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Abstract—One of the widely used communication patterns in
WSN is routing convergecast traffic to one or more sinks. In
order to collect data at a sink, most existing systems use a tree
rooted at the sink as underlying structure. We consider in this
paper the Shortest Path routing Tree problem in WSN under
different metrics; we show that the basic approach commonly
used in the literature is unsuitable for the many-to-one WSN
when considering some metrics. Indeed, existing SPT approaches
aim to construct a tree rooted at the sink such that the cost of
the path from any node to the sink is minimal, while the cost of
a given path is computed as summation of the costs of links that
compose this path. However, in many-to-one WSN, links which
are close to the sink are more solicited to route packets towards
the sink and, hence, they are more critical than other links.
Therefore, links in the tree should not have the same weight. We
propose in this paper a new weighted path cost function, and we
show that our cost function is more suitable for WSN. Based on
this cost function, we propose a new efficient shortest path tree
construction which does not introduce any new communication
overhead compared to basic SPT schemes. We consider, then, the
particular case of energy-aware routing in WSN when we apply
our new solution in order to construct more suitable energy-
aware SPT. We conduct extensive simulations which show that
our approach allows to enhance the network lifetime up to 20%
compared to the basic one.

Index Terms—Wireless Sensor Networks (WSN), Shortest Path
Tree (SPT), weighted path cost function, energy-aware routing.

I. INTRODUCTION

A wireless sensor network (WSN) is composed of a set

of tiny autonomous nodes with sensing, computation, and

wireless communication capabilities [1]. The main purpose

of such networks is to collect information from a supervised

environment or a target object and then send it to a base

station usually called the sink. The sink is supposed to be

a particular node with plentiful resources. Routing trees are

typical structures widely used in WSN to deliver data to the

sink, most of existing approaches propose to construct and

maintain a tree rooted at the sink in order to gather all collected

data at the sink, while minimizing a given cost.

The Shortest Path Tree (SPT) approach is one of the most

commonly used methods to construct routing trees in the

many-to-one networks and particularly in WSN [2]. The goal

of SPT algorithms is to construct a tree rooted at the sink

such that the path cost from any node to the sink is minimal.

In existing construction algorithms, the cost of a path is

computed as summation of the cost of links that compose

the path while the link cost is computed depending on the

routing strategy: for instance, when data is routed on minimum

hop paths leading to the sink, the link cost is set to be one

and the cost of a path gives the hop count to the sink. In

energy-aware solutions, the used metric can be the energy

dissipation through the link [3][4], the remaining energy level

[5] or a combined metric [6][7]. Congestion-aware strategies

[5] consider the message queue length as metric while the

number of neighbors is the main metric in connectivity-aware

strategies. Some existing solutions [8] [9] use the quality of

link as metric to compute costs, this allows to reduce the

average number of retransmissions. Other metrics have been

used in the literature such us the latency in time-dependent

strategies [10], physical distance and different QoS metrics.

In all SPT based solutions, the cost of a given path is

computed as a uniform summation of the costs of links

that compose the path; all links within a path are given the

same weight. We show in this work that the basic path cost

computation is unsuitable for the many-to-one WSN. Indeed,

links which are closer to the sink are more critical than the

other links. For example, in energy-aware strategies, first level

nodes are more solicited by the routing process and are usually

the first nodes which fail due to the energy exhaustion. The

residual energy of the first level nodes is then more important

than the energy amount of the second level ones and so on.

Similarly, in congestion-aware strategies, the links which are

close to sink are more solicited to route packets towards the

sink and hence they are more critical than the other links.

In this paper, we propose a new weighted global cost

function more suitable for many-to-one WSN. We assign

efficiently decreasing weights to link costs depending on their

levels in a given path. We propose, then, an efficient distributed

algorithm to construct the shortest path tree through computing

minimum cost values based on the defined path cost function.

