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Abstract. We present the main steps governing the theory of resonant
x-ray diffraction (RXD). We focus on the derivation of the anomalous
scattering amplitude from perturbation theory and starting from the
low-energy expansion of the Dirac Hamiltonian. We give the main in-
gredients of the multipolar expansion in term of electric and magnetic
transitions. We also show the expansion in terms of scattering tensors of
the material. We end by giving the RXD formula necessary to simulate
in practice this spectroscopy.

1 Introduction

The abrupt variation with energy of the diffracted peak intensities around the absorp-
tion edges is known from the 1920th. Nevertheless, the first measurement of a com-
plete spectra, by Yvette Cauchois, had to wait untill 1956 [1]. She recorded the (002)
peak around the Al K edge in mica. Such a reflection shew an important variation
in intensity, thus revealing the potentialities of the so-called anomalous diffraction.
From this moment on, the close relation between X-ray absorption fine structures
(XAFS) spectra and RXD spectra has often been noticed. The last three decades
have seen important advances in the technique both on the theoretical and experi-
mental sides. The first breqkthrough was the finding, in 1982 by David and Liselotte
Templeton, of the polarization dependence of anomalous scattering [2]. One year later
V. E. Dmitrienko explained the occurence of the forbidden reflections, with zero (or
extremely weak) intensity far from the edges but which are clearly detectable around
the edges [3]. Such phenomena have been extensively used since then. The year 1988
was characterized by the discovery of the magnetic resonant x-ray diffraction. Gibbs
and co-workers measured magnetic peaks in Holmium with a clear resonant effect at
the Ho L3 absorption edge [5]. The next paper in the same journal, by Hannon et
al. [6] contained the theoretical interpretation, separating the scattering amplitude
in a scalar anomalous (”Thomson”) part, a vectori part directly proportional to the
magnetic moment and a third anisotropic part which for cubic system is directly
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related through the spin-orbit to a term quadratic in the magnetic moment compo-
nents. Even more surprising was the measurement in 1992 by K. Finkelstein et al. [7]
of a reflection in haematite that was not only forbidden for the classical non-resonant
diffraction term but also for the usually dominating dipole resonant amplitude. The
resulting spectra is non zero only in a 3 eV range at an energy corresponding to the
pre-edge in the absorption spectra, where the 3d unoccupied states of the iron atom
are situated. More work on processes involving non simple dipole transitions were per-
formed again by Templeton and Templeton [8] demonstrating a specific anisotropy
occuring in tetrahedral sites.

Our paper is organised as follows: section 2 aims at being a continuation of the
pioneering work by M. Blume [9] in the proceedings of the Malente conference in 1992.
We complete the derivation, from the Dirac hamiltonian, of the low-energy matter-
radiation interaction that is at the basis of the x-ray scattering amplitude, both
off-resonance (Thomson scattering, magnetic scattering) and at resonance. Then we
specialize to those terms responsible of the resonant x-ray scattering and provide an
extended analysis of transition matrix elements also including electric octupole (E3)
and magnetic dipole (M1) and quadrupole (M2) events, not inserted in the paper of
1994. Some analogies with absorption spectroscopies are highlighted. In section 3 we
review briefly the cartesian-tensor approach and the multipole expansion in matter as
an interpretation of RXD. Section 4 is devoted to the way wave functions for transition
matrix elements are numerically evaluated and section 5 gives some introduction on
the monoelectronic approach allowing the simulations of RXD when the probed states
are delocalized.

2 Matter-radiation interaction and resonant process

2.1 Process

Third generation synchrotrons are characterized by a very high brilliance, which is
typically 1019 photons/s/mrad2/mm2/0.1% bandwidth, corresponding, from an un-
dulator, to 1013 up to 1016 photons/s on the target. Even with such high values we
are still in the linear interaction regime: each electron of the sample interacts with one
photon at a time. This means that processes involving the simultaneous interaction
of two (or more) incoming photons with the sample electrons are negligible. Notice
that this condition might be no more valid with future experiments at free electron
laser sources. In this paper, however, we limit ourselves to the linear case.

The central process of RXD is the virtual absorption of the incoming photon,
provoking a transition of a core electron up to some unoccupied levels. The process is
elastic, coherent and the electron immediately (∼ 10−15 s) decays back to its initial
core state, emitting thus a new photon, with the same energy than the incoming one,
but eventually with another polarization and wave vector. The virtual process can also
be inelastic, leading to Resonant Inelastic X-ray Spectroscopy (RIXS), an incoherent
resonant spectroscopy out of the scope of the present paper. Actually, even for the
resonant process of RXD, the energy of the photon is not necessarily identical with
the difference in energy between the intermediate and initial state. This difference
is related by the Heisenberg principle ∆E∆t ≥ h̄/2 to the inverse lifetime of the
intermediate state. This is why the real part of the anomalous scattering amplitude
is not zero bellow the Fermi energy. Consequently the intensity of Bragg peaks can
vary until several tenths of eV bellow the edge.

It should be reminded that the transition process is a fundamentally multielec-
tronic phenomena. Around the driving electron, promoted from a core state g to some
intermidiate state n, all the other electrons react. The main effect is the screening



Will be inserted by the editor 3

of the core-hole potential by the electrons belonging to the absorbing atom and also
(to a less extent) to the surrounding ligands. Often, especially at K-edges, these sec-
ondary effects can be seen as passive, ie, we can consider only the transition of the
driving electron, the effect of the other ones being just an extra energy ∆Ea such
that at the resonance h̄ω = En − Eg + ∆Ea. Here En and Eg are the eigenvalues
of the corresponding electronic states and h̄ω the incoming photon energy. We can
consider the phenomena as describable by a monoelectronic scheme when ∆Ea is a
simple constant along the spectra. Then, ad hoc procedures are used to take into
account the core hole, as for instance considering the absorbing atom in its excited
state as an atom with a screened core-hole having one extra electron in the first non
occupied valence orbital. This approach fails at edges where the intermediate states
are localized. This is often the case at the L23 edge of the 3d transition elements,
where multiplet structures usually need to be introduced using the ligand field calcu-
lation methods. Amongst these, the first and most popular is the method introduced
by Thole et al. [10], in the framework established by Cowan [11] and Butler [12].
This calculation method is atomic-like and disregards the band structure of the solid,
i.e. only transition towards localized states are being accounted for. In this approch,
the absorbing ion is described by a parametrized hamiltonian that includes terms
describing the spin-orbit coupling, the electron-electron and the Zeeman interaction.
The crystal field effect is included via a term describing the geometrical environement
of the absorbing atom. In general, this situation occurs if the shape of the absorption
spectrum falls very close to zero immediately after the rising edge, within a few eV.
In the opposite case, when the edge is step like, as in most K-edges of all elements
and in the L23 of heavy elements, monoelectronic approach must be sufficient. The
simulations in this situations uses then most often the Density Functional Theory
(DFT) in its Local (Spin) Density Approximation (L(S)DA).

