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This paper presents a constrained decomposition methodology with output injection to obtain decoupled partial models.
Measured process outputs and decoupled partial model outputs are used to generate structured residuals for Fault Detection
and Isolation (FDI). An algebraic framework is chosen to describe the decomposition method. The constraints of the
decomposition ensure that the resulting partial model is decoupled from a given subset of inputs. Set theoretical notions are
used to describe the decomposition methodology in the general case. The methodology is then detailed for discrete-event
model decomposition using pair algebra concepts, and an extension of the output injection technique is used to relax the
conservatism of the decomposition.
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1. Introduction

The increasing demand for secure and reliable systems
boosts up the research on accurate methods for Fault De-
tection and Isolation (FDI). The FDI problem has been
studied extensively, using two major approaches: model-
based and model-free. In this paper we are concerned with
model-based approaches, which are classified in two ma-
jor groups with respect to the type of model used: the con-
tinuous/discrete time-driven model or the discrete-event
model.

Time-driven model-based FDI is achieved by
analysing fault indicators or residuals, which are signals
obtained by comparing measured outputs of the moni-
tored process with the corresponding simulated outputs.
Three major techniques are used for residual generation
(Patton, 1994; Isermann, 2005): the parameter estima-
tion approach (Isermann, 1984; Isermann and Freyermuth,
1991) or, more recently (Fliess and Join, 2003; Fliess

et al., 2004), the parity space approach (Gertler, 1991;
Staroswiecki and Comtet-Varga, 2001) based on elim-
ination (Diop, 1991; Cox et al., 1991; Maquin et al.,
1997; Staroswiecki and Comtet-Varga, 2001) or on pro-
jection (Chow and Willsky, 1984; Isidori, 1995; Leuschen
et al., 2005), and the observer-based approach (Patton,
1994; Hammouri et al., 2001; Jiang et al., 2004; 2006;
Lootsma, 2001).

When the process to be monitored is subject to multi-
ple failures, in order to isolate each failure, multiple resid-
uals are required, leading to the synthesis of a residual
generator bank. When an isolable fault occurs, the resid-
uals react in a specific pattern, called the fault signature,
characterized by robustness/sensitivity properties of each
signal. When every residual is sensitive (or robust) to only
one unique fault and robust (or sensitive) to all the remain-
ing failures, then the residuals are said to be structured.

Many FDI techniques are described in the litera-
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ture for timed/untimed discrete-event model of central-
ized or distributed systems. We will focus on untimed
(Sampath et al., 1995;1996; Zad et al., 2003) centralized
systems (Lafortune et al., 2001; Lin, 1994; Bavishi and
Chong, 1994). The monitored system is abstracted using
a Discrete-Event System (DES) model, characterized by a
discrete state space and event-based dynamics. DES mod-
els are used because of the simplicity of the associated al-
gorithms to test diagnosability (Sampath et al., 1995). In
the last few years a number of DES modeling frameworks
have been developed for diagnosability analysis. One fre-
quently used model is the Finite State Machine (FSM)
(Sampath et al., 1995; Zad et al., 2003; Lin, 1994; Lafor-
tune et al., 2001; Bavishi and Chong, 1994). It is based
on the assumption that the system consists of several dis-
tinct physical components, modelled as FSMs, which may
share certain events.

The states of the FSM correspond to the internal
states of a component and the transitions refer to its
events. The events are considered to be observable or un-
observable, the latter being further classified into internal
and failure events. Transitions and states following fail-
ure events model the behaviour of the system after a fail-
ure. Using standard synchronous composition operations,
the individual components are composed to form a global
model that describes the behaviour of the complete sys-
tem. FDI is achieved by using the complete system model
to synthesize another FSM called the diagnoser, which is
basically a state estimator that determines the condition
(normal or failure) of the system. Another possible ap-
proach is to produce diagnosers corresponding to each in-
dividual component. Others approaches to DES diagnos-
ability are process algebra-based approaches (Hamscher
et al., 1992; Hillston, 1996) and Petri net models (Boel
and Jiroveanu, 2004; Benveniste et al., 2003; Boubour
et al., 1997; Hadjicostis and Verghese, 1999; Giua, 1997).

Time-driven and event-based FDI approaches share a
lot of common points, but mostly use different mathemat-
ical techniques. The multiplication of these mathematical
tools limits the application of such approaches to partic-
ular domains and imposes, for each approach, a specific
model of the monitored process. For instance, observer-
based geometric methods require linear or nonlinear time-
driven modelling of the process. A useful advancement
would be to develop mathematical FDI tools that could be
applied in a similar way to monitor systems described by
time-driven or event-based models.

An in-depth study of the existing FDI approaches
shows that similar decomposition-based methods were de-
veloped for the two types of models: a bank of residual
generators based on linear or nonlinear observers, parity
space approaches, individual component-based FSMs.

In this paper, we present a decomposition method-
ology for deterministic behavioural models. The decom-
position method is said to be model-type-free because it

does not depend in its principle on the model type (time-
based or discrete-event-based). The objective is to ob-
tain a partial model which is decoupled from a given sub-
set of inputs (that may be failures) while remaining cou-
pled with respect to another subset of selected inputs (that
may also be failures). These partial models may be used
for FDI as, e.g., in the works of Patton (1994), Gertler
(1998), Blanke et al. (2003), Kinnaert (1999) or Maquin
et al. (1997) for continuous-time systems and by Sampath
et al. (1996), Zad (1999) or Lefebvre (1999) for discrete-
event methods. FDI is achieved by measuring the consis-
tency between measured outputs of the monitored process
and the corresponding simulated outputs of each partial
model. The coupling and decoupling properties of each
partial model allow detecting the occurrence of selected
faults while ignoring the rest of them. Using several par-
tial models with different coupling/decoupling properties
leads to structured residual vectors achieving the isolation
of all faults considered.

The methodology is described using a particular al-
gebraic formulation, which allows considering the decom-
position of continuous-time models and discrete-event
models using the same algorithm. Of course, even if
the general methodology is the same, some computations
at given steps of the algorithm are specific to the do-
mains considered. In this paper we use a particular al-
gebraic formalism, inspired by the algebra of functions
(Shumsky, 1991; Zhirabok and Shumsky, 1993; Shumsky
and Zhirabok, 2006). Decomposition based on the alge-
bra of functions was the topic of our previous publica-
tions (Berdjag et al., 2006a; 2006c), where an iterative
decomposition algorithm using output injection was pre-
sented for nonlinear continuous-time models. This paper
emphasizes the extension of the decomposition algorithm
to major types of deterministic behavioural models, using
set-theory notions (Vereshchagin and Shen, 2002). The
main algorithm is then used to propose a constrained de-
composition of FSMs using pair algebra (Hartmanis and
Stearns, 1966). There is a straightforward relation be-
tween set-theoretical and pair algebra formalisms, and we
extensively use this relationship to propose an adapted for-
mulation of the decomposition constraints for both cases.
In particular, output injection is used to loosen decompo-
sition constraints in the discrete-event case. The output in-
jection technique is a well-known method of continuous-
time model decoupling, and to the best of our knowledge
it has not been yet employed for DES model decoupling.

The paper is organized as follows. In Section 2,
a constrained decomposition problem is formulated using
the set-theoretical framework. In Section 3, the decom-
position constraints and conditions are detailed and or-
ganized to build a general decomposition algorithm with
output injection. Section 4 provides basic reminders about
partitions and pair algebra operators. In Section 5, con-
strained decomposition of discrete-event models with out-
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put injection is presented. An example is given in Sec-
tion 6 to illustrate the decomposition and the benefits of
output injection. Afterwards, conclusions and perspec-
tives on future work are presented, and finally an appendix
with illustrative examples on partition operations closes
the paper.

2. Problem formulation

2.1. Preliminaries. As a general principle, it is possi-
ble to represent deterministic behavioural models, denoted
by Σ, using the following quintuple:

(X ,U ,Y,F ,H), (1)

where X is the state set, U is the input set and Y is the
output set. F and H are functions defined by

F : X × U −→ X and H : X × U −→ Y. (2)

The function F is the state function and the func-
tion H is the output function. It is well known that the
state function F is invariant (involutive) by definition, i.e.,
F(X ,U) ⊆ X (see Isidori, 1995) for the definition of in-
variance. We make the choice of omitting the initial state
X0 specification for the sake of simplicity, since it has no
influence on the decomposition process.