We apply finally our approach to energy-aware routing context

and we explain how our approach allows to enhance of the

network lifetime. We conduct extensive simulations and we

present and discuss the results.

The contributions of our work can be summarized in the

following points:

• We show that the basic SPT approach is unsuitable for

the many-to-one WSN when using some metrics.

• We define a new weighted path cost function, we assign



to link costs decreasing weights depending on their levels

in the path.

• We propose an efficient weighted Shortest Path Tree

construction based on the defined path cost. Our construc-

tion does not introduce any new extra-communication

overheads and have the same complexity as the basic

one.

• We apply our approach to the energy-aware routing

context where we show that it allows to enhance the

network lifetime.

To the best of our knowledge, this work is the first to

define a path cost function based on the summation of de-

creasing multiplicative factor which takes into consideration

the concentric convergecast nature of WSN communications.

Moreover, we design our cost function is such a way that the

computation and the maintaining of the minimum cost values

and so the weighted SPT can be done without any extra-

communication overheads or significant computation over-

heads. Without loss of generality, we focus in this paper on

WSN. Although, the solution that we propose can also be used

in conventional networks and, in particular, many-to-one ad-

hoc wireless networks.

The remainder of the paper is organized as follows. In

section 2 we give an overview of the basic SPT, we focus

on the tree construction and the update strategies. In section

3, we present the main related works using the SPT approach

and we explain why this approach is unsuitable for the many-

to-one WSN. In section 4, we present our new cost function

and the weighted shortest path tree construction; we show the

proposed solution is more suitable for WSN. In section 5, we

apply our new approach to the energy-aware routing in WSN;

we show through simulations that our solution enhances the

network lifetime up to 20% thanks to the weighted path cost

function. We outline, finally, some conclusions in section 6.

II. BACKGROUND: BASIC SHORTEST PATH TREE

APPROACH

In this section, we present the basic SPT approach widely

used in the literature; we explain the tree construction as well

as the different approaches used to maintain the constructed

tree. Before that, let us present the network model that we use

in the following sections.

A. Network model

Let (v1, v2, ...vn) be the sensor nodes and let s = v0 be

the sink. We assume that all nodes including the sink have the

same transmission range denoted by r. We model the WSN as

an graph G = (V,E) where V and E represent respectively

the node set and the link set. If a node vj is within the

transmission range of a node vi ( di,j = dist(vi, vj) ≤ r) then

the edge ei,j = (vi, vj) ∈ E. We denote the neighborhood of

a node vi by N(vi) :

N(vi) = {u ∈ V − {vi}|dist(u, vi) ≤ r}.

To each directed edge ei,j , we assign a cost Ci,j which is

computed depending on a given metric. We denote by Dvi
,

the minimum cost to reach the sink from the node vi which

Fig. 1. Shortest Path Tree illustration

is the cost of the shortest path from the node vi to the sink.

It is important to note that the cost of a path P denoted by

Cost(P ) is computed as the summation of costs of links that

compose P .

B. Basic Shortest Path Tree Construction

The aim in traditional shortest path tree approaches is to

construct a tree rooted at the sink in such a way that the cost

of the path to the sink is optimal for each node vi in the

tree. The cost of a path is computed as the summation of

the link costs. For example, in figure 1, the cost of the path

P1 = (v5, v3, v1, v0) is given by :

Cost(P1) = C1,0 + C3,1 + C5,3

In the general case, let P = (vin , vin−1
, , vi1 , vi0 = v0) be

a path between node vin and the sink v0, the corresponding

cost of a P is:

Cost(P ) =

n
∑

k=1

Cik,ik−1

Many algorithms were proposed in the literature to compute

the SPT. Most of them are based on distributed versions

of Dijkstra’s algorithm or Bellman-Ford algorithm [11]. We

focus in this paper on the Bellman-Ford based algorithms

knowing that our solution can be easily adapted to other

algorithms. The Bellman-Ford algorithm generates the SPT

by the iteration:

Dh+1
vi

= min
u∈V

[Cu,vi
+Dh

u], starting from conditions:

Dh
s = 0 for all h , D0

vi
= ∞ for all i 6= 0

Where Dh
vi

is the Dvi
value at the iteration h. The algorithm

of Bellman-Ford terminates after at most (h ≤ n) iterations.