2.2 Interaction Hamiltonian

We now formally consider the interaction of a photon with a single bound electron
in an atom. RXD scattering amplitude is usually written by means of perturbation
theory in the matter-radiation interaction, from Schrödinger Hamiltonian, or, if one
is interested in magnetic-dipole interaction, from Schrödinger-Pauli Hamiltonian (ie,
with the addition of the scalar magnetic energy σ ·B). These approaches are sufficient
to get all the terms that contribute at resonance, but do not allow obtaining magnetic
scattering far from resonance correctly. Therefore, in the spirit of Ref. [9], where
the total cross-section was derived (ie, including non-resonant magnetic scattering)
we shall first describe here what is the low-energy limit of the Dirac Hamiltonian
through a Foldy-Wouthuysen (FW) transformation [13]. Due to relativistic-invariance
constraints, Dirac Hamiltonian HD is linear in the matter-radiation coupling (ie, it
is linear in the vector potentials A(r, t)):

HD = βmc2 + eV (r) + cα · (p − eA(r, t)) (1)

This Hamiltonian is a 4x4 matrix, determined by β and α matrices in standard
notations (see, eg, [14]). V (r) and A(r, t) are the scalar and vector potential, respec-
tively. As atomic edges, where resonant phenomena appear, are far lower than the
electron rest-energy (mc2 ≃ 511 keV), except maybe for K-edges of actinides, only
the low-energy limit of HD is of interest to us. The usual procedure to obtain the
low-energy limit of HD is through the solution of the set of two coupled differential
equations for the ’lower’ and ’upper’ bispinor in the stationary case (see, eg, relativis-
tic corrections to hydrogen atom in [14]). This leads to the appearence of the s · B
term with the correct gyromagnetic ratio and to the ’usual’ quadratic dependence



4 Will be inserted by the editor

(p − eA(r))2 in the vector potential. However, such a procedure cannot be applied
in the case of a time-dependent vector potential A(r, t), because it needs stationary
states. The alternative procedure to keep the time-dependence of the vector potential
is through the use of a FW transformation of the original Dirac Hamiltonian and
then work with the transformed FW low-energy Hamiltonian, that reads:

HFW = βmc2 + eV (r) +
β

2m
(p − eA(r, t))2 − βeh̄

2m
σ · B (2)

+
eh̄

8m2c2
σ · ((p − eA(r, t)) × E − E × (p − eA(r, t))) − eh̄2

8m2c2
∇ · E

Here σ represent the Pauli matrices (not the spin s = h̄σ/2). This gives the correct
gyromagnetic prefactor to the fourth term. The first term just splits the rest-energy
of electrons and positrons, the last is the Darwin term: both can be lumped in the
matter hamiltonian. Notice that the electric field is E(r, t) = −∇V (r) − ∂tA(r, t):
with the usual (stationary) procedure, only the ”−∇V (r)” term would have appeared
(spin-orbit correction), thereby missing the interaction energy given by Eq. 4 below.
The explicit unitary transformation leading to Eq. 3 is too involved to be reported
here and we refer to [15], Eq. (7), that corrects the version previously given in [13],
Eq. (14). Actually, also in Eq. (7) of Ref. [15] a term of the same order of magnitude

is missing, the relativistic correction to the kinetic energy (∝ p4

m2c3 ), but, as for the
first and last terms, it is of no concern to us, as it can be lumped in the matter
hamiltonian.

From Eq. (2) we get the following terms for the matter-radiation Hamiltonian
that are important for x-ray scattering:

H1 =
∑

i

e2

2m
[A(ri, t)]

2
(3)

H2 = −
∑

i

e2h̄

2m2c2
si [∂tA(ri, t) × A(ri, t)] (4)

H3 = −
∑

i

e

m
[A(ri, t) · pi] (5)

H4 = −
∑

i

e

m
si · [∇× A(ri, t)] (6)

where i labels the electrons. The first two terms, quadratic in the vector potential, de-
scribe usual Thomson scattering and non-resonant magnetic scattering, respectively.
Indeed, in a plane-wave representation, the vector potential can be associated to the
absorption or the emission of a photon with a given wave-vector; therefore the prod-
uct of the vector potential with itself represents an absorption followed by emission
of a photon, ie, a scattering. Such a scattering is formally expressed by the two Eqs.
8 and 9. The last two equations, 5 and 6, are instead linear in the vector potential
and in order to get a scattering process, we should consider second order pertubation
theory, as in Eq. 10 below.