The representation (1) allows describing continuous-
time and discrete-event deterministic models using the
same formalism. Indeed, if Σ is a continuous-time model,
then the sets X ,U ,Y are infinite sets of dimensions
n, l, m, respectively, i.e., X ⊆ R

n, U ⊆ R
l, Y ⊆ R

m.
The state and output functions are defined by

F : R
n × R

l −→ R
n and H : R

n × R
l −→ R

m.
(3)

If the model Σ is a discrete-event model, then the sets
X ,U ,Y are finite sets of respective cardinalities n′, l′, m′:

X = {x1, . . . , xn′}, U = {u1, . . . , ul′},
Y = {y1, . . . , ym′}.

We assume that the model Σ contains multiple dy-
namics. Every single dynamic is affected by a particular
subset of inputs or input events and ignores the rest of
the inputs. These dynamics can be represented by partial
models. A partial model Σ∗ is a model which replicates
the behaviour of a part of the “complete” model Σ. The
models Σ and Σ∗ are said to be equivariant, i.e., for the
same sequence of inputs (or input events), the states and
outputs of Σ∗ and Σ are bisimilar. Two states (or outputs)
are considered bisimilar if the states (outputs) remain con-
sistent as long as the two models are excited by the same
input sequence with consistent initial states.

Definition 1. (Bisimilarity) Consider X and X ′ two sets
of equal cardinalities. Let → and �→ be two relations de-
fined on X 2 and X ′2, respectively. We say that the ele-
ments of X and X ′ are bisimilar if and only if there is a
mapping θ : X → X ′ such that

∀x ∈ X , ∃θ : (x → x̃) ⇔ (θ(x) �→ θ(x̃)).

Let ΨX , ΨU and ΨY be the power-sets of X , U and
Y , respectively, i.e., ΨX = 2X , ΨU = 2U and ΨY = 2Y .
Consider another model Σ∗ defined by

(X∗,U∗,Y∗,F∗,H∗), (4)

where X∗, U∗ and Y∗ are subsets of ΨX , ΨU and ΨY , and
F∗ and H∗ are restrictions of F , H on ΨX × ΨU �→ ΨX
and ΨX × ΨU �→ ΨY , respectively.

Definition 2. (Partial model) We say that the model
Σ∗(X∗,U∗,Y∗,F∗,H∗) constitutes a partial model of
Σ(X ,U ,Y,F ,H) if and only if the functions F∗ and
H∗ are restrictions of F , H on ΨX × ΨU �→ ΨX and
ΨX × ΨU �→ ΨY , and the sets X∗, U∗ and Y∗ are given
by

X ΘX−→ X∗, U ΘU−→ U∗, Y ΘY−→ Y∗, (5)

where ΘX , ΘU and ΘY are functions on ΨX , ΨU and ΨY
ensuring that the outputs of Σ and Σ∗ are bisimilar for the
same sequence of inputs u ∈ U and Θ(u)U(u) ∈ U∗.

The homomorphism is a well-suited mathematical
concept to express the link between the model of the sys-
tem and its partial models. The homomorphism is a struc-
ture preserving map from an algebraic construct to another
algebraic construct.

Definition 3. (Homomorphism) Consider a set X and a
function F : X → X . The function Θ : X → X is a
homomorphism if the following relation holds:

∀x ∈ X : Θ(F(x)) = F(Θ(x)).

This notion was extended separately to event-driven
and time-driven dynamical systems in the literature,
(Hartmanis and Stearns, 1966). We propose here a defi-
nition suited for the problem considered.

Definition 4. (Model homomorphism) The triple
(ΘX , ΘU , ΘY) is a structure preserving map of the model
Σ(X ,U ,Y,F ,H) into Σ∗(X∗,U∗,Y∗,F∗,H∗) if the fol-
lowing relation holds:

∀x ∈ X ,u ∈ U , y ∈ Y :
ΘX (F(x, u)) = F∗(ΘX (x), ΘU (u)),
ΘY(H(x, u)) = H∗(ΘX (x), ΘU (u)),

where ΘX : X → X∗, ΘU : U → U∗ and ΘY : Y → Y∗.
The triple (ΘX , ΘU , ΘY) is said to be a model homomor-
phism.
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Proposition 1. Let Σ and Σ∗ be two models with Σ∗
obtained from Σ. Σ∗ is a partial model of Σ if and only if
the triple (ΘX , ΘU , ΘY) is a model homomorphism.

Proof. Necessity and sufficiency are obvious: if
(ΘX , ΘU , ΘY) is a homomorphism, the following rela-
tions hold:

∀x ∈ X , ∀u ∈ U :
ΘX (F(x, u)) = F∗(ΘX (x), ΘU (u)),
ΘY(H(x, u)) = H∗(ΘX (x), ΘU (u)). (6)

If Σ∗ replicates partially Σ, then states and outputs
are bisimilar, i.e.,

∀x ∈ X , ∀u ∈ U :
ΘX (F(x, u)) = F∗(ΘX (x), ΘU (u)),
ΘY(H(x, u)) = H∗(ΘX (x), ΘU (u)). (7)

Obviously, (6) is identical to (7). �

Remark 1.

• Proposition 1 is an extension of the automata ho-
momorphism (Hartmanis and Stearns, 1966) to the
general case.

• If only state bisimilarity is required, then only
(ΘX , ΘU) needs to be homomorphic.

• The dynamics of the partial model Σ∗ are defined by
(ΘX , ΘU) only.

2.2. Practical application. The model Σ is supposed
to represent the real behaviour of a physical system. This
means that the input set U represents the occurrence of
real events. The objective behind decomposition is to ob-
tain a decoupled partial model Σ∗ which allows detect-
ing selected faults and ignoring others. We assume that
the faults are unknown (unobservable) inputs or events
(Patton, 1994; Sampath et al., 1995). We also assume that
perturbations and noise are unknown inputs. As a result,
the input set is divided in three disjoint subsets:

U = Uc ∪ Uρ ∪ Uγ , (8)

where Uρ contains inputs (subset of faults) to be detected,
Uγ contains inputs to be ignored (perturbations or sup-
plementary subset of faults) and Uc regroups the known
control inputs. Uρ and Uγ form unknown (unobservable)
input sets.

Consider the function ΘU defined on ΨU such that

Uγ ⊆ ker(ΘU ), Uc ∪ Uρ � ker(ΘU ), (9)

where ker(ΘU) denotes the kernel of the function ΘU .
A partial model Σ∗ is obtained using the homomor-

phism (ΘX , ΘU , ΘY) with ΘU from (9). Σ∗ will replicate

the behaviour of Σ, but it will totally ignore the inputs
from Uγ . However, if Σ∗ and Σ are excited by different
inputs from Uc ∪ Uρ, state and output discrepancies will
appear.

Therefore, discrepancies can be used to detect un-
expected events (represented by inputs from Uc ∪ Uρ) in
the input sequence. Moreover, if an occurring unexpected
event belongs to Uγ , no output discrepancy is observed,
since Σ∗ is decoupled from Uγ .

Application of these concepts to fault detection and
isolation is straightforward: the effects of process failures
may be modelled as unknown inputs (see Patton, 1994).
Fault detection and isolation is performed by comparing
real process outputs with simulated outputs of the partial
model Σ∗. This comparison allows computing residuals
and the analysis of these residuals will grant us infor-
mation about failure occurrences in the real process. In
order to produce a structured residual that allows detect-
ing a subset of failures and ignoring the other subset, the
unknown inputs representing the failures to detecting are
grouped in Uρ.

The following section details the method for ob-
taining Σ∗, i.e., determining X∗,Y∗,F∗ and H∗ for a
given U∗.

3. Decomposition of generic behavioural
models

3.1. Decomposition procedure. The decomposition
method proposed in this section is presented as an itera-
tive procedure, with Σ(X ,Uc ∪ Uρ ∪ Uγ ,Y,F ,H) as the
input and Σ∗(X∗,U∗,Y∗,F∗,H∗) as the result. In order
to ensure that Σ∗ is decoupled from Uγ and coupled with
respect to Uρ, the decomposition procedure is constrained
to coupling with respect to Uρ and decoupling from Uγ

properties of the state set X∗.
However, the success of the constrained decomposi-

tion procedure is essentially based on the fulfilment of the
existence condition given in Proposition 1. This somewhat
complex condition is simplified in the following. More-
over, in order to improve the procedure, an extension is
proposed based on a technique called output injection.

In the following, both constraints, coupling to Uρ and
decoupling from Uγ , are detailed. Necessary conditions to
obtain a partial model Σ∗ and to guarantee bisimilar states
and outputs are also given. An extension of the decom-
position procedure using output injection is proposed. Fi-
nally, an iterative decomposition algorithm is synthesized.

3.2. Decomposition constraints.

3.2.1. Decoupling constraint. Consider some partial
model Σ∗ such that Σ and Σ∗ are equivariant. Σ∗ is de-
coupled from Uγ if ΘU(Uγ) ∩ U∗ = ∅. This means that
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X∗ does not intersect the state set coupled with respect to
the subset Uγ , i.e.