The Bellman equation, obtained by the termination of the

Bellman-Ford algorithm, is given by:

Ds = 0
Dvi

= min
u∈V

[Cu,vi
+Du]

This equation allows to construct the SPT. Indeed, the last

node which allows to enhance the cost value is the parent

in the shortest path tree. Bertsekas and Gallager, gives in

[11], a distributed asynchronous version of the Bellman-Ford

algorithm. They show that we can settle for the neighborhood

of a node vi given by the transmission range for example.

The new distributed version was given by the iteration:



Dh+1
vi

= min
u∈N(vi)

[Cu,vi
+Dh

u], starting from conditions:

Dh
s = 0 for all h, D0

vi
= ∞ for all i 6= 0

Where N(vi) is the neighborhood of the node vi. Bertsekas

and Gallagher [11] proved that convergence occurs even if

different nodes are slow to propagate or calculate their Dvi

and/or Ci,j .

C. Shortest Path Tree Update

In WSN, the link costs are usually not static and may

change. For example, in energy-aware context, the remaining

energy of nodes decreases continuously. In addition, the phys-

ical topology may change because of node mobility or failure

and/or new node deployment. Similarly, in the congestion-

aware, the link congestion costs change constantly. In order

to maintain the optimal SPT structure, we identify two ap-

proaches in literature:

1) The periodic tree re-construction: In this approach,

the sink initiates the setup phase periodically in order to

reconstruct a new tree structure. The choice of the period may

impact the network performance. Indeed, if the period is too

small, then the network may be congested. If the period is too

large, then the constructed structure may not be up-to-date for

a long time.

2) The adaptive update: In adaptive approaches, the con-

structed tree is automatically updated during the routing pro-

cess and no maintenance phase is required. Usually, these

solutions propose to add a field containing the minimum cost

value to the data packets. Thanks to this field, each node

may update its parent and its minimum cost when hearing

its neighbor packets. The adaptive update strategies do not

guarantee the SPT at any given time; however, it ensures an

approximated SPT. If link costs become stable the structure

converges to the SPT. These strategies are more suitable for

highly dynamic WSN because the periodic tree re-construction

may be costly.

III. RELATED WORKS

Routing in wireless sensor networks has been extensively

investigated the last decade, a lot of solutions were proposed

in this field. We focus in what follows on shortest path based

routing strategies, comprehensive surveys on routing for WSN

can be found in [12] [13] and [14].

Many research works have used explicitly or implicitly the

SPT construction in WSN. Depending on the routing strategy,

these works propose an adequate link cost definition. In the

basic approaches, the aim was to minimize the hop count

towards the sink [15][16]. The link cost is set to be one and the

path cost, which is computed as the summation of link costs,

gives the hop count from the source node to the sink. Since the

energy consumption and the end-to-end delay are correlated

to the path length, the use of shortest paths in terms of hop

count reduces the energy dissipation and the end-to-end delay.

In energy-aware solutions, many metrics were used in the

literature. When the energy dissipation through the link is used

as metric [3][4], the total consumed energy to reach the sink is

TABLE I
SUMMARIZE OF USED METRICS IN TREE BASED ROUTING PROTOCOLS

Metric Main objectives

minimize the length of used paths
hop count reduce the energy consumption

reduce the end-to-end delay

energy dissipation minimize the global energy consumption

remaining energy enhance the first node failure time

link quality reduce the retransmission number

latency minimize the end-to-end delay

number of neighbors enhance the network connectivity

message queue length reduce the congestion

minimized. This approach is called Short Path-power routing

[6] or Minimum Total Energy (MTE) routing [7].