2.3 Resonant X-ray Diffraction formula

The total diffraction intensity is given, up to the second-order in absorption/emission
photon processes, by the expression:
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I(ω) ∝

∣

∣

∣

∣

∣

∣

∑

j

eiQ·Rj

(

f
(0)
j + f

(0m)
j + f ′

j(ω) + if ′′
j (ω)

)

∣

∣

∣

∣

∣

∣

2

(7)

where the sum is over all atoms j, Q ≡ ks − ki is the exchanged wave-vector and h̄ω
the photon energy. The three atomic scattering amplitudes are given by:

f
(0)
j = 〈ϕ(j)

g |Ĥ1|ϕ(j)
g 〉 (8)

f
(0m)
j = 〈ϕ(j)

g |Ĥ2|ϕ(j)
g 〉 (9)

f ′
j(ω) + if ′′

j (ω) =
∑

n,g

〈ϕ(j)
g |Ĥ∗

3 + Ĥ∗
4 |ϕn〉〈ϕn|Ĥ3 + Ĥ4|ϕ(j)

g 〉
h̄ω − (En − Eg) + iΓ

2

(10)

where ϕ
(j)
g is the core-state centered at site j and ϕn are all possible intermediate

states that can be reached by the virtual absorption/emission process, characterized
by an energy En and a lifetime ≃ h̄/Γ . It should be noted that two processes are
possible: either the incoming photon is absorbed before that the outgoing photon
is emitted, or the outgoing photon is emitted before that the incoming photon is
absorbed. Only in the first case we have resonance and En = En(matter), whereas
in the second the intermediate energy En = En(matter) + 2h̄ω and the imaginary
term iΓ

2 can be dropped out. It should be noted that the imaginary part f ′′
j of the

forward scattering amplitude of an atom at site j is proportional to the absorption

cross-section at the same site: σj(ω) =
∑

n,g

∣

∣

∣〈ϕn|Ĥ3 + Ĥ4|ϕ(j)
g 〉
∣

∣

∣

2

δ(h̄ω− (En −Eg)).

There is therefore a strict link between these two spectroscopies and all what
will be said below concerning the symmetry properties of transition-matrix elements
and calculation of wave functions is valid as well for absorption spectroscopies. What
makes REXS (RXD) peculiar compared to other spectroscopies (X-ray absorption,
RIXS) is that all atomic scattering process coherently interfere, as shown in Eq. 7,
and this is not the case for X-ray absorption or RIXS, where all terms are added
incoherently: σ(ω) =

∑

j σj(ω). In what follows we drop out all non-resonant terms
and just focus on the resonant part of Eq. 7.

2.4 Transition matrix

In order to obtain absorption or emission cross-sections or the resonant scattering
amplitude, matrix elements of the form 〈ϕn|Ô|ϕg〉 have to be evaluated. The operator

Ô corresponds either to Eq. 5 or to Eq. 6. Both cases are characterized by a linear
dependence on the vector potential, which can be written in a plane wave expansion
as proportional to A(r, t) =

∑

k(akǫkei(k·r−ωt) + c.c.), where ǫk is the polarization
vector (we shall drop the label k in the following), k the wave vector and h̄ω the
energy of the mode determined by the amplitude ak (equivalent to the destruction
operator in a second-quantization form). In turn, the plane-wave exponent in the
operator can be expanded in terms of k · r and reads, apart from some normalization
factors, at second order:
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ÔA = ǫ · Peik·r = ǫ · P
(

1 + ik · r − 1

2
(k · r)2 + . . .

)

, (11)

ÔB = iS · (k × ǫ)eik·r = iS · (k × ǫ) (1 + ik · r − . . .) . (12)

The expansion for ÔB was stopped at terms linear in k · r for reasons that will be
clear below. In previous expressions, ÔA and ÔB represent, respectively, Eq. 5 and
Eq. 6. The operators associated to these terms can be rewritten in order to switch the
linear momentum operator p to the coordinate r-form. The first term, in ÔA, called
electric dipole (E1) reads:

Mng,E1 = 〈ϕn |ǫ · P|ϕg〉 =
〈

ϕn

∣

∣

∣

m

ih̄
[ǫ · r, H0]

∣

∣

∣
ϕg

〉

= i
m

h̄
(En − Eg) 〈ϕn |ǫ · r|ϕg〉 ,

(13)
where the second equality was obtained through the Heisenberg equation of motion
for p = 1

m
dr
dt

. A similar procedure, though slightly more involved due to the presence
of multiple-commutators can be used for all the other terms. For example, a typical
term from ǫ · Pk · r in ÔA would read as:

m

2h̄
[zy,H0] =

m

2h̄
([z, H0] y + z [y, H0]) =

i

2
(Pzy + zPy) (14)

=
i

2
(2Pzy − Pzy + zPy) = iPzy − i

2
Lx ,

where Lx is the x component of the angular moment L. For any direction we thus
get:

iP · ǫk · r =
m

2h̄
[ǫ · rk · r, H0] +

i

2
k × ǫ · L . (15)

The first term of the second member of this expression gives the electric quadrupole
(E2) contribution:

Mng,E2 = i
m

h̄
(En − Eg)

i

2
〈ϕn |ǫ · rk · r|ϕg〉 , (16)

The second term of the second member of Eq. 15, depending on orbital moment
L, is magnetic in origin. Consequently it is grouped with the zeroth order of the
expansion coming from the spin contribution. The two terms lumped together are
known as magnetic dipole (M1):

Mng,M1 =
1

2
〈ϕn |k × ǫ · (L + 2S)|ϕg〉 . (17)

as m ≡ µB(L + 2S) is the magnetic moment.

Proceeding further, we can collect the second-order term in ÔA with the first-order
term in ÔB , to get the electric octupole (E3), the magnetic quadrupole (M2) and the
toroidal dipole (T1). For example, we have for the transition-matrix element:

[

zy2, H0

]

=
(

[z, H0] y
2 + z [y, H0] y + zy [y,H0]

)

(18)

=
ih̄

m

(

zyPy + zPyy + Pzy
2
)

=
ih̄

m

(

2zPyy + ih̄z + Pzy
2
)

=
ih̄

m

(

2(zPy − Pzy + Pzy)y + ih̄z + Pzy
2
)

=
ih̄

m

(

−2Lxy + ih̄z + 3Pzy
2
)

,
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This leads to the following expression for the second-order term in Eq. 11:

P · ǫ(k · r)2 =
m

3ih̄

[

ǫ · r(k · r)2, H0

]

− ih̄k2

3
ǫ · r +

2

3
(k × ǫ) · Lk · r , (19)

