embeds into B. Then Eq(B) = Eq(P U ) ⊆ A∈C Eq(A) ⊆ Eq(B) and we get the desired conclusion.

Corollary 3.2. Let C be a class of λ -models which has the fip and is closed under ultraproducts. Then C has a minimal model.

We conclude the section by giving some other general results that can be proved by just assuming the fip and the upp for a class C of λ -models. In particular we can prove a compactness theorem for lambda-theories whose equations hold in members of C . Another result that can be proved is that if there exists a λ -term that can be proved easy in C , then there exists a continuum of C -theories i.e. there are uncountably many different lambda-theories induced by models of the class C .

Theorem 3.3 (Compactness). Let C be a class of λ -models having the upp, and let E be a set of equations between closed λ -terms. If every finite subset of E is satisfied by a member of C , then E itself is satisfied by a member of C .

Proof. For every J ⊆ f E, let K J = {I ⊆ f E : J ⊆ I} and let A J ∈ C be a model satisfying J. Let U be a proper ultrafilter on P f (E) containing K J for every J ⊆ f E. Then the ultraproduct (∏ J⊆ f E A J )/U satisfies E. Finally by the upp there exists a model B in C such that (∏ J⊆ f E A J )/U embeds into B, and thus has the same lambda-theory. We conclude that B satisfies E.

Let C be a class of λ -models. A closed λ -term M is C -easy if for every closed λ -term N there exists a member B of C such that M B = N B . Theorem 3.4. Let C be a class of λ -models having the upp such that there exists a C -easy λ -term. Then there exist uncountably many C -theories.

Proof. Let M be a C -easy λ -term. For n ≥ 1, we let π n ≡ λ x 1 . . . x n .x n . We prove that for every n ≥ 1 the term Mπ n is C -easy.

Let X = (N n ) n≥1 be an arbitrary infinite sequence of closed β η-normal λ -terms and define E(X) = {Mπ n = N n : n ≥ 1}. Let K = {Mπ n 1 = N n 1 , . . . , Mπ n k = N n k } be a finite subset of E(X). Without loss of generality, we may assume that n 1 < • • • < n k . Let y be a fresh variable and define inductively

Z 1 := y I • • • I n 1 -1 N n 1 ; Z m+1 := Z m I • • • I n m+1 -n m -1 N n m Now set Z = λ y.Z k . Since M is C -easy, then there is a member A of C such that A |= M = Z. Therefore A |= Mπ n i = Zπ n i = N n i for all i = 1, . . . , k so that K ⊆ Eq(A)
. Since every finite subset of E(X) is satisfied by a member of C , then by Theorem 3.3 E(X) itself is satisfied by a member of C , i.e. there exists a member A X of C such that E(X) ⊆ Eq(A X ). Moreover if X and Y are two different infinite sequences of closed β η-normal λ -terms, then Eq(A X ) = Eq(A Y ). The result then follows from the fact that there are uncountably many infinite sequences of closed β η-normal λ -terms.

Applications

In the present section we apply the general results developed in §3. In particular we prove that the class of i-models has both the finite intersection property and the ultraproduct property. Then we comment on how these general results also apply to other well-known classes of webbed models.

Finite intersection property for i-models

The goal of the first part of this section is to prove that for every pair A 1 , A 2 of i-webs there exists an i-web B such that Eq(B + ) ⊆ Eq(A + 1 ) ∩ Eq(A + 2 ). Such result would be trivial if the categorical product A 1 A 2 could always be endowed with a suitable structure of i-web, but this is not the case. The best that we can do in general is to make A 1 A 2 into a partial i-web. A partial i-web in general is a pair A = (A , φ A ), where φ A : A ⇒ A ⇀ A is a partial b-morphism. In particular we can set

φ (a, α) =      (ν A 1 , ν A 2 ) if a ⊆ {(ν A 1 , ν A 2 )} and α = (ν A 1 , ν A 2 ) (ν A 1 , φ A 2 (snd * (a), snd(α))) if a ∪ {α} ⊆ f {ν A 1 } × A 2 (φ A 1 (fst * (a), fst(α)), ν A 2 ) if a ∪ {α} ⊆ f A 1 × {ν A 2 } obtaining that A 1 A 2 = (A 1 A 2 , φ
) is a partial i-web. A partial i-web does not give in general an imodel, but we can complete it to an i-web through a limit process that involves countably many extension steps.