In [6], authors present a SP-power routing algorithm based

on the energy dissipation through the link as metric, they

propose also a SP-cost routing where the cost function was

proportional to the inverse of the remaining battery power.

They present finally a SP-power-cost routing, in order to

optimize a combination of the energy dissipation and the

remaining energy level. Route constructions were based on the

Dijkstra algorithm. When using the SP-power routingstrategy

in static WSN, all the traffic is routed on the same minimum

energy paths even the tree update is periodic or adaptive, nodes

of theses paths exhaust quickly their energy. However, when

we base on the remaining energy as metric, the paths to the

sink may change and the time to the first node failure is

enhanced.

Authors in [7] proposed a link metric which combines the

transmission energy amount, the reception energy amount, the

initial energy level and the remaining energy level of both the

source node and the destination one. Authors proposed to use

the distributed Bellman-Ford algorithm in order to construct

the SPT based on the defined metric. In [17], authors propose

an energy dissipation prediction model to compute the link

metrics. They propose to use the principle of Prim and Dijkstra

to build the SPT to prolong network lifetime while using

clustering.

In [5], authors propose an adaptive routing tree protocol for

WSN where the setup phase is based on the shortest path tree

construction with a learning-based adaptive update. Authors

propose two strategies: the energy-aware one where they use

the remaining energy level of the source node to compute

the link cost and the congestion aware strategy where they

compute the link costs depending on the current transmission

queue length of the source node.

Authors in [18] proposed to use the outward and inward link

quality as metric. Based on this metric, a distributed algorithm

is used to construct a SPT. Liang et al. [19] use as metric

the expected transmission count (ETX) which is estimated

based on link quality indicators. Link quality metrics were

also used to construct routing trees in [8], [9] and [20]. Other

cost metrics were used in the literature such as the latency

in time-dependent strategies [10], the number of neighbors

in connectivity-aware strategies, the physical distance and

different QoS parameters.



Discussion:

We summarize in table I the main metrics used in the

literature to construct routing trees. We notice that research

works to date has tended to focus on the link metrics in the

aim to enhance some network performances. However, a little

attention has been paid to the path cost computation. Indeed,

as shown above, all the surveyed solutions using shortest path

constructions compute the cost of a given path as a uniform

summation of costs of all links that it contains; all links in a

path are given the same weight. In fact, this basic approach is

unsuitable for routing convergecast traffic in the many-to-one

WSN when considering some metrics. Indeed, links which are

closer to the sink are more critical than the others.

By the way of illustration, let us consider the remaining

energy of the source node as metric to compute the link

costs, it is obvious that the remaining energy of the first level

nodes is more important than the other node’s energy level

because the sink neighbors are more solicited by the routing

process, so they exhaust their energy much sooner than the

other nodes. In figure 1, let us assume that the node v7 have

to choose between the two paths P1 = (v7, v5, v3, v1, v0),
P2 = (v7, v6, v4, v2, v0), in such a way to minimize the global

cost to the sink. If we suppose that the cost of a path is a

uniform summation of the path link costs, the node v7 may

select the path node P1 because the energy level of the nodes

v7 and v3 is very high. However, the energy level of the

node v1 may be very low. Based on a uniform cost function,

many nodes may choose paths containing the node v1 and

the latter exhausts its energy much sooner than the other sink

neighbors. In the same way, we can show that basic SPT

approach is unsuitable for congestion-aware routing in WSN

and for some QoS-aware strategies. Indeed, with a uniform

random deployment, the number of nodes at the first level is

lower than the number of nodes at the second level and so

on, the first level links are more solicited than other links and

their congestion is more probable than other links.

In contrast to the basic approaches, we propose in this

paper a new weighted global cost function more suitable

for many-to-one WSN. In the next section, we explain

the new weighted path cost function and we propose a

distributed algorithm which allows to construct efficiently the

corresponding weighted SPT.