Θ−1
X (X∗) ∩ Xγ = ∅, (10)

where Θ−1
X denotes the inverse of ΘX . The set Xγ is given

by
Xγ = F(X ,Uγ). (11)

3.2.2. Coupling constraint. In the same way, the cou-
pling condition is expressed: Σ∗ is coupled with respect
to Uρ if ΘU (Uρ) ∩ U∗ �= ∅. This means that the state sub-
set coupled with respect to the subset Uρ is not included
in the kernel of ΘX , i.e.,

Xρ � ker(ΘX ). (12)

By analogy with (11), the set Xρ is given by

Xρ = F(X ,Uρ). (13)

3.3. Decomposition conditions. Two conditions are
required: the invariance condition is needed to show that
Σ∗ is a partial model of Σ and can be used to mirror a par-
tial evolution of Σ, while the output condition is necessary
to ensure bisimilar outputs of Σ∗ and Σ.

3.3.1. Invariance condition. The existence condition
given in Proposition 1 is developed.

Lemma 1. Let Σ and Σ∗ be two models with Σ∗ obtained
from Σ. The restriction (cf. Vereshchagin and Shen, 2002)
of the function F∗ on ΘX (X ) is invariant if and only if Σ∗
is a partial model of Σ .

Proof. (Necessity) If the restriction of F∗ on ΘX (X ) is
not invariant, then

F∗(ΘX (X ), ΘU (U)) � ΘX (X ),

which means that

∃x ∈ X ∃u ∈ U : F∗(ΘX (x), ΘU (u)) �= ΘX (F(x, u))

and implies that Σ∗ is not a partial model of Σ, since it
does not replicate Σ for all x and u.

(Sufficiency) If Σ∗ is a partial model of Σ, then

∀x ∈ X ∀u ∈ U : F∗(ΘX (x), ΘU (u)) = ΘX (F(x, u))

and
F∗(ΘX (X ), ΘU (U)) ⊆ ΘX (F(X ,U)). (14)

We know that F is invariant by definition, so the rela-
tion ΘX (F(X ,U)) = ΘX (X ) is true. Thus (14) becomes

F∗(ΘX (X ), ΘU (U)) ⊆ ΘX (X ),

which means that the restriction of F∗ on ΘX (X ) is in-
variant. �

Finally, the new existence condition is

F∗(ΘX (X ), ΘU (U)) ⊆ ΘX (X ). (15)

3.3.2. Output condition. If outputs of Σ∗ and Σ are
bisimilar, then it is possible to check the discrepancy be-
tween the evolutions of Σ∗ and Σ and the output condition
is fulfilled. This condition makes sense only if the invari-
ance condition is satisfied.

Output bisimilarity is ensured if Proposition 1 is ful-
filled,

∀x ∈ X , ∀u ∈ U :
H∗(ΘX (x), ΘU (u)) = ΘY(H(x, u)). (16)

However, this is the perfect case. Practically, only
some bisimilar outputs are required to check the consis-
tency of Σ and Σ∗. Let us replace Y with a subset Ỹ ⊆ Y .
The relation (16) becomes

∀u ∈ U , ∀x ∈ X , ∃Ỹ ⊆ Y :

∀y ∈ Ỹ ⇒ H∗(ΘX (x), ΘU (u)) = ΘY(H(x, u)) (17)

or
∃Ỹ ⊆ Y : Y∗ ∩ ΘY(Ỹ) �= ∅. (18)

The relation (18) is the final form of the output con-
dition.

3.4. Output injection. In some cases, the constraints
of the decomposition are too strong, resulting in an im-
possible decomposition, i.e., there is no restriction of F∗
on a given X∗ = ΘX (X ) satisfying (15):

F∗(X∗,U) � X∗. (19)

A special technique called output injection may be
then used in order to relax the invariance condition. Out-
put injection is a well-known technique for continuous-
time model decoupling. The main idea is to replace the
information loss due to the truncated state set X∗ by ex-
tending the input set of Σ∗ with selected outputs of Σ.

Consider a set X̃ ⊆ X such that X∗ ⊆ X̃ and

F∗(X̃ ,U) ⊆ X̃ . (20)

The relation (20) is always fulfilled, since we can
take X̃ = X .

Let ξ be a function on Y �→ X∗ such as X̃ =
ΘX (X ) ∪ ξ(Y) and ξ(Y) = Xinj . The relation (20) is
rewritten using ξ,

F∗(ΘX (X ) ∪ ξ(Y),U) ⊆ ΘX (X ) ∪ ξ(Y). (21)

The relation (21) ensures the existence of a state
function for Σ∗ denoted by F̃∗ : ΨX × Y × ΨU → X∗,
based on the functions F∗ and ξ for Σ∗ such that

F̃∗(ΘX (X ),Y, ΘU (U)) ⊆ ΘX (X ) ∪ Xinj . (22)

Therefore, the appropriate use of the output injection
ξ(Y) ensures the fulfilment of the invariance condition.
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The relation (22) is referred to as the extended invariance
condition. Notice that we use a different notation for the
state function to emphasize that F̃∗ is not a proper re-
striction of the function F , mathematically speaking, but
rather a modification based on the restriction F∗.

For the sake of simplicity, in the following, we will
refer to the state function of Σ∗ as F∗ with or without
output injection.

Remark 2. In order to satisfy the decoupling condition
(11) and to keep Σ∗ decoupled, Xinj must be independent
from Uγ , i.e.,

Θ−1
X (Xinj) ∩ Xγ = ∅, (23)

where Xγ is the same as in (11). This means that an ap-
propriate selection of outputs to be injected must be per-
formed. In the following, the injected output is denoted
by Yinj .

3.5. Decomposition algorithm. The decomposition
procedure is formed as solving a constrained optimiza-
tion problem. An iterative pseudo-algorithm is designed
(Algorithm 1) to represent the three steps needed to ob-
tain the decomposition function: The first step consists
in the determination of the largest decoupled state set X 0

using relation (10), and to do so, we also need to deter-
mine Xγ using the relation (11). Some other key elements
are determined: the set Xρ using (13) to check the cou-
pling constraint, the functions F∗ and H∗ since they are
necessary to describe the partial model, and finally, the
output injection Yinj . This is achieved picking the ob-
servable part of the set X 0, i.e., H(X 0,U − Uγ) = Yinj

and Xinj = Θ0
X (H−1(Yinj)). The second step is an iter-

ative procedure in order to determine the largest invariant
subset with respect to F in X 0 along with the map ΘX .
The principle is to determine an initial set of decomposi-
tion candidates satisfying the decoupling constraint repre-
sented by the function Θ0

X , and to determine X∗ and ΘX
using an iterative loop, based on a scheme proposed by
Shumsky (1991). When the extended invariance condi-
tion is fulfilled, the loop ends and the result is saved for
the next step.

The final step consists in checking the coupling con-
straint and the output condition using (17) and (18), and if
the two conditions are satisfied, in building the quintuple
describing the partial model Σ∗ using the decomposition
function ΘX .

Algorithm 1 shows the steps required to determine
the decoupling function ΘX , if a decomposition is possi-
ble. However, this set-theoretical formalism is difficult to
implement directly. Special mathematical techniques are
proposed to simplify the implementation.

A possible approach is to define mathematical delim-
iters used to regroup all set elements into one mathemat-
ical entity. It is then possible to manipulate the delim-

Algorithm 1 Decoupling algorithm
Require: Σ(X ,U ,Y,F ,H),Uρ, Uγ ;

Determine X 0 and Θ0
X such that

X 0 = X − Xγ and Θ0
X (X ) = X 0

with Xγ = F(X ,Uγ) ;
Determine Xρ = F(X ,Uρ);
Select an appropriate ΘU such that Uγ ⊆ ker(ΘU);
Determine Yinj ⊆ H(X 0,U − Uγ) and Xinj ;
Determine F∗,H∗ restrictions of F ,H;
{Initialization}: Set i=1;
Choose X 1 and Θ1

X such that
X 1 ⊆ X 0 and Θ1

X (X ) = X 1;
{ For the first loop any singleton X 1 can be taken.}
while F∗(Θi

X (X ),ΘU (U)) � Θi
X (X ) do

Determine the subset X i+1 ⊆ X 0 such that
F∗(Θi

X (X ),ΘU (U)) ⊆ Xinj ∪ X 1 ∪ . . . ∪ X i+1;
Determine the function Θi+1

X such that
Θi+1

X (X ) = Xinj ∪ X 1 ∪ . . . ∪ X i+1;
Increment i;

end while
ΘX = Θi

X ;
if ΘX = ∅ then

return Decoupling impossible;
else

Determine ΘY and Ỹ ⊆ Y such that
H∗(ΘX (X ), ΘU(U)) ∩ ΘY(Ỹ) �= ∅;

if ∃ΘY , Ỹ then
Output condition satisfied by ΘX ;

else
Output condition not satisfied by ΘX ;
Take X 1

� F(ΘX (X ),U);
if Impossible then

Go to END
else

Go to {Initialization}
end if

end if
if Xρ � ker(ΘX ) then

Coupling constraint not satisfied by ΘX ;
Take X 1 ⊆ F(ΘX (X ),U);
if Impossible then