We say that B is an extension of S , notation S B, if S ⊆ B, Con S = Con B ∩ P f (S), ⊢ S = ⊢ B ∩(Con S × S). We say that B is an extension of S, notation S B, if S B and φ S is the restriction of φ B to Con S × S.

Let us call B the extension of result of the (yet undefined) completion process. Of course B must be somehow related to the original i-webs A 1 and A 2 . In particular, we want that for every closed λ -term

M if (ν A 1 , β ) ∈ M B + (resp. (α, ν A 2 ) ∈ M B + ), then β ∈ M A + 2 (resp. α ∈ M A + 1
) because this will guarantee that Eq(B + ) ⊆ Eq(A + 1 ) ∩ Eq(A + 2 ). We will achieve this property by means of the notion of f-morphism of partial i-webs.

Notation. Let f : A → B be a function. We define f * : P f (B) → P f (C) and f : The following proposition explains that, in general, f-morphisms of i-webs "commute" well to the interpretation of λ -terms. We remark that the two projection functions fst and snd are f-morphisms of partial i-webs from A 1 A 2 to A 1 and A 2 , respectively.

(P f (B) × B) → (P f (C) × C) as follows: f * (b) = { f (β ) | β ∈ b, β ∈ do( f )} and f (b, β ) = ( f * (b), f (β )). Hence f * : P f (P f (B) × B) → P f (P f (C) ×C). If f is
Our goal now is to construct a series of triples {(S n , ψ 1 n , ψ 2 n )} n≥0 such that S n S n+1 and ψ i n : S n → A i (i = 1, 2) is an f-morphism of partial i-webs such that ψ i n+1 extends ψ i n (i = 1, 2). The idea is that the input parameter of the whole construction is the triple (S 0 , ψ 1 0 , ψ 2 0 ) where S 0 := A 1 A 2 , ψ 1 0 = fst, and ψ 2 0 = snd. All subsequent triples are constructed via an algorithm that, given

(S n , ψ 1 n , ψ 2 n ) as input, returns (S n+1 , ψ 1 n+1 , ψ 2 n+1
). The union of all partial i-webs and all f-morphisms of partial i-webs finally gives an i-web S ω (called completion) and two f-morphisms ψ i ω (i = 1, 2) of i-webs that allow to show that Eq(S + ω ) ⊆ Eq(A + 1 ) ∩ Eq(A + 2 ). The 0-th stage of the completion process, i.e., the triple (S 0 , ψ 1 0 , ψ 2 0 ) has already been described. Now assuming we reached stage n, we show how to carry on with stage n + 1. Definition 4.2.

• S n+1 = S n ∪ do(φ S n )

• Con S n+1 is the smallest family of sets x ⊆ f S n ∪ do(φ S n ) such that either [START_REF] Alessi | Filter Models and Easy Terms[END_REF] there exist a ∈ Con n and X ∈ Con S n ⇒S n such that X ⊆ do(φ S n ) and x = a ∪ X and ψ i n * (a) ∪

φ A i * ( ψ i n * (X)) ∈ Con A i (i = 1, 2) or (2) there exists X ∈ Con S n ⇒S n such that x ⊆ f (X ∩ do(φ S n )) ∪ (φ S n * (X ∩ do(φ S n ))) ↓ S n • a ⊢ S n+1 α iff either a ∩ S n ⊢ S n α or α ∈ a • ν S n+1 = ν S n • φ S n+1 (a, α) =      φ S n (a, α) if (a, α) ∈ do(φ S n ) (a, α) if (a, α) ∈ do(φ S n ) undefined if (a, α) ∈ (S n+1 ⇒ S n+1 ) -(S n ⇒ S n ) • for i = 1, 2 we set ψ i n+1 (α) = ψ i n (α) if α ∈ S n φ A i (ψ i n * (b), ψ i n (β )) if α = (b, β ) ∈ S n+1 -S n Theorem 4.2. We have that (i) S n+1 = (S n+1 , Con S n+1 , ⊢ S n+1 , ν S n+1 ) is an information system such that S n S n+1 , (ii) S n+1 = (S n+1 , φ S n+1 ) is a partial i-web such that S n S n+1 , (iii) ψ i n+1 : S n+1 → A i (i = 1, 2
) is an f-morphism of partial i-webs.