The first term represents the electric octupole. The second is a correction to the
electric dipole, which can however be usually neglected due to the prefactor that
makes it less than 1% of the E1 term. Finally, the third term is magnetic and can
be lumped together with the second term of Eq. 12. It is therefore clear that the
reason why we developed Eq. 12 just up to the first order is that magnetic terms
of order n combine with electric terms of order n+1. It should be noted that the
third, magnetic, term of Eq. 19 can be written as the scalar product of two 3 by 3
matrices, one representing the radiation ((k× ǫ)α(k)β) and another representing the
matter ((L)α(r)β). The latter can be further decomposed in the irreducible terms
under rotation, ie, a scalar part (the trace of the matrix), an antisymmetric part
((L)α(r)β − (L)β(r)α) and a symmetric traceless part. The latter corresponds to
the magnetic quadrupole (M2), whereas the antisymmetric part is the polar toroidal
dipole (T1) part of the matter-radiation interaction, not to be confused with the
toroidal moments of the matter, as we shall clarify in the next section. As a final
step, we can collect together all prefactor to write down the final expression for the
transition matrix element to include all terms (E1, E2, E3, M1, M2, T1) calculated
up to now. The total amplitude, Mng, reads (the fourth term is the dipolar correction
of Eq. 19) :

Mng = C(〈ϕn |ǫ · r|ϕg〉 +
i

2
〈ϕn |ǫ · rk · r|ϕg〉 −

1

6

〈

ϕn

∣

∣ǫ · r(k · r)2
∣

∣ϕg

〉

+
h̄2k2

6m(En − Eg)
〈ϕn |ǫ · r|ϕg〉 + CM 〈ϕn |k × ǫ · (L + 2S)|ϕg〉

+iCM 〈ϕn|(k × ǫ) ·
(

2

3
L + 2S

)

k · r|ϕg〉) , (20)

where C = qE0
En−Eg

h̄ω
e−iωt, CM = h̄

2m(En−Eg) and finally E0 is the amplitude of the

electric field of the incoming photon at the position of the electron.
Finally, and more important, we should evaluate the order of magnitude of each of

the terms treated here in order to check the possibility to detect them experimentally.
The M1 contribution is usually very small in the x-ray energy range, though there
have been recent claims of its detection. The reason is that the radial part of the
matrix elements corresponds to the initial and intermediate wave-functions overlap
(the corresponding selection rules gives ∆ℓ = 0) and the two are nearly orthogonal.
Usual estimates of this term are of the order of 10−3 for L-edges of transition-metal
oxides. Paradoxically, the M2 term is of the same order of magnitude and could be
even bigger at L-edges of actinides, because in this case the selection rule allows
∆ℓ = 1 as an electric dipole E1 and only the prefactor of h̄ω

2mc2 strongly depletes it.

At Cu L-edges this terms is about 10−3 and can be 2 · 10−2 at U L-edges. In what
follows we shall neglect E3, M1, M2 and T1 terms.

3 Multipole analysis

In the last part of the previous section we have used the so-called multipole expansion
of the vector potential, based on the series expansion of its phase factor eik·r. We
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may call the terms obtained (E1, E2, E3, M1, M2, T1) as ”interaction multipoles” in
order to distinguish them from the ”matter multipoles” that we treat in this section.
The latters can be obtained from an expansion of the total energy for matter and
physically represent the matter reaction to an external field. For example, whereas
the M1 term in the previous section is related to the magnetic dipole interaction of
the external electromagnetic field and the electron at position r, this is not the same
as the magnetic moment of the sample under analysis, that is instead related to the
quantity summarized in Table 1, as we shall see below.

The access to any particular component of such ”matter multipoles” by spec-
troscopical means can be obtained by playing with the polarization and taking into
account the symmetry of the material, both at the level of the (magnetic) point group
and of the (Schubnikov) space group [19]. The consequence is that the measurement
under specific conditions can give information on the space-group of the material,
including the magnetic group. A complete calculation of these symmetries, limited to
the E1-E1 case for all cubic (non magnetic) space-groups was provided by Dmitrienko
[4].

For E1 and E2 terms, the matrix elements can be expanded into dipole and
quadrupole components :

〈ϕn |ôi|ϕg〉 = Dn
i + i

k

2
Qn

i + . . . . (21)

and signal amplitude can be written as:

〈ϕg |ô∗s|ϕn〉 〈ϕn |ôi|ϕg〉 ∼= Dn∗
o Dn

i + i
k

2
(Dn∗

o Qn
i − Qn∗

o Dn
i ) +

k2

4
Qn∗

o Qn
i . (22)

where ôi and ôs refer to incoming and scattered beams, respectively. We can then in-
troduce three cartesian tensors. The dipole-dipole or E1-E1 rank-2 tensor, the dipole-
quadrupole or E1-E2 rank-3 tensor and the quadrupole-quadrupole or E2-E2 rank-4
tensor:

Dαβ =
∑

n

〈ϕg |rα|ϕn〉 〈ϕn |rβ |ϕg〉 , (23)

Iαβγ =
∑

n

〈ϕg |rαrβ |ϕn〉 〈ϕn |rγ |ϕg〉 , (24)

Qαβγ =
∑

n

〈ϕg |rαrβ |ϕn〉 〈ϕn |rγrδ|ϕg〉 . (25)

where α, β, γ and δ label the three Cartesian coordinates x, y and z.
With this, the signal amplitude (except for the multiplicative factor in the ab-

sorption cross-section and the denominator in RXD) is given by:

A =
∑

α,β

ǫs∗
α ǫi

βDαβ+
i

2

∑

α,β,γ

ǫs∗
α ǫi

β

(

ki
γIαβγ − ks

γI∗αβγ

)

+
1

4

∑

α,β,γ,δ

ǫs∗
α ǫi

βks
γki

δQαβγδ . (26)

To fix the idea the E1-E1 amplitude is given by:

AE1E1 =
(

ǫs∗
x , ǫs∗

y , ǫs∗
z

)





Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz









ǫi
x

ǫi
y

ǫi
z



 . (27)

Off-diagonal elements are complex when the material is magnetic.
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The E1-E2 terms in RXD can be observed only for atoms whose point-symmetry
does not contain inversion (whereas for absorption spectroscopies the constraint of
inversion-breaking moves to the global space-symmetry group, because of the inco-
herent sum). Indeed, due to the different selection rules of E1 and E2 matrix elements
(∆ℓ odd for the first and ∆ℓ even for the second), intermediate states ϕn must have
both odd-ℓ and even-ℓ components. Of course, only for those reflections such that the
Bragg factor is opposite on two equivalent atoms related by inversion symmetry, a
pure E1-E2 term appears, the E1-E1 and E2-E2 contributions being zero.