IV. OUR SOLUTION: A NEW WEIGHTED SHORTEST PATH

TREE CONSTRUCTION

In contrast to the basic SPT construction approach, we aim

in our solution to privilege links which are closer to the sink

since they are more critical. In order to achieve this aim, we

design a new weighted global cost function which considers

the costs of the first level links more than the second level

ones, the costs of the second level links more than the third

level ones and so on. Our design was driven by the following

goals:

• Weighting the global cost function: In order to privilege

the costs of links which are closer to the sink, links may

be assigned decreasing weights depending on their level

in a given path.

• Simplicity: Because of the resource constrained environ-

ment of WSN, the computation of the cost values and

the construction of the new SPT may be done efficiently

without new extra control message or significant compu-

tational overheads.

• Scalability: The proposed solution may be scalable and

efficient for large scale WSN where the number of nodes

is high.

• Generic solution: The proposed solution may be ap-

plicable to different routing strategies including energy-

aware, congestion-aware, connectivity-aware and QoS

aware routing strategies.

A. A new weighted global cost function

In order to privilege the costs of links depending on their

levels in a path, we define the new path cost as a weighted

summation of costs of all links that the path contains. Let us

P = (vin , vin−1
, , vi1 , vi0 = s) be a path which consists of

n links. We define the new cost of P , that we denote in the

following by α-Cost, as follows :

α-Cost(P ) =

k=n
∑

k=1

αn−kCik,ik−1

Where α is a parameter of our protocol (α ≥ 1), raised to

the corresponding power, it determines the weight attributed

to the link cost in order to compute a path cost. As we will

show, we chose decreasing power of a parameter α to simplify

the computation and the update of the minimum cost values.

We discuss later in this paper the choice of the parameter

α depending on the routing strategies. Using this new cost

function, the cost of the path P1 = (v7, v5, v3, v1, v0 = s)
given in figure 1, becomes:

α-Cost(P1) = α3C1,0 + α2C3,1 + αC5,3 + C7,5

While the cost of the path P2 = (v7, v6, v6, v2, v0 = s)
becomes:

α-Cost(P2) = α3C2,0 + α2C4,2 + αC6,4 + C7,6

If we consider the energy-aware context where link costs

depend on the remaining energy of nodes, the choice of the

shortest path to the sink by the node v7 using our path cost

function is more suitable than the basic approach. Indeed,

when computing the cost of P1, the remaining energy level

of v1 is implicitly considered more than the remaining energy

level of node v3, more than the remaining energy level of

node v5 and so on. Similarly, when computing the cost of

P2, the remaining energy level of v2 is considered more than

the energy level of v4 and so on. This cost function is then

more suitable for many-to-one WSN when using the energy-

aware strategy since the criticality of links within a given path

depends on their levels. The same cost function is also suitable

when using congestion-aware strategies in WSN where the

message queue length is used as link cost metric. The sink

neighbors are more solicited by the routing process than the



Fig. 2. Illustration of the weighted cost path computation

second level nodes and so on. So, the criticality of links within

a path depends also on their levels.

In what follows, we give a distributed algorithm to compute

the new shortest path tree depending on the defined cost

function. In addition to the network model presented in section

2, we define Wvi
as the minimum α-Cost to reach the sink

from a given node vi. We define also the α-shortest path tree

as the tree rooted at the sink in which the α-Cost of the path

to the sink is optimal for each node vi.

B. An Efficient α-Shortest Path Tree Construction

Most of existing distributed algorithms computing shortest

path routing trees can be adapted in order to compute the

novel α-shortest path tree relying on the new proposed cost

function. Indeed, the α-Cost of a n + 1 hop path ending at

the sink is computed as the last link cost plus α multiplied

by the n hop sub-path (see figure 2).

Similarly to the distributed asynchronous Bellman-Ford

algorithm, the construction of the α-SPT can be given by the

iteration:

Wh+1
vi

= min
u∈N(vi)

[Cu,vi
+ α×Wh

u ]

Starting from