Proof. (i) We show that S n+1 is an information system, checking the four properties of Definition ??.

= φ A i * ( ψ i n * (X ∩ do(φ S n ))) ∪ φ A i * ( ψ i n * (X ∩ do(φ S n ))) = φ A i * ( ψ i n * (X))
This proves that ψ i n+1 * (y) ∈ Con A i . Now using property (fMo) ψ i n we obtain that ψ i n+1 * (y) ⊢ A i ψ i n+1 * (x), and hence ψ i n+1 * (x) ∈ Con A i .

(⇐) By the very definition of Con S n+1 , in particular by the clause (1).

(fMo

) Suppose a ⊢ S n+1 α. If α ∈ a, then of course ψ i n+1 * (a) ⊢ A i ψ i n+1 (α). If a ∩ S n ⊢ S n α, then ψ i n+1 * (a) = ψ i n+1 * (a -S n ) ∪ ψ i n * (a ∩ S n ) ⊢ A i ψ i n * (a ∩ S n ) ⊢ A i ψ i n (α) (iMo) Let (a, α) ∈ S n ⇒ S n . Then ψ i n+1 (φ S n+1 (a, α)) = φ A i (ψ i n * (a), ψ n (α)) = φ A i (ψ i n+1 (a), ψ i n+1 (α)
), by definition of ψ i n+1 and the fact that it extends ψ i n .

The completion of the triple

(A 1 A 2 , π 1 , π 2 ) is the triple (S ω , ψ 1 ω , ψ 2 ω )
, where S ω = (S ω , Con S ω , ⊢ S ω , ν S ω ) and S ω = (S ω , φ S ω ) are given by the following data:

S ω := m<ω S m Con S ω := m<ω Con S m ⊢ S ω := m<ω ⊢ S m ν S ω := ν A 1 A 2 φ S ω := m<ω φ S m ψ i ω := m<ω ψ i m (i = 1, 2)
Lemma 4.3. S ω is an i-web and ψ i ω : S ω → A i (i = 1, 2) is an f-morphism of i-webs.

Proof. Indeed S ω is an information system as a consequence of Theorem 4.2(i). Moreover the map φ S ω is total and it is easy to prove that it is a b-morphism from S ω ⇒ S ω using the fact that for every n the map φ S n+1 is a partial b-morphism (Theorem 4.2(ii)). Similarly one can prove that ψ i ω is an f-morphism of i-webs from S ω to A i (i = 1, 2) simply using the fact that for every n the map ψ i n is an f-morphism from the partial i-web S n to the i-webs A i (i = 1, 2) (Theorem 4.2(iii)). Theorem 4.4. Eq(S + ω ) ⊆ Eq(A + 1 ) ∩ Eq(A + 2 ).

Proof. Suppose M = N ∈ Eq(A + 1 ) ∩ Eq(A + 2 ). Suppose, w.l.o.g., that M = N ∈ Eq(A + 1 ). Then there exists

α ∈ A 1 such that α ∈ M A + 1 -N A + 2 . It is not difficult to check that α ∈ M A + 1 implies (α, ν A 2 ) ∈ M S + ω , since S ω extends A 1 A 2 . Now suppose, by way of contradiction, that (α, ν A 2 ) ∈ N S + ω . Since ψ 1 ω (α, ν A 2 ) = α, by Proposition 4.1 we have that α ∈ N A + 1 , which is a contradiction. This proves that (α, ν A 2 ) ∈ M S + ω -N S + ω , so that M = N ∈ Eq(S + ω ).
In §2.4.1 we indicate how some of the most known classes of webbed models are recovered as particular instances of i-models (more details for Filter Models are in [START_REF] Carraro | Easy lambda-terms are not always simple[END_REF]). Along these lines the notion of partial i-web generalizes those of partial pair [START_REF] Berline | From computation to foundations via functions and application: the λ -calculus and its webbed models[END_REF] (related to graph models) as well as the notions of partial webs of the other types.