The importance of the point group can be illustrated by a simple example limited
to the E1-E1 case.

m3m symmetry (Oh) This cubic symmetry is for instance the case of an atom
surrounded by a regular octahedron. Due to the symmetry plane perpendicular to
Ox, Oy and Oz, the off-diagonal components of the E1-E1 cartesian tensor are zero,
because of the three-fold axis its diagonal elements are equal. The amplitudes of the
signal is in this case:

AE1E1 = ǫ+





Dzz 0 0
0 Dzz 0
0 0 Dzz



 ǫ =
1

3
ǫ · ǫTr (D) = Dzz (28)

The E1-E1 signal amplitude is isotropic. It does not depend on the polarization orien-
tation. This is however not the case for E1-E2 and E2-E2 [18]. It is useful to emphasize
that this property of E1-E1 amplitude does not depend on the edge, ie, it is valid
independently of the kind of intermediate states (p, d, f) that are probed. This means
that investigating the same d states by E2-E2 transitions (at K-edges) or by E1-E1
transitions (at L2,3-edges) leads to different information.

4/mmm symmetry (D4h) This symmetry can be obtained for instance by the
elongation of a regular octahedron along the z-axis. The three-fold axes of cubic
symmetry are lost and the four-fold axis around z makes Dxx = Dyy. One thus gets:

AE1E1 = ǫ+





Dxx 0 0
0 Dxx 0
0 0 Dzz



 ǫ =
1

3
(2Dxx + Dzz) +

1

3
(Dzz − Dxx)

(

3 |ǫz|2 − 1
)

(29)
When using the spherical coordinates for the linear polarization :

ǫ =





sin θ cos φ
sin θ sinφ

cos θ



 , (30)

we see that one gets a polarization orientation dependence equivalent to the spherical

harmonics Y 0
2 =

√

5
16π

(

3 cos2 θ − 1
)

. The atomic signal is no more isotropic, not even

in the E1-E1 channel.
4/m′m′m symmetry If we add a magnetic moment along the z-axis to the previous

case, then the symmetry planes perpendicular to Ox and Oy must be multiplied by
time reversal, and one gets the 4/m′m′m symmetry. Therefore the Cartesian tensor
contains off-diagonal imaginary terms of the kind:

AE1E1 = ǫ+





Dxx iDi
xy 0

−iDi
xy Dxx 0

0 0 Dzz



 ǫ (31)

=
1

3
(2Dxx + Dzz) −

i√
2
ǫ∗ × ǫ · m +

1

3
(Dzz − Dxx)

(

3 |ǫz|2 − 1
)

.
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Table 1. List of the electric and magnetic multipoles in matter. The couples ++, +−, −+
and −− represent the change in sign under time reversal and spatial inversion respectively.
Magnetic terms are odd by time reversal. E1-E2 components are odd by spatial inversion.
The electric monopole term measures the charge density chℓ+1 in E1-E1 and chℓ+2 for E2-E2.
The magnetic dipole terms measure the magnetic density mℓ+1 in E1-E1 and a part of mℓ+2

for E2-E2. The time-reversal odd dipole in E1-E2 measures the toroidal moment (or anapole)
t, the even one measures the electric moment µ. The time-reversal even quadrupole in E1-
E2 measures the axial toroidal quadrupole (tq)[20]. Other components measure higher-order
multipoles.

ℓ E1-E1 E1-E2 elec. E1-E2 magn. E2-E2
0 monopole + + chℓ+1 ++ ≈ chℓ+2

1 dipole − + mℓ+1 + − µ −− t −+ ≈ mℓ+2

2 quadrupole ++ + − tq −− ++
3 octupole +− −− −+
4 hexadecapole ++

We get a new term compared to Eq. 29 which is related to the magnetic moment m.
The use of cartesian tensor is rather natural. Nevertheless there exist a linear basis

transformation to the set of spherical coordinates that allows a direct relation of each
term in this basis with specific observable physical quantities like, for example, the
orbital anisotropy, the magnetic moment or the toroidal moment. These tensors can
be related to the multipole expansion of the studied material and are also separated
in the E1-E1, E1-E2 and E2-E2 contributions. In this case the scattering amplitude,
Eq. 26, can be written as:

A =
∑

0≤ℓ≤2

−ℓ≤m≤ℓ

(−1)
ℓ+m

Tm
ℓ Dm

ℓ + i
∑

1≤ℓ≤3

−ℓ≤m≤ℓ

(−1)
ℓ+m

Um
ℓ Im

ℓ +
∑

0≤ℓ≤4

−ℓ≤m≤ℓ

(−1)
ℓ+m

V m
ℓ Qm

ℓ ,(32)

where Dm
ℓ , Im

ℓ and Qm
ℓ are the E1-E1, E1-E2 and E2-E2 components, respectively,

of the matter tensors and Tm
ℓ , Um

ℓ and V m
ℓ those of the polarization - wave vector

tensors. More details on their transformations can be found in Ref. [17]. Their physical
meaning is instead illustrated in Table 1. E1-E2 terms are all inversion-odd and those
that change sign with time reversal are magnetic. This allows peculiar measurements
on specific reflections or/and with specific polarization and/or wave-vector conditions
that allows to measure separately the various multipoles, as detailed, eg, in Refs. [19–
21].

4 Description of core and photo-electron states: the RXD

evaluation in practice

4.1 Anomalous scattering amplitude

Starting from Eq. 10 one usually makes the summation on the intermediate states
n in two steps. We first group, the states of same energy E, that we still sum in a
discrete form. The sum over the states of different energies is performed in a second
step through an integral spreading from the Fermi level up to infinity. In the elastic
case where we are supposed to have E − Eg + ∆Ea

∼= h̄ω the resonant or anomalous
scattering amplitude is given by:

f ′ − if ′′ ∼= mω2

∫ ∞

EF

∑

n,g
1
π
〈ϕg |ô∗s| ϕ̄n〉 〈ϕ̄n |ôi|ϕg〉

h̄ω − (E − Eg + ∆Ea) + iΓ
2

dE , (33)
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where EF is the Fermi energy and Γ is the broadening. Note the minus sign in front
of the imaginary part of the scattering amplitude to get the conventional way where
f ′ is negative and f ′′ positive1. When the incoming and outgoing polarizations are
parallel, the absorption cross-section is nearly proportional to h̄ω × f ′′.