Go to END
else

Go to {Initialization}
end if

else
Coupling constraint satisfied by ΘX ;

end if
U∗ = U ∪ Yinj ,
X∗ = ΘX (X ),
Y∗ = H∗(ΘX (X ),ΘU (U))

end if
return Σ∗(X∗,U∗,Y∗,F∗,H∗)

iters rather than deal with the corresponding elements in-
dividually. In the case of infinite sets, set delimiters are
defined using functions (Shumsky, 1991). In the case of
finite sets, set delimiters are defined using partitions of el-
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ements (Hartmanis and Stearns, 1966).
The set of all delimiters with the corresponding

mathematical relations forms an algebraic structure. If
the definition sets of a model are finite, pair algebra is
involved. Pair algebra was introduced by Hartmanis and
Stearns (1966) to manipulate partitions of finite elements.
An extension to infinite sets of elements was proposed
by Shumsky (1991) as well as Zhirabok and Shumsky
(1993), using functions to define partitions of the differ-
ent sets. The algebraic structure used is known under the
name of the algebra of functions. Recently, the algebra of
functions was used in several topics of model-based mon-
itoring for deterministic systems (Berdjag, 2006b; 2006c),
uncertain systems (Shumsky, 2007) and canonical decom-
position (Zhirabok, 2006). An analysis of the algebra of
functions was presented by Zhirabok and Shumsky (1993)
and Berdjag et al. (2006b).

An implementation of Algorithm 1 is proposed in
Section 5 using pair algebra, for the finite-state set case.
The following section will recall and introduce the notions
that will be manipulated for such implementation.

4. Partitions and pair algebra

Reminders on partitions and partition operations are pro-
vided in this section, along with definitions of pair algebra
operators. Examples provided for each case are regrouped
in Appendix.

4.1. Mathematical background.

4.1.1. Partition. Consider some finite set S. A parti-
tion π on S is a collection of disjoint subsets of S whose
set union is S. These subsets are called blocks and de-
noted by Bπ

α, where α is an element of S, which literally
means “the partition block containing the element α”. For
example, if a block is composed of two elements {α, β},
then it can be referred to using the notation Bα or Bβ ,

π = {Bα} such that

{
Bα ∩ Bβ = ∅ for α �= β,⋃{Bα} = S.

(24)
Consider a block B from π, and two elements s and

t from S. If s and t are contained in the same block B of
π, then we have s ≡ t(π).

Remark 3. If a confusion between blocks of two dif-
ferent partitions appears in the following, for example, π1

and π2, then the following notation is used for the blocks:
Bπ1

α and Bπ2
α

4.1.2. Operations on partitions. Let S be a set and π1

and π2 two partitions on S. s and t are two elements from
S. The operations “·” and “+” along with the relations
“≤” and “=” are defined:

• π1 · π2 is the partition on S such that

s ≡ t(π1 · π2) iff s ≡ t(π1) and s ≡ t(π2).

• π1 + π2 is the partition on S such that

s ≡ t(π1 + π2) iff there is a sequence in S

s = s0, s1, . . . , sn = t,

for which either

si ≡ si+1(π1) or si ≡ si+1(π2) , 0 ≤ i ≤ n − 1.

• π1 ≤ π2 if and only if π1 ·π2 = π1 and π1+π2 = π2.
Partition π2 is said larger than or equal to π1.

• π1 = π2 if and only if π1 ≤ π2 and π2 ≤ π1. Parti-
tions π1 and π2 are equal.

It can be shown that the relation ≤ is a partial or-
der on the set of all the possible partitions on S, denoted
by ΠS (see Hartmanis and Stearns, 1966). The set ΠS

is said to be ordered by the partial order relation ≤ with
the smallest partition denoted by O and the largest parti-
tion denoted by I. For example, let S = {1, 2, 3}. The
smallest partition is given by O = {{1}, {2}, {3}} and
the largest by I = {{1, 2, 3}}

For a more detailed overview on partition operations
with examples, check the Appendix.

4.2. Substitution property. Let S and I be two sets
and δ a function defined by

δ : S × I −→ S.

Let π be a partition on S. The partition π is said to have
the substitution property with respect to the function δ if
and only if

s ≡ t(π) ⇒ δ(s, i) ≡ δ(t, i)(π)∀i ∈ I. (25)

If π = {Bα}, for all α ∈ S, has the substitution
property, then consider a function δπ : π × I −→ π such
that

δπ(Bα, i) = Bδ(α)|∀i ∈ I, ∀α ∈ Bα : δ(α, i) ⊆ Bδ(α).

The function δπ is the image of δ by π and results from
a restriction of δ on π. Notice that we consider here the
partition π as a set of block elements Bα.

The partition pair is an extension of the substitution
property to two partitions. A partition pair (π, π′) is an
ordered pair of partitions on S such that

s ≡ t(π) ⇒ δ(s, i) ≡ δ(t, i)(π′)∀i ∈ I. (26)

The set of all partition pairs is not anti-symmetric.
Also, if π has the substitution property, then π satisfies
the relation (26), and (π, π) is a partition pair.
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4.3. Pair algebra. Consider some set of partitions L
ordered by the ordering relation ≤, and a function δ. The
subset Δδ ⊆ L × L of all the partitions pairs with re-
spect to δ, along with the partition operations “·” and “+”,
forms an algebra called pair algebra. If the pair (π1, π2)
is a partition pair, then we have (π1, π2) ∈ Δδ .

Now, let μ and π be partitions on I and S, respec-
tively,

(μ, π) ∈ Δδ iff i ≡ j(μ) ⇒ δ(s, i) ≡ δ(s, j)(π)∀s ∈ S,
(27)

with i, j ∈ I .
In the partition pair framework, for a given partition

π the minimal operator m and the maximal operator M
define respectively the smallest partition and the largest
partition pairing with π.

Definition 5. Let μ be a partition on I . Then mδ(μ) is the
minimal partition that forms a partition pair with μ, i.e.,
(μ, mδ(μ)) ∈ Δδ, and if (μ, π) ∈ Δδ , then mδ(μ) ≤ π.
The result mδ(μ) is also given by the following relation:

mδ(μ) =
∏

{πi|(μ, πi) is a partition pair}. (28)

Definition 6. Let π be a partition on S. Mδ(π) is the
maximal partition that forms a partition pair with π, i.e.,
(Mδ(π), μ) ∈ Δδ , and if (μ, π) ∈ Δδ , then μ ≤ Mδ(π).
The result Mδ(π) is also given by the following relation:

Mδ(π) =
∑

{μi|(μi, π) is a partition pair}. (29)

5. Decomposition of finite state machines

The decomposition of discrete-event models in order to
determine reduced equivalent models is a popular topic.
However, model decomposition with a decoupling con-
straint is not common for this type of model. In this sec-
tion, a constrained decomposition methodology based on
Algorithm 1 is proposed for FSMs, which are a common
type of deterministic discrete-event models. FSMs are de-
noted by (S, I, O, δ, λ) for distinction from the general
case. S,I ,O are respectively the state set, the input set and
the output set of the model. Furthermore, δ is the state
function and λ is the output function.

The decomposition problem is formulated as fol-
lows: Consider an FSM Σ(S, I, O, δ, λ) with I = Ic ∪
Iγ ∪ Iρ. A partial FSM Σ∗ decoupled from Iγ and cou-
pled with respect to Iρ is investigated. The machine Σ∗ is
defined by the quintuple (S∗, I∗, O∗, δ∗, λ∗) with

• S∗ = π, where π is a partition of S;

• O∗ = πO , where πO is a partition of O;

• I∗ is the input set;

• δ∗ : π × I∗ → π, where δ∗ is a restriction of δ;

• λ∗ : π × I∗ → πO , where λ∗ is a restriction of λ.

5.1. Decomposition constraints. In order to express
coupling and decoupling constraints using partitions, a
neutral element i0 is added to I ,

∀s ∈ S : δ(s, i0) = s. (30)

Hence, Σ is decoupled from the element i0 by defini-
tion. If a block of a partition of I contains i0, then all
the elements of this block are also decoupled from Σ. Let
Iγ = {a1, a2, . . .} and Iρ = {b1, b2, . . .}.