The idea of partial pair and of a completion for obtaining a graph model generalizes the construction of the Engeler model and the of the Plotkin-Scott P ω model. It was initiated by Longo in [START_REF] Longo | Set-theoretical models of λ -calculus: theories, expansions, isomorphisms[END_REF] and further developed and applied by Kerth [START_REF] Kerth | Isomorphism and equational equivalence of continuous lambda models[END_REF]. Definition 4.2 is the core of a completion of i-webs that Theorem 4.6. There exists an embedding of combinatory algebras from the λ -model (∏ j∈J A + j )/U into the λ -model P + U .

Proof. We let x, y, . . . range over elements of ∏ j∈J A + j , so that x( j) ∈ A + j is a point of the graph model A j . We write x/U for the equivalence class of x w.r.t. the congruence on ∏ j∈J A + j given by x ∼ U y ⇔ { j ∈ J : x( j) = y( j)} ∈ U, i.e., x/U = {y ∈ ∏ j∈J A + j : x ∼ U y}. Recall that θ U is the relation on ∏ j∈J A j given by (α, β ) ∈ θ U ⇔ { j ∈ J : α( j) = β ( j)} ∈ U. We define a map f : (∏ j∈J A + j )/U → P + U as follows:

f (x/U) = {α/θ U : α ∈ ∏ j∈J A j , ∀ j ∈ J. α( j) ∈ x( j)}

It is easy to show that the definition of f is independent of the choice of the representatives of ∼ Uequivalence classes as, for all y ∈ x/U, we have { j ∈ J : y( j) = x( j)} ∈ U.

We prove that f is injective. Suppose x/U = y/U and let Z = { j ∈ J : x( j) = y( j)}. Define X = {k ∈ J : x(k) ⊆ y(k)} and Y = {k ∈ J : y(k) ⊆ x(k)}. Then X ∩Y = Z ∈ U. This means that it is not possible that both X and Y belong to the ultrafilter U. Assume that X ∈ U. Then for every k ∈ J -X we have x(k) ⊆ y(k), so that for each k ∈ J -X there exists an element γ k ∈ A k such that γ k ∈ x(k)y(k). Let δ ∈∈ ∏ j∈J A j be an arbitrary sequence and let β ∈ ∏ j∈J A j be defined by β (i) = γ i for i ∈ J -X and β (i) = δ (i) for i ∈ J -X. By definition of f we have β /θ U ∈ f (x/U), while β /θ U ∈ f (y/U), so that f (x/U) = f (y/U). Now we prove that f is homomorphism of combinatory algebras. We start proving that f preserves application. We have f (x/U) • f (y/U) = {α/θ U : α ∈ ∏ j∈J A j , ∃a/θ U ⊆ f f (y/U). φ P U (a/θ U , α/θ U ) ∈ f (x/U)} = {α/θ U : α ∈ ∏ j∈J A j , ∃a ⊆ f ∏ j∈J A j .∀γ ∈ a.∀ j ∈ J. γ( j) ∈ y( j) ∧ ∀i ∈ J. φ A i (a(i), α(i)) ∈ x(i)} = {α/θ U : α ∈ ∏ j∈J A j , ∀ j ∈ J.∃a ⊆ f y( j). φ A j (a, α( j)) ∈ x( j)} = {α/θ U : α ∈ ∏ j∈J A j , ∀ j ∈ J. α( j) ∈ {β ∈ A j : ∃a ⊆ f y( j). φ A j (a, β ) ∈ x( j)}} = {α/θ U : α ∈ ∏ j∈J A j , ∀ j ∈ J. α( j) ∈ x( j) • y( j)} = f ((x • y)/U) = f (x/U • y/U)