The density of states δ (E) does not appear explicitly because it is included in
the atomic amplitudes and in the normalization of the radial wave functions. This
one is built by continuity with an outer sphere where the potential is constant. The
solutions are there, the Bessel and Hankel functions normalized by the square root
of the density of states in vacuum, that is by

√

k/π where k is the photo-electron
wave-vector expressed in atomic unit. One thus gets the normalized radial solutions
b̄ℓ (E, r) instead of the bℓ (E, r) which are normalized to one. Thus one replaces in the
formulas 〈ϕg |ô∗s|ϕn〉 〈ϕn |ôi|ϕg〉 δ (E) by 〈ϕg |ô∗s| ϕ̄n〉 〈ϕ̄n |ôi|ϕg〉.

We have to calculate:

〈ϕn |ô|ϕg〉σ =

∫

ϕ∗
n (r, σ) ô (r) ϕg (r, σ) d3r . (34)

When considering only the E1 and E2 transitions, there is no possibility of spin-flip
during the transition. Here the operator just contains the terms inside the matrix of
eq. 13 for E1 and eq. 16 for E2, that is:

ô = ǫ · r
(

1 +
1

2
ik · r

)

. (35)

The core state g is localized, thus the integral has to be performed only inside the
absorbing atom. The expansion of ϕn, ô and ϕg in spherical harmonics is consequently
very convenient because it singles out the angular momentum quantum numbers
explicitly, and separates the radial and angular dependances.

4.2 Final states

In the non magnetic case, the final (or intermediate) state can be written as:

ϕ̄n (r) =
∑

ℓ,m

an
ℓ,m (E) b̄ℓ (E, r) Y m

ℓ (Ω) , (36)

where r = (r, Ω) is expressed in spherical coordinates, b̄ℓ (E, r) is the radial component
of the wave function inside the atom. It is obtained by solving the radial Schrödinger

equation in the atom. It weakly depends on the photo electron energy E. The af
ℓ,m (E)

are the amplitudes2.
In the magnetic case, if one neglects the spin-orbit, a single sum over σ is to be

include:
ϕ̄n (r) =

∑

ℓ,m,σ

an
ℓ,m,σ (E) b̄ℓ,σ (E, r) Y m

ℓ (Ω) χσ , (37)

1 This sign as well as the plus sign in the exponent of the Bragg factor comes from a dif-
ferent convention in the time arrow between the crystallograph community and the theorists
of quantum mechanics.

2 When using the monoelectronic approach, the a
f

ℓ,m (E) contain the main dependence on
the energy E. They are obtained using the continuity of the wave function and its derivative
between the atom and its surrounding. In the other approaches, they are just normalization
coefficients, and the dependence in function of energy is put outside of the transition matrix.
At this stage, whatever is the method, our demonstration is general
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where the spin state is given by:

χ 1

2

=

(

1
0

)

, χ− 1

2

=

(

0
1

)

. (38)

When one considers the spin-orbit, the intermediate state is written as:

ϕ̄n (r) =
∑

ℓ,m,s

an
ℓ,m+ 1

2
−s,s

(E) b̄σ
ℓ,m+ 1

2
−σ,s

(E, r)Y
m+ 1

2
−σ

ℓ (Ω) χσ . (39)

Note that in this case, the spherical harmonics are necessarily the complex ones.
This expression comes from the solution in the atom of the Dirac equation. σ is not
anymore a good quantum number. We replace it by the index s. Due to the spin-orbit
the

(

ℓ, m, 1
2

)

and
(

ℓ, m + 1,− 1
2

)

components are part of the same state. This is what
gives the eventual spin-flip during the photo electron scattering.

4.3 Initial states

Now let us look at the initial states. They are localized and the expansion seen in the
previous expression is limited to one or two components. For example at the K-edge,
one has ℓ = 0 and two initial states:

∣

∣

∣

∣

1

2
,−1

2

〉

= b0 1

2

(r) Y 0
0 χ− 1

2

, (40)

∣

∣

∣

∣

1

2
,
1

2

〉

= b0 1

2

(r) Y 0
0 χ 1

2

. (41)

At the L2-edge; one has ℓ = 1, j = 1/2 and two initial states:

∣

∣

∣

∣

1

2
,−1

2

〉

= b1 1

2

(r)

(

−
√

2

3
Y −1

1 χ 1

2

+

√

1

3
Y 0

1 χ− 1

2

)

, (42)

∣

∣

∣

∣

1

2
,
1

2

〉

= b1 1

2

(r)

(

−
√

1

3
Y 0

1 χ 1

2

+

√

2

3
Y 1

1 χ− 1

2

)

.

At the L3-edge; one has ℓ = 1, j = 3/2 and four initial states:
∣

∣

∣

∣

3

2
,−3

2

〉

= b1 3

2

(r) Y −1
1 χ− 1

2

, (43)

∣

∣

∣

∣

3

2
,−1

2

〉

= b1 3

2

(r)

(

√

1

3
Y −1

1 χ 1

2

+

√

2

3
Y 0

1 χ− 1

2

)

,

∣

∣

∣

∣

3

2
,
1

2

〉

= b1 3

2

(r)

(

√

2

3
Y 0

1 χ 1

2

+

√

1

3
Y 1

1 χ− 1

2

)

,

∣

∣

∣

∣

3

2
,
3

2

〉

= b1 3

2

(r) Y 1
1 χ 1

2

.

In general when using complex harmonics one can just write:

ϕg =
∑

σ

Gσ
g bg(r)Y

mg+ 1

2
−σ

ℓg
χσ . (44)
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4.4 Operator

The operator can also be expanded in spherical harmonics:

ô = ǫ · r
(

1 +
1

2
ik · r

)

=
∑

ℓo,mo

(

i

2
k

)ℓo−1

cℓo,mo
rℓoY mo

ℓo
(Ω) (45)

where the cℓo,mo
are specific coefficients with their operator quantum numbers (ℓo, mo).