5.1.1. Decoupling constraint. Let us recall that in or-
der for an FSM to be decoupled from a particular input
a ∈ I , the kernel of state function δ must include this in-
put, i.e., a ∈ ker(δ). To obtain an FSM decoupled from a,
the partition π of the state set S must be determined such
that

a ∈ ker(δπ), (31)

with δpi being a restriction of δ on π × I .
Consider the following partition:

πγ = {{i0, a1, a2, . . .}, {i1}, . . . , {il}, {b1}, {b2}, . . .},
(32)

where ij , with j = 1, . . . , l, are elements of Ic. The par-
tition πγ is composed by a block regrouping all the el-
ements of Iγ with the neutral element i0, and singleton
blocks formed from the elements of Ic ∪ Iρ. Using the
operator mδ and πγ , the state set partition π0 that is de-
coupled from Iγ is determined,

π0 = mδ(πγ). (33)

To find a relationship between the partitions π0 and
π, consider a state s1 such that δ(s1, a) = s2 �= s1, a ∈
Iγ . By the definition of the partition π0, s1 ≡ s2(π0).
It is shown by analogy that si+1 ≡ si(π), where si+1 =
δ(si, a) and i = 1, 2, . . . , k − 1, which means that for all
inputs a ∈ Iγ the FSM state s remains in the same block
of π0. In other terms, we have δ(Bπ0

, a) ⊆ Bπ0
for some

block Bπ0
from π0 or Iγ ∈ ker(δπ0), where δπ0 is the

restriction of δ on π0 × I .
By analogy, to ignore the input a, the following rela-

tionship for each block Bπ from π must hold:

δ(Bπ , a) ⊆ Bπ. (34)

Since the operator mδ gives the smallest partition
(33), each block Bπ0

from π0 is included into the appro-
priate block Bπ from π, i.e., Bπ0 ⊆ Bπ. Therefore

π0 ≤ π. (35)

It can be shown by analogy that if π0 ≤ π, then each
input a ∈ Iγ is ignored by the partial FSM obtained using
the partition π.
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5.1.2. Coupling constraint. By analogy, an FSM is a
coupled to the particular input b ∈ I if the kernel of state
function δ does not include this input, i.e., b /∈ ker(δ). To
obtain an FSM coupled to a, the partition π of the state set
S must be determined such that

b /∈ ker(δπ), (36)

with δpi being a restriction of δ on π × I .
Consider the partition πρ that decouples Iρ,

πρ = {{i0, b1, b2, . . .}, {i1}, . . . , {il}, {a1}, {a2}, . . .},
(37)

and the corresponding state set partition,

π̄0 = mδ(πρ). (38)

We have previously seen that, if the machine Σ∗ is decou-
pled from Iγ , then its state set is a partition of π0. Accord-
ingly, if Σ∗ is coupled to Iρ, then

π̄0
� π. (39)

5.2. Decomposition conditions.

5.2.1. Invariance condition. Consider the FSM Σ and
a partition π which has the substitution property with re-
spect to δ. This means that if π has the substitution prop-
erty, i.e., (π, π) ∈ Δδ , then the discrete-event model de-
scribed by (π, I, πO, δ∗, λ∗) is a partial model of Σ and
the restriction of δ on π × I exists (see Definition 2).

From Definitions 5 and 6, if (π, π) ∈ Δδ , then the
following relations are satisfied:

π ≤ Mδ (π) and π ≥ mδ (π). (40)

For the FSM case, the relation π ≤ Mδ(π) implies π ≥
mδ(π) and vice versa. Thus, only one relation of (40) is
required to test the invariance condition.

5.2.2. Output condition. Consider a partition π of the
state set S. On the analogy of the invariance condition, if
π has the substitution property, then there is a restriction
of λ on π× = I → πO . Here πO is determined as πO =
mλ(π). Let πλ = Mλ(O) be a partition induced by the
output function λ and the output set O on the state set.
Each block of πλ is associated with a single element of O,
since O is a partition of singleton blocks. If π ≥ πλ is
satisfied and (π, π) is a partition pair, then all the outputs
of Σ and the outputs of the partial model determined by
π are bisimilar. This is obviously is the best case, but this
condition is conservative.

Fortunately, to fulfil the output condition, it is suffi-
cient to have one single bisimilar output which is not I.
This means that partitions π and πλ must share at least
one block and πλ + π �= I. The output condition is given
by

π + Mλ(O) �= I. (41)

5.3. Output injection for discrete-event models. If
there are no partitions π satisfying the invariance condi-
tion, i.e., (π, π) /∈ Δδ, then the loss in state information
induced by the decomposition constraints is too signifi-
cant. However, it is possible to compensate the informa-
tion loss using the information provided by outputs. The
information added is represented by a state set partition
πy such that

(π · πy, π) ∈ Δδ. (42)

The relation (42) is satisfied if the following state-
ments are true:

Mδ(π) ≥ (π · πy) and π ≥ mδ(π · πy). (43)

The injection mechanism is now explained. A par-
tition πinj of the output set O is determined. Here πinj

represents the injected outputs. Each block of πinj is re-
lated via the function λ to a block of the state set partition
πy , and this relation is given by πy = Mλ(πinj). Since
π0 ≤ π, the best possible output injection πinj will satisfy
the relation

π0 · Mλ(πinj) = O. (44)

In this case, the output injection πinj completely
compensates the loss in state information induced by the
partitioning π0, since the blocks of O are singletons and
correspond on a one-on-one basis to elements of S. If a
partition πinj exists such that the relation (44) is satisfied,
then we can use the partition π0 as the decomposition par-
tition since

∀π : M(O) ≤ π ∧ π ≥ m(O)

is always satisfied by the definition of the operators m and
M (see Hartmanis and Stearns, 1966).

However, if this is not possible, all πinj satisfying the
relation (45) are candidates to satisfy (43),

π0 · Mλ(πinj) �= π0. (45)

If multiple partitions πinj are acceptable, the largest
partition will guarantee the simpler partial FSM Σ∗ and
the smallest partition πinj minimizes the information loss
in the decomposition.

Finally, if the appropriate output injection is deter-
mined and the relations (43) are satisfied, then the decom-
position partition π determines a partial FSM with an ex-
tended input set,

Σ∗(π, I∗ × πinj , πO, δ∗, λ∗),

from some partition πO and function λ∗.

5.4. Decomposition algorithm. Similarly to Algo-
rithm 1, Algorithm 2 consists of three steps: The first
step consists in the determination of the different elements
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Algorithm 2 Decomposition algorithm for discrete-event
models
Require: Σ(S, I, O, δ, λ) {Complete system}
Require: πγ , πλ { Decomposition constraints}

π0 = mδ(πγ) { Decoupled state set partition }
π̄0 = mδ(πρ) { Coupled state set partition }
πλ = Mλ(O) { State set partition induced by O }
{Injected outputs }

πy = Mλ(πinj)
Determine πinj such that π0 · πy = O;

{Initialization of the iterative loop}
ξ0 = π0, ξ1 = mδ(ξ0 · πy) + ξ0, i = 1;

while ξi �= ξi−1 do
ξi+1 = mδ(ξi · πy) + ξi;
Increment i;

end while
π = ξi

if π = I then
return Invariance condition not satisfied by π

else
if π + πλ = I then

Output condition not satisfied by π
else

Output condition satisfied by π
end if
if π ≥ π̄0 then

Coupling constraint not satisfied by π
else

Coupling constraint satisfied by π
end if
S∗ = π;
I∗ = (Ic ∪ Iρ × πinj);
O∗ = πO = mλ(π);
Determine δ∗ restriction of δ on π × I∗ → π
Determine λ∗ restriction of λ on π × I∗ → πO

{Decoupled partial FSM}
return Σ∗(S∗, I∗, O∗, δ∗, λ∗)

end if

needed in the calculus, i.e., the decoupled state set parti-
tion π0 for the initialisation of the iterative loop, the cou-
pled state set partition πλ to check the coupling constraint
and the state set partition induced by the output set πλ

to check the output condition. Also, the partition πinj is
computed to obtain the outputs to be injected. The sec-
ond step of the algorithm is the iterative loop to obtain the
invariant decoupled partition π, which is the basis of the
partial model to be obtained. The loop is initialized in its
first step by taking ξ0 = π0 and is based on the two main
conditions for the partition π: π0 ≤ π and mδ(π·πy) ≤ π.

Finally, the resulting partition π is checked for the
coupling constraint and the output condition, and if both
conditions are satisfied, the decoupled partial FSM is
built.

Fig. 1. FSM Σ.

Remark 4. If π0 · πy = O, then the iterative loop in Al-
gorithm 2 is skipped and π = π0. This is possible because
mδ(π · πy) = mδ(O) = O and π0 + O = π0.