We now regard the basic combinators. Recall that by definition for each j ∈ J we have k A + j = λ xy.x A + j = {φ A j (a, φ A j (b, β )) : β ∈ a}. Then

f (k (∏ j∈J A + j )/U ) = f ((k ∏ j∈J A + j )/U) = {α/θ U : α ∈ ∏ j∈J A j , ∀ j ∈ J. α( j) ∈ k A + j } = {φ P U (a/θ U , φ P U (b/θ U , β /θ U )) : β /θ U ∈ a/θ U } = λ xy.x P + U = k P + U Similarly f (s (∏ j∈J A + j )/U ) = s P + U .
We remark that in the general case in which all the A j ( j ∈ J) and P U are i-webs the map f : (∏ j∈J A + j )/U → P + U is defined as f (x/U) = {α/θ U : α ∈ ∏ j∈J A j , ∀ j ∈ J. α( j) ∈ x( j)} ↓ P U . We commented at the end of §4.2 that the fip can be derived for subclasses by suitably modifying the general construction detailed for i-models. Also the upp holds vor the various classes of models. Here

  a partial function, we write do( f ) to indicate the domain of f . Definition 4.1 ([10]). Let B, C be partial i-webs. An f-morphism from B to C is an f-morphism ψ : B → C satisfying the following additional property: (iMo) if (a, β ) ∈ do(φ B ), then (ψ * (a), ψ(β )) ∈ do(φ C ) and ψ(φ B (a, β )) = φ C (ψ * (a), ψ(β ))

Proposition 4 . 1 (

 41 [START_REF] Carraro | Reflexive Scott domains are not complete for the extensional lambdacalculus[END_REF]). Let B, C be i-webs, let ψ : B → C be an f-morphism of i-webs, and let M be a closed λ -term. If α ∈ M B + , then ψ(α) ∈ M C + .

(I1) Suppose a ∈ Con S n+1 and a ⊢ S n+1 b. If a has been added to Con S n+1 by clause [START_REF] Alessi | Filter Models and Easy Terms[END_REF], then exists i ∈ {1, 2}, a ′ ∈ Con S n and X ∈ Con S n ⇒S n such that X ⊆ do(φ S n ) and a = a ′ ∪ X and ψ i n * (a ′ ) ∪

Therefore b is added to Con S n+1 by clause [START_REF] Alessi | Filter Models and Easy Terms[END_REF].

If a has been added to Con S n+1 by clause [START_REF] Baeten | Omega can be anything it should not be[END_REF], then also b is added to Con S n+1 by the same clause.

(I2) If α ∈ a, then a ⊢ S n+1 α by definition of ⊢ S n+1 .

(I3) Suppose a ⊢ S n+1 {α 1 , . . . , α k } and {α 1 , . . . , α k } ⊢ S n+1 γ. If γ ∈ {α 1 , . . . , α k } then clearly a ⊢ S n+1 γ.

Otherwise {α 1 , . . . , α k } ∩ S n ⊢ S n γ and since a ∩ S n ⊢ S n {α 1 , . . . , α k } ∩ S n we can conclude using the property (I3) of S n .

(I4) Immediate.

Finally it is immediate to see that S n S n+1 .

(ii) Note that the fact that S n S n+1 automatically implies S n ⇒ S n S n+1 ⇒ S n+1 . Now we prove that φ S n+1 : S n ⇒ S n → S n+1 is a total b-morphism, so that it is automatically a partial b-morphism from 

). Now we have

) and since both φ A i and ψ i n are morphisms of information systems, then so is their composition

(iii) Now we prove that ψ i n+1 (i = 1, 2) is an f-morphism of i-webs. (Mo) (⇒) Suppose x ∈ Con S n+1 . We consider the clauses (1) and (2) of the definition of Con S n+1 .

If x is added by clause (1), i.e. x = a ∪ X for suitable a and X, then

further generalizes Longo and Kerth's work. As such, it can be adapted case by case so that the entire completion adapts to the various instances of i-webs in the sense that if we start with partial pair, at the end we obtain a total pair, if we start with a partial pcs-web, we end up in a total pcs-web etc. Of course Theorem 4.4 proves the finite intersection property for the class of i-models, but in view of the above discussion it can also give proofs of the finite intersection property for the sublcasses of models mentioned in section 2.4.1.

For the particular case of graph models the fip was proved by Bucciarelli&Salibra [START_REF] Bucciarelli | Graph lambda theories[END_REF][START_REF] Bucciarelli | The minimal graph model of lambda calculus[END_REF], via a construction that they call weak product which has the same spirit of our completion method. For the other classes of models the fip was not known to hold. For the particular case of filter models one may prove the fip as a simple consequence of the closure of filter models under the contruction of direct products, a result that does not appear in the literature and we do not sketch here.