For example for a polarization along z and a wave vector along x one gets:

ǫ · r = z = r cos θ =

√

4π

3
rY 0

1 , (46)

i

2
ǫ · rk · r =

i

2
kzx =

i

2
kr2 sin θ cos ϕ =

i

2
k

√

2π

15
r2
(

Y 1
2 − Y −1

2

)

, (47)

where we have used the complex spherical harmonics.

4.5 The transition matrix

We can now gather the equations 39, 44 and 45. The transition matrix for each spin
σ is then:

〈ϕn |ô|ϕg〉σ =
∑

o

(

i

2
k

)ℓo−1

cℓo,mo

∑

ℓ,m

Γ
ℓg,mg+ 1

2
−σ,ℓo,mo

ℓ,m+ 1

2
−σ

(48)

×
∑

s

Rg,ℓo,σ

ℓ,m+ 1

2
−σ,s

(E) an
ℓ,m+ 1

2
−s,s

(E) ,

where

Rg,ℓo,σ

ℓ,m+ 1

2
−σ,s

(E) =

∫ R

0

b̄σ∗
ℓ,m+ 1

2
−s,s

(E, r) bg (r) r2+ℓodr , (49)

is the radial integral performed up to the atom radius R, and

Γ
ℓg,mg,ℓo,mo

ℓ,m = Gσ
g

∫

sphere

Y m∗
ℓ (Ω)Y mo

ℓo
(Ω) Y

mg

ℓg
(Ω) dΩ , (50)

is the angular integral or Gaunt coefficient multiplied by the factor Gσ
g coming from

the initial state. It is usually expressed in terms of Clebsch-Gordon coefficients. The
angular integral is not zero only for peculiar value of ℓ, m:

– ℓ must have the same parity than ℓg + ℓo,
– |ℓg − ℓo| ≤ ℓ ≤ |ℓg + ℓo|,
– m = mo + mg.

The last condition on m is when using complex spherical harmonics.
For the dipole and quadrupole components, we have respectively ℓo = 1 and

ℓo = 2. Thus, the difference on ℓ between the initial and the final state is

– dipole: ∆ℓ = ±1,
– quadrupole: ∆ℓ = 0,±2 .

The orbitals probed at the different edges are summarized in Table 2.
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Table 2. Probed states for the E1 and E2 transition for the different edges

Edge E1 probed state E2 probed state

K, L1, M1, N1, O1 p s - d
L2, L3, M2, M3, N2, N3, O2, O3 s - d p - f
M4, M5, N4, N5, O4, O5 p - f s - d - g

4.6 Complete form

With this simplification we can use the matrix product which appears in the RXD
formula:

A =
∑

f,g

〈ϕg |ô∗s| ϕ̄n〉 〈ϕ̄n |ôi|ϕg〉 . (51)

In the absorption case one just has to impose ôs = ôi. Using moreover eq. 49 which
express the transition matrix in terms of the radial and angular integrals and of the
atomic amplitudes, one gets:

A =
∑

oi,os

cℓoi
,moi

cℓos ,mos

∑

σ,g

∑

ℓ,m,ℓ′,m′

Γ
ℓg,mg+ 1

2
−σ,ℓoi

,moi

ℓ,m+ 1

2
−σ

Γ
ℓg,m′

g+ 1

2
−σ,ℓos ,mos

ℓ,m′+ 1

2
−σ

(52)

×
∑

s,s′

Rg,ℓoi
,σ

ℓ,m+ 1

2
−σ,s

(E)Rg,ℓos ,σ

ℓ,m+ 1

2
−σ,s′ (E)

∑

f

an
ℓ,m,s (E) an∗

ℓ′,m′,s′ (E) .

5 Mono Electronic Simulations

As stated above simulations can be very helpful in the interpretation of the experi-
ments. Moreover, in order to quantitatively access to parameters such as atom posi-
tions, charges or magnetic moments, they can be absolutely necessary. We have seen
that in some cases ligand field multiplet theory is necessary. Here we focus on the
mono electronic simulations. They often gives satisfactory results for the K-edges and
the L2,3 edges of heavy elements.

The mono electronic simulations uses the local spin density approximation (LSDA)
of the density functional theory (DFT). There are two groups of calculation method:
one solving the Schrödinger (or Dyson, or Dirac) equation in a cluster centered around
the absorbing atom and the one, usually derived from band structure calculations,
using the 3D periodicity of the material. The calculations can be performed with or
without self-consistency.

Whatever the method, the first thing we need is a potential. It is seen briefly in
the next section. About the different methods of calculation (Linear augmented plane
wave (LAPW) [24], tight-banding, linear combination of atomic orbital (LCAO),
pseudo-potential [26], linear muffin-tin orbital (LMTO), KKR [27], finite difference
method [30]...) the most used for practical purposes is the multiple scattering theory
(MST) that is discussed a bit more in Sec. 5.2.

5.1 The potential

It is often said that all the methods are equivalent, at the end. Although it might
be true, in fact, they give different results... This is due to the fact that, inside each
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method, approximations are done. Expansion in spherical harmonic or in plane waves
are limited, there are interpolations in the building of the potential, calculations are
in single or double precision, but in particular, there are the potential problems. The
first one comes from the approximation done on the potential shape. The second is
related to the choice of the exchange correlation potential.

The multiple scattering theory, as LMTO, usually makes an approximation on the
potential shape. To have the calculation simpler, the potential is taken as spherically
symmetric in the atoms and constant between them, in the interstitial region. This
is the so-called muffin-tin approximation. The radius of the atoms (of the spherical
part) is thus a technical difficulty, each code author having its own recipe. Most often
a small overlap is authorized because, pragmatically, this improves the agreement
with the experiments. Nevertheless from a mathematical point of view this trick is
not justified. Now, using the finite difference method, pseudo potential or FLAPW
technique for example, it is possible to have free-shape (or full) potential. The price
to pay is that calculations are heavier. Nevertheless when the structures are sparse,
when there are few symmetry elements or when the absorbing atom is relatively
light, important differences are observed due to the muffin-tin approximation [30]. A
recent work has nevertheless shown that the multiple scattering theory, up to now
always using the muffin-tin approximation, can also be applied with a full potential
shape [28].