6. Illustration

Consider the FSM Σ, assumed to represent some real-
world process and described by Fig. 1 and Table 1.

Table 1. Transition table of the model Σ.

a b f g o

1 2 4 5 1 O

2 2 4 2 2 O

3 3 5 3 3 Q

4 3 4 4 3 Q

5 3 1 5 5 N

Σ is a five-state model, with two known inputs, two
unknown inputs f and g and three outputs {O, Q, N}.
The initial state is 1. Here g represents the fault to be de-
tected and f the event to be ignored. Therefore, Σ is going
to be decomposed in order to obtain the partial model de-
coupled from Iγ = {f} and coupled to Iρ = {g}.

The first step requires computation of the decoupling
partition π0. The input set partition decoupled from Iγ is
given by

πγ = {{i0, f}, {a}, {b}, {g}}.

The corresponding state set partition is given by

π0 = mδ(πγ) = {{1, 5}, {2}, {3}, {4}}.

The smallest partition π which fulfills the invariance con-
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dition is obtained by iteration:

ξ0 = π0,

ξ1 = ξ0 + mδ(ξ0) = {{1, 4, 5}, {2, 3}} �= ξ0,

ξ2 = ξ1 + mδ(ξ1) = {{1, 2, 3, 4, 5}} �= ξ1,

ξ3 = ξ2 + mδ(ξ2) = {{1, 2, 3, 4, 5}} = ξ2.

Since ξ3 = ξ2, we have π = {{1, 2, 3, 4, 5}} = I. In
this case, the decomposition is impossible with the decou-
pling constraints from πγ .

A solution may be obtained using output injection.
There are three outputs generated by Σ: {O, Q, N}. We
do not need to inject all the outputs. The outputs to be in-
jected are taken from the partition πinj of O = {O, Q, N}
such that

π0 · πy = O

with πy = Mλ(πinj). Two partitions of outputs are possi-
ble: {{O, Q}, {N}} and {{O}, {Q, N}}. We choose the
first one, πinj = {{O, Q}, {N}}, since the two possible
partitions have two blocks. In the general case, the output
partition with fewer blocks should be preferred in order to
obtain a simpler partial model. The decomposition algo-
rithm is resumed in the π determination step. The smallest
partition π which fulfils the invariance condition with out-
put injection is obtained by the following iteration:

ξ0 = π0,

ξ1 = ξ0 + mδ(ξ0 · Mλ (πinj))

= {{1, 5}, {2}, {3}, {4}}= ξ0.

Since ξ1 = ξ0, we get π = ξ1. The decomposition with a
decoupling constraint is possible using π.

The verification step consists in testing the output
condition and the coupling to Iρ = {g}. The state set
partition induced by the output is obtained by

πλ = {{1, 2}, {3, 4}, {5}}.

The output condition is fulfilled by π since

π + πλ = {{1, 2, 5}, {3, 4}} �= I.

To test the coupling constraint, the partition πρ which de-
couples Iρ is calculated:

πρ = {{i0, g}, {a}, {b}, {f}}.

The corresponding state set partition is given by

π̄0 = mδ(πρ) = {{1}, {2}, {3, 4}, {5}}.

Coupling constraint is fulfilled because

π̄0
� π.

Fig. 2. FSM Σg .

Finally, the partial FSM Σg is determined using the
decomposition partition π. The input set of the partial ma-
chine is given by

I∗ ={aO = {a, {O, Q}}, bO = {b, {O, Q}},
. . . , aN = {a, {N}}, bN = {b, {N}}}.

The state set is given by

S∗ = {1′ = {1, 5}, 2′ = {2}, 3′ = {3}, 4′ = {4}},
and the output set is

O∗ = {O′ = {O, N}, Q′ = {Q}}.
The state function δ∗ and the output function λ∗ are shown
in Table 2.

Table 2. Transition table of Σg .

aO aN bO bN g o∗
1’ 2’ 3’ 4’ 1’ 1’ O′

2’ 2’ 2’ 4’ 4’ 2’ O′

3’ 3’ 3’ 1’ 1’ 3’ Q′

4’ 3’ 3’ 4’ 4’ 3’ Q′

Figure 2 shows the transition graph of the resulting
partial model.

The output value O′ of Σ∗ is equivalent to both out-
put values O or N for Σ, and the output value Q′ is equiv-
alent to Q. For example, if the current output of Σ is O or
Q and the output of Σ∗ is O′, then the outputs are consis-
tent.

6.1. Simulations. Simulation results are provided
here. The model Σ is excited by two sequences of known
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and unknown inputs; the first one contains several occur-
rences of the unknown input f and the second one con-
tains occurrences of the unknown input g. In this exam-
ple, the outputs of Σ represent the measured outputs of the
process to be monitored. Sequences composed of known
inputs (a, b) of seq1 and seq2 combined with outputs from
Σ are injected into the decoupled partial model Σ∗. Out-
puts are compared and a discrepancy indicator sequence
is computed. The analysis of the discrepancy indicator
sequence permits detecting the event g.

6.1.1. Input sequence containing f. The first injected
sequence is given by

seq1 = [a, b, a, b, b, f, a, b, a, b, b, f ].

Outputs of Σ and Σ∗ are shown in Fig. 3.
Outputs of Σ and Σ∗ remain consistent even if event

f occurs. Simulations confirm that Σ∗ is decoupled from
event f .

6.1.2. Input sequence containing g. The second in-
jected sequence is given by

seq2 = [a, b, g, a, b, b, a, b, g, a, b, b].

Outputs of Σ and Σ∗ are shown in Fig. 4.
Outputs of Σ and Σ∗ remain consistent until the first

occurrence of event g, after which they become inconsis-
tent after a slight delay. The delay occurs because the
event g is weakly detectable (Sampath et al., 1995). Sim-
ulations confirm that Σ∗ is coupled to event g, and will
react to every occurrence of this event.

7. Conclusion

In this paper, the decoupling of deterministic behavioural
models was addressed. An algebraic formulation of the
problem and of the solution was presented, based on previ-
ous work on continuous-time model decoupling (Berdjag
et al., 2006c). This general formulation permits address-
ing all types of deterministic models. The decomposition
algorithm is then applied to a particular problem: the con-
strained decomposition of FSMs. It is important to notice
that the algebraic formalism used to implement the de-
composition (Algorithm 1) remains the same in the case
of continuous-time models (Berdjag et al., 2006b).

The first contribution is the introduction of decou-
pling constraints in the FSM decomposition. The resulting
decoupled partial model can be used to detect unexpected
events in a process using a discrete-event model. Another
contribution is the use of the output injection technique
to extend the invariance condition in the decomposition
methodology. The authors’ future work addresses the de-
composition of mixed dynamic models known as hybrid
models.

Acknowledgment

This work was supported in part by the Russian Founda-
tion of Basic Research (Grants 07-08-00102 and 07-08-
92101).

References
Bavishi, S. and Chong, E. (1994). Automated fault diagnosis us-

ing a discrete event systems framework, IEEE Symposium
on Intelligent Control, Columbus, OH, USA, pp. 213–218.

Benveniste, A., Fabre, E., Haar, S. and Jard, C. (2003). Diag-
nosis of asynchronous discrete event systems: A net un-
folding approach, IEEE Transactions of Automatic Control
48(5): 714–727.

Berdjag, D., Christophe, C. and Cocquempot, V. (2006a).
An algebraic method for nonlinear system decomposi-
tion, 6th IFAC Symposium on Fault Detection Supervision
ans Safety for Technical Processes, SAFEPROCESS’2006,
Beijing, China, pp. 42–53.

Berdjag, D., Christophe, C. and Cocquempot, V. (2006b). Non-
linear model decomposition for fault detection and isola-
tion system design, 45th IEEE Conference on Decision and
Control, San Diego, CA, USA, pp. 3321–3326.

Berdjag, D., Christophe, C., Cocquempot, V. and Jiang, B.
(2006c). Nonlinear model decomposition for robust fault
detection and isolation using algebraic tools, International
Journal of Innovative Computing, Information and Control
2(6): 1337–1353.

Blanke, M., Kinnaert, M., Lunze, J. and Staroswiecki, M.
(2003). Diagnosis and Fault-Tolerant Control, Springer,
Berlin.

Boel, R. and Jiroveanu, G. (2004). Distributed contextual di-
agnosis for very large systems, International Workshop on
Discrete Event Systems, Reims, France, pp. 343–348.

Boubour, R., Jard, C., Aghasaryan, A., Fabre, E. and Benveniste,
A. (1997). A Petri net approach to fault detection and di-
agnosis in distributed systems (Parts 1 and 2), IEEE 36th
International Conference on Decision and Control, San
Diego, CA, USA, pp. 720–731.