Ultraproduct property for i-models

In this subsection we deal with the ultraproduct property for the class of i-models: for every non-empty family {A i } i∈I of i-webs and every ultrafilter U on P(I) the ultraproduct (∏ i∈I A + i )/U can be embedded into an i-model.

Let J be a non-empty set and let {A j } j∈J be a family of information systems and let U be a proper ultrafilter on P(J). Define a binary relation θ U on ∏ j∈J A j by setting (α,

Note that θ U is an equivalence relation on ∏ j∈J A j . As a matter of notation, for every finite subset a ⊆ f ∏ j∈J A j , we let a/θ U = {α/θ U : α ∈ a}, i.e., a/θ U is the finite subset of (∏ j∈J A j )/θ U constituted by the θ U -equivalence classes of the tokens of a. Since each element α ∈ a is a J-indexed sequence, we denote by α( j) the j-th projection of α and we let a( j) = {α( j) : α ∈ a}. Definition 4.3. We define an information system P U = (P U , Con U , ⊢ U , ν U ) as follows:

We also define an i-web P U = (P U , φ P U ) by setting φ P U (a/θ U , α/θ U ) = (λ λ j.φ A j (a( j), α( j)))/θ U .

We leave to the reader the easy verification of the fact that P U and P U indeed are an information system and an i-web, respectively.

We conclude the second main theorem of the section, the one that deals with the ultraproduct property. Let {A j } j∈J be a family of i-webs, let U be an ultrafilter over P(J) and let P U be the i-web of Definition 4.3. Since P U is an i-web, then P + U is a reflexive Scott domain and hence a λ -model. On the other hand each i-web A j gives rise to a reflexive Scott domain A + j , which is a λ -model. Then (∏ j∈J A + j )/U is an ultraproduct of λ -models, and thus again a λ -model. Theorem 4.5. There exists an embedding of combinatory algebras from the λ -model (∏ j∈J A + j )/U into the λ -model P + U . The proof of Theorem 4.5 is rather technical and cumbersome. For this reason we state and prove a particular case of Theorem 4.5 that only deals with graph models; the proof will appear clear and readable, and at the same time gives the core idea about the proof of the more genereal result.

we proved it for graph models, because it looks it looks very clear for this case, but the proof can be adapted (adding details and complication) to the other cases.

Summing up, graph models, pcs-models, Krivine models, filter models and in general i-models have both the fip and the upp. For this reason Theorem 3.1 applies to all these classes, producing a minimal model in each case. It is known that there exist filter-easy terms [START_REF] Alessi | Filter Models and Easy Terms[END_REF] as well as graph-easy terms [START_REF] Baeten | Omega can be anything it should not be[END_REF] (for example (λ x.xx)(λ x.xx)), and every graph-easy term is also pcs-easy and Krivine-easy, since the latter classes contain the graph models. Therefore Theorem 3.3 and Theorem 3.4 both hold for all these classes, saying that each one of them induces a continuum of lambda-theories.

Conclusions

We have presented a method for proving that a given class of models of the λ -calculus possesses a minimal element, i.e. an element whose λ -theory is the intersection of all the λ -theories represented in the class.

Then, we have applied this method to the class of i-models, a subclass of Scott models defined in [START_REF] Carraro | Reflexive Scott domains are not complete for the extensional lambdacalculus[END_REF], containing several well-known instances of "webbed" models like the graph-models and the filter models living in the category of Scott domains.

Various extensions of this work can be explored, both toward the proof that the whole class of Scott models has the minimality property, and more generally toward the application of the method to other classes of models of the λ -calculus.

Concerning the former extension, a preliminary result would be the finite intersection property for the whole class of Scott models, the completion method described in section 4 being adapted to i-models.

More generally, it is interesting to notice that webs, even beyond i-webs, are first-order axiomatisable, hence closed by ultraproducts (by the way, this observation is an alternative way of showing that Definition 4.3 is sound).

By providing a first-order axiomatisation of sentences like A + M = N, for given terms M, M and web A, we could invoke Los theorem for showing that (∏ j∈J A j )/θ U ) + and (∏ j∈J A + j )/U have the same theory, and hence for deriving a strong form of the ultraproduct property for the class of models corresponding to the considered webs.