In the LSDA the exchange-correlation problem is treated with a local potential
which depends only on the local density of electrons (that is, on the point where
one calculates the potential). In the magnetic case it depends as well on the local
difference between the spin-up and spin-down density. This one can have different
forms. Presently the most used ones are the Hedin and Lundqvist [29] and the Perdew
and Wang [32]. Globally they give an attractive potential of increasing amplitude
with increasing electron density. It is important to consider the energy dependence
of this potential, as proposed by Von Bart and Hedin [33]. Indeed the amplitude of
the potential decreases with increasing electron kinetic energy. In a relatively narrow
energy range around the plasmon energy, that is between 10 and 30 eV, this potential
changes by several eV. Without considering this phenomena one gets structures in
the spectra shifted by the same amount. Because the position of the oscillations are
related to the inter atomic distances, this could lead to false agreement with wrong
fit of the corresponding parameters.

5.2 The multiple scattering theory

Explain this theory in a single paragraph is difficult. Readers can find detailed de-
scription by Natoli and coworkers [31] or Brouder [25]. It is the main theory used
in many codes as FEFF [16], MXAN [22] or KXQX [23] and one of the two used in
FDMNES [30].

First, one considers just one atom. We build a complete basis in the surrounding
vacuum. There, the potential is constant and the solutions of the radial Schrödinger
equation are the Bessel, jℓ, Neuman and Hankel functions. Using the phase shift the-
ory one looks how the atom scatters all the Bessel functions. One uses the continuity
of the wave function and its derivative at the border. For simplicity we keep the non
magnetic case, and we can write:

aℓbℓ (R) Y m
ℓ =

√

k

π

(

jℓ (r) − itℓh
+
ℓ (R)

)

Y m
ℓ , (53)

for the wave function at the muffin-tin radius R. h+
ℓ (r) is the Hankel outgoing func-

tion, tℓ is the atomic scattering amplitude, bℓ the solution of the radial Schrödinger
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equation in the atom, k the electron wave vector and aℓ the amplitude inside the
atom. All these terms depend on the kinetic electron energy. We have introduced

the normalization by the square root of the density of states in vacuum
√

k
π
. By

continuity, the theorem of asymptotic completenees for differential equation, makes
the density of states included in the atomic amplitudes. Using the two equations of
continuity (function and derivative), one gets aℓ and tℓ.

Now the atom is embedded in a cluster. Thus the incoming wave is not anymore
included in a simple Bessel function, but the superposition of this Bessel function and
all the other waves of Hankel type, backscattered by the other atoms. The problem is
thus not anymore spherical, and the scattering and atomic amplitudes will also depend
on the quantum number m (and eventually on the spin index). One has to consider all
the scattering processes from one atom to any other atom. To do that, one fills a (big)
multiple scattering matrix, containing, for all the atoms, all their individual expansion
in spherical harmonics. Its diagonal contains the atomic scattering amplitudes. The
off-diagonal part contain the propagation terms connecting the scattering from the
(ℓ, m) of an atom a, to the (ℓ′, m′) of another atom a′. The inversion of this matrix

gives the multiple scattering amplitudes, τ ℓ′,m′,a′

ℓ,m,a , by the relation:

τ ℓ′,m′,a′

ℓ,m,a =

[

1

1 − TH
T

]ℓ′,m′,a′

ℓ,m,a

. (54)

T is a diagonal matrix (when there is no spin-orbit) containing the atomic scattering
amplitudes. H is the matrix containing the propagation terms.

Using a = a′ and skipping the atom index, the optical theorem gives:

−ℑ
(

τ ℓ′,m′

ℓ,m

)

=

∣

∣

∣

∣

∣

∑

n

an∗
ℓ,man

ℓ′,m′

∣

∣

∣

∣

∣

. (55)

when the potential is real. Introducing this in the XANES formula, one gets :

σ = −4π2αh̄ω
∑

g

∑

ℓ,m,ℓ′,m′

ℑ
(

〈

ϕg |ô∗| b̄ℓY
m
ℓ

〉

τ ℓ′,m′

ℓ,m

〈

b̄ℓ′Y
m′

ℓ′ |ô|ϕg

〉)

. (56)

The central term
∣

∣b̄ℓY
m
ℓ

〉

τ ℓ′,m′

ℓ,m

〈

b̄ℓ′Y
m′

ℓ′

∣

∣

∣ is the Green’s function.

One can do the same for the RXD case. To be more complete, we have written
the equation in the spin-orbit case:

f ′ − if ′′ =
π

2

2m

h̄2 (h̄ω)
2

(57)

×
∑

g,σ,σ′

∑

ℓ,m,s

ℓ′,m′,s′

〈

ϕσ
g |o∗s| b̄σ

ℓ,m+ 1

2
−σ,s

Y m
ℓ

〉

τ
ℓ′,m′+ 1

2
−s′,s′

ℓ,m+ 1

2
−s,s

〈

b̄σ
ℓ′,m′+ 1

2
−σ′,s′ |oi|ϕσ′

g

〉

.

When the potential is complex, the expression contains more terms because the
irregular solutions of the radial Schrödinger equation have to be considered, as well.

6 Conclusion

We have reviewed the different phenomena governing the resonant x-ray spectro-
scopies related to the transition of an electron from a core level up to some other
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level. The number of applications of these processes is huge. Because the process
of transition is complex, the interpretation is not always direct. Some of them need
multiplet calculations. Some others can use mono electronic simulations as presented
here. The following years will see the development of new simulation techniques per-
mitting the taking into account of both difficulties, the multi-electronic phenomena
and the partially delocalize intermediate state effects occuring in many low energy
L23 edges. Good candidates for this purposes are the Time-Dependent DFT [34,35],
but with a sophisticated kernel, the multi-channel approach [36] or the Bethe Salpeter
equation techniques. On the RXD itself, at this date, we think that all main processes
are understood. What remain to be done is the building of a relatively easy tool able
to give quantitative pieces of informations on the probed samples.
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