Chow, E. and Willsky, A. (1984). Analytical redundancy and the
design of robust failure detection systems, IEEE Transac-
tions on Automatic Control 29(7): 603–614.

Cox, D., Little, J. and O’Shea, D. (1991). Ideals, Varieties, and
Algorithms, Springer-Verlag, New York, NY.

Diop, S. (1991). Elimination in control theory, Mathematics of
Control, Signals, and Systems 4: 17–32.

Fliess, M. and Join, C. (2003). An algebraic approach to fault
diagnosis for linear systems, Proceedings of the Interna-
tional Conference on Computational Engineering in Sys-
tem Applications, CESA, Lille, France, pp. 1–9.

Fliess, M., Join, C. and Sira-Ramírez, H. (2004). Robust resid-
ual generation for linear fault diagnosis: An algebraic
setting with examples, International Journal of Control
77(20): 1223–1242.



Algebraic approach for model decomposition: Application to fault detection and isolation. . . 121

(a) (b)

(c) (d)
Fig. 3. Simulations for the first sequence: input sequence (a), Σ output (b), discrepancy indicator (c), Σ∗ output (d).

(a) (b)

(c) (d)
Fig. 4. Simulations for the second sequence: input sequence (a), Σ output (b), discrepancy indicator (c), Σ∗ output (d).



122 D. Berdjag et al.

Gertler, J. (1991). Analytical redundancy methods in fault detec-
tion and isolation—Survey and synthesis, Proceedings of
the 1st IFAC Symposium on Fault Detection, Supervision
and Safety of Technical Processes, SAFEPROCESS’91,
Baden Baden, Germany, Vol. 1, pp. 9–21.

Gertler, J.J. (1998). Fault Detection and Diagnosis in Engineer-
ing Systems, Marcel Dekker, New York, NY.

Giua, A. (1997). Petri net state estimators based on event obser-
vation, Proceedings of the 36th IEEE International Con-
ference on Decision and Control, San Diego, CA, USA,
pp. 4086–4091.

Hadjicostis, C. and Verghese, G. (1999). Monitoring discrete
event systems using Petri net embeddings, in S. Donatelli
and J. Kleijn (Eds.), Application and Theory of Petri Nets,
Lecture Notes in Computer Science, Vol. 1639, Springer
Verlag, Berlin/Heidelberg, pp. 188–207, DOI: 10.1007/3-
540-48745-X_12.

Hammouri, H., Kinnaert, M. and El Yaagoubi, E. (2001). A
geometric approach to fault detection and isolation for bi-
linear systems, IEEE Transactions on Automatic Control
46(9): 1451–1455.

Hamscher, W., Console, L. and Kleer, J.D. (1992). Readings
in Model-Based Diagnosis, Morgan Kaufmann Publishers,
San Mateo, CA.

Hartmanis, J. and Stearns, R. (1966). The Algebraic Structure
Theory of Sequential Machines, Prentice-Hall, New York,
NY.

Hillston, J. (1996). A Compositional Approach to Performance
Modelling, Cambridge University Press, Cambridge.

Isermann, R. (1984). Process fault-detection based on mod-
elling and estimation methods—A survey, Automatica
20(4): 387–404.

Isermann, R. (2005). Model-based filt detection and analysis—
Status and application, Annual Reviews in Control
29(1): 71–85.

Isermann, R. and Freyermuth, B. (1991). Process fault diag-
nosis based on process model knowledge, Part 1: Princi-
ples for fault diagnosis with parameter estimation, Trans-
actions of the American Society of Mechanical Engineers
113(4): 620–626.

Isidori, A. (1995). Nonlinear Control Systems, 3rd Edn.,
Springer-Verlag, Berlin.

Jiang, B., Staroswiecki, M. and Cocquempot, V. (2004). Fault di-
agnosis based on adaptive observer for a class of nonlinear
systems with unknown parameters, International Journal
of Control 77(4): 415–426.

Jiang, B., Staroswiecki, M. and Cocquempot, V. (2006). Fault
accommodation for nonlinear dynamic systems, IEEE
Transactions on Automatic Control 51(9): 1578–1583.

Kinnaert, M. (1999). Robust fault detection based on observers
for bilinear systems, Automatica 35(11): 1829–1842.

Lafortune, S., Teneketzis, D., Sengupta, R., Sampath, M. and
Sinnamohideen, K. (2001). Failure diagnosis of dynamic
systems: An approach based on discrete event systems,
Proceedings of the American Control Conference, Arling-
ton, VA, USA, pp. 2058–2071.

Lefebvre, D. (1999). Failure detection and isolation for man-
ufacturing systems, Revue internationale d’ingenierie des
systemes de production mecanique 2: V.33–V.44.

Leuschen, M., Walker, I. and Cavallaro, J. (2005). Fault
residual generation via nonlinear analytical redundancy,
IEEE Transactions on Control Systems Technology 13(3):
452–458.

Lin, F. (1994). Diagnosability of discrete event systems and
its applications, Discrete Event Dynamic Systems 4(2):
197–212, DOI: 10.1007/BF01441211.

Lootsma, T. (2001). Observer-based Fault Detection and Isola-
tion for Nonlinear Systems, Ph.D. thesis, Aalborg Univer-
sity, Aalborg.

Maquin, D., Cocquempot, V., Cassar, J., Staroswiecki, M. and
Ragot, J. (1997). Generation of analytical redundancy re-
lations for FDI purposes, IEEE International Symposium
on Diagnostics for Electrical Machines, Power Electron-
ics and Drives, SDEMPED’97, Carry-le Rouet, France,
pp. 270–276.

Maquin, D., Luong, M. and Ragot, J. (1997). Fault detection and
isolation and sensor network design, Journal européen des
systèmes automatisés 31(2): 393–406.

Patton, R. (1994). Robust model-based fault diagnosis: The
state of the art, Proceedings of the 2nd IFAC Symposium
on Fault Detection Supervision and Safety for Technical
Processes, SAFEPROCESS’94, Espoo, Finland, Vol. 1,
pp. 1–24.

Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K.
and Teneketzis, D. (1995). Diagnosability of discrete-
event systems, IEEE Transactions on Automatic Control
40(9): 1555–1575.

Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen,
K. and Teneketzis, D. (1996). Failure diagnosis using
discrete-event models, IEEE Transactions on Control Sys-
tems Technology 4(2): 105–124.

Shumsky, A. (1991). Fault isolation in nonlinear dynamic
systems by functional diagnosis, Automation and Remote
Control 12: 148–155.

Shumsky, A. (2007). Redundancy relations for fault diagnosis in
nonlinear uncertain systems, International Journal of Ap-
plied Mathematics and Computer Science 17(4): 477–489,
DOI: 10.2478/v10006-007-0040-1.

Shumsky, A. and Zhirabok, A. (2006). Nonlinear diagnostic
filter design: Algebraic and geometric points of view, In-
ternational Journal of Applied Mathematics and Computer
Science 16(1): 115–127.

Staroswiecki, M. and Comtet-Varga, G. (2001). Analytical re-
dundancy relations for fault detection and isolation in al-
gebraic dynamic systems, Automatica 37(5): 687–699.

Vereshchagin, N. and Shen, A. (2002). Basic Set Theory, Student
Mathematical Library, Vol 17, American Mathematical So-
ciety, Providence, RI.

Zad, H., Kwong, R. and Wonham, W. (2003). Fault diagno-
sis in discrete-event systems: Framework and model re-
duction, IEEE Transactions on Automatic Control 48(7):
1199–1212.



Algebraic approach for model decomposition: Application to fault detection and isolation. . . 123

Zad, S.H. (1999). Fault Diagnosis in Discrete-event and Hybrid
Systems, Ph.D. thesis, University of Toronto, Toronto.

Zhirabok, A. (2006). Nonlinear dynamic systems: Their canon-
ical decomposition based on invariant functions, Automa-
tion and Remote Control 67(4): 517–528.

Zhirabok, A. and Shumsky, A. (1993). A new mathemati-
cal techniques for nonlinear systems research, Proceed-
ings of the 12th IFAC World Congress, Sydney, Australia,
pp. 485–488.

Denis Berdjag was born in Donetsk (Ukraine)
in 1976. He obtained the engineering degree
from the University of Sétif (Algeria) in 1999,
the Master’s degree and the Ph.D. degree in au-
tomatic control, respectively, in 2003 and 2007
from the University of Science and Technology
of Lille (France). He is currently an associate
professor of automatic control at Valenciennes
University (France) in the LAMIH (Laboratoire
d’Automatique, de Mécanique et d’Informatique

industrielles et Humaines) research group. His research addresses fault
detection, isolation and diagnosis of systems (nonlinear, hybrid or hu-
man machine systems).

Vincent Cocquempot received the Ph.D. de-
gree in automatic control from the Lille Univer-
sity of Sciences and Technologies in 1993. He
is currently a full professor of automatic control
and computer science at Institut Universitaire de
Technologies de Lille, France. He is a researcher
in LAGIS-CNRS FRE3303: Automatic Control,
Computer Science and Signal Processing Labo-
ratory of Lille 1 University and the head of the
team on fault tolerant systems of this laboratory.

His research interests include robust on-line fault detection and isolation
for uncertain dynamical nonlinear systems and fault tolerant control for
hybrid dynamical systems.

Cyrille Christophe received the Ph.D. degree
in automatic control from the Lille University of
Sciences and Technologies in 2001. He is cur-
rently an associate professor of automatic control
and computer science at Institut Universitaire de
Technologie de Lille, France. He is a researcher
in LAGIS-CNRS FRE3303: Automatic Control,
Computer Science and Signal Processing Labo-
ratory of Lille. His main research interest is fault
detection and isolation of uncertain dynamical

nonlinear and hybrid systems.

Alexey Shumsky is a professor at Pacific State
Economic University and a chief researcher at the
Institute of Marine Technologies Problems, Rus-
sian Academy of Sciences (both in Vladivostok).
He received his Candidate of Sciences (Ph.D.)
degree in radiolocation and radionavigation from
Leningrad (St. Petersburg) Electrotechnical In-
stitute in 1985 and the D.Sc. degree in automatic
control from the Institute of Control Problems,
Russian Academy of Sciences (Moscow), in

1996. He serves as an associate editor for the International Journal
of Applied Mathematics and Computer Science. His research interests

include nonlinear control theory with application to fault diagnosis and
fault tolerant control.

Alexey Zhirabok is a professor at the Far East-
ern State Technical University (FESTU), Vladi-
vostok. He received the Candidate of Science
(Ph.D.) degree in electrical engineering from
Leningrad (currently St. Petersburg) Electrotech-
nical Institute in 1978 and the D.Sc. degree in
control engineering from the Russian Academy
of Sciences, Vladivostok, in 1996. He is cur-
rently the head of the Department of Radio De-
sign and Technology of the FESTU and the main

scientific secretary of the Far Eastern Branch of the Russian Academy of
Engineering. His current research interests are nonlinear system theory
and fault detection and isolation in nonlinear systems. He has authored
about 180 scientific publications (five books, seven booklets).

Appendix

In the following, S, I denotes sets, s, t are elements of S
and πi, i ∈ N are partitions of S. The set of all partitions
of the set S is denoted by ΠS . Furthermore, δ is a function
defined by δ : S × I −→ S and Δδ is a pair algebra.

Partitions. A partition π of a set S is a collection of
complementary disjoint subsets of S. Elements of π are
called blocks.

Example 1. Consider the set S = {1, 2, 3, 4}, and the
partitions π1, π2 and π3 on the set S such that

π1 = {{1, 2}, {3}, {4}}, π2 = {{1}, {2}, {3, 4}},
π3 = {{1, 2}, {3, 4}}.

The blocks of these partitions are

π1 :Bπ1
1 = {1, 2}, Bπ1

2 = {1, 2},
Bπ1

3 = {3}, Bπ1
4 = {4},

π2 :Bπ2
1 = {1}, Bπ2

2 = {2},
Bπ2

3 = {3, 4}, Bπ2
4 = {3, 4},

π3 :Bπ3
1 = {1, 2}, Bπ3

2 = {1, 2},
Bπ3

3 = {3, 4}, Bπ3
4 = {3, 4}.

Partition multiplication. Multiplication of partitions
denoted with π1 · π2 is defined by the following relation:

s ≡ t(π1 · π2) ⇐⇒ s ≡ t(π1) ∧ s ≡ t(π2).

Blocks of π1 · π2 are determined using

Bπ1·π2
s = Bπ2

s ∩ Bπ2
s .
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Example 2. Consider the set S = {0, 1, 2, 3, 4, 5, 6} and
the partitions

π1 = {{0, 1, 2}, {3}, {4, 5}, {6}},
π2 = {{0}, {1, 2, 3}, {4}, {5}, {6}}.

The partition (π1 · π2) is given by

π1 · π2 = {{0}, {1, 2}, {3}, {4}, {5}, {6}}.

Partition addition. The addition of two partitions π1

and π2 is defined by

s ≡ t(π1 + π2) ⇔∃s0 = s, s1, . . . , sn−1, sn = t :
si ≡ si+1(π1) ∨ si ≡ si+1(π2)
0 ≤ i ≤ n − 1.

The blocks of π1 + π2 are determined as follows:
all the blocks of the two partitions containing the same
element are combined, i.e.,

Bπ1+π2
s (1) = Bπ1

s ∪ Bπ2
s ,

and for all i > 1,

Bπ1+π2
s (i + 1) =Bπ1+π2

s (i) ∪ {B|(B ∈ π1 ∨ B ∈ π2)

∧ B ∩ Bπ1+π2
s (i) �= ∅.}

Example 3. Considering S, π1, π2 of Example 2,

π1 + π2 = {{0, 1, 2, 3}, {4, 5}, {6}}.

Partial ordering relation. Consider the relation ≤ on
the set of all possible partitions on S denoted by ΠS such
that

π1 ≤ π2 ⇔
{

π1 · π2 = π1,

π1 + π2 = π2.

It can be shown (see Hartmanis and Stearns, 1966)
that ≤ is a partial ordering on the set ΠS . Also, the parti-
tions

I ={{S}}, O = {{s}|∀s ∈ S}
are respectively the largest and the smallest partitions
from ΠS , i.e.,

∀π ∈ ΠS : π ≤ I ∧ O ≤ π.

Example 4. Consider the set S and the partitions
π1, π2, π3 from Example 1. The following relations are
true:

I = {{1, 2, 3, 4}}, O = {{1}, {2}, {3}, {4}},
π1 ≤ π3 , π2 ≤ π3 , π1 � π2 , π2 � π1,

π1 ≤ I , π2 ≤ I , π3 ≤ I , O ≤ π1 ,

O ≤ π2 , O ≤ π3.

Substitution property and pair algebra. Let π be a
partition on S. The partition π is said to have the substi-
tution property with respect to the function δ if and only
if

s ≡ t(π) ⇒ δ(s, i) ≡ δ(t, i)(π)∀i ∈ I.

A partition pair of two partitions π1 and π2 , (π1, π2)
is defined by

s ≡ t(π1) ⇒ δ(s, i) ≡ δ(t, i)(π2)∀i ∈ I.

Example 5. Consider two sets S = {1, 2, 3, 4, 5, 6} and
I = {a, b}. Let δ be a function described by Table 3.

Table 3. Transition tables of functions δ and δ′.

δ a b

1 5 3
2 1 5
3 4 6
4 6 2
5 3 4
6 2 1

δ′ a b

1’={1,3,6} 2’ 1’
2’={2,4,5} 1’ 2’

The partition π1 = {{1, 3, 6}, {2, 4, 5}} has the sub-
stitution property with respect to δ. The image of δ by π
is the function δπ described by Table 3. Notice that π1 is
not unique, for example, π2 = {{1, 4}, {2, 3}, {5, 6}}has
also the substitution property with respect to δ.

Since π1and π2 have the substitution
property, we deduce that (π1, π1) ∈ Δδ ,
(π2, π2) ∈ Δδ are partition pairs. Also, the
partitions π3 = {{1, 2}, {3}, {4}, {5}, {6}} and
π4 = {{1, 3, 5}, {2}, {4}, {6}} form a partition pair with
respect to δ, i.e., (π3, π4) ∈ Δδ .

Example 6. Examples of computations of operators m
and M are given below. The computation method can be
found in the work of Hartmanis and Stearns (1966).

Consider the sets S, I and the function δ from Exam-
ple 5.

m({{1, 6}, {2}, {3}, {4}, {5}})
= {{1, 3}, {2, 5}, {4}, {6}},

m({{1, 4}, {2}, {3}, {5}, {6}})
= {{1}, {2, 3}, {4}, {5, 6}},

m({{1, 4, 6}, {2}, {3}, {5}})
= {{1, 2, 3, 5, 6}, {4}},

M({{1, 6}, {2}, {3}, {4}, {5}})
= O{{1}, {2}, {3}, {4}, {5}, {6}},
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M({{1, 4}, {2}, {3}, {5, 6}})
= {{1, 4}, {2, 3}, {5, 6}},

M({{1, 4, 6}, {2, 3, 5}})
= {{1}, {2, 4}, {3}, {5, 6}}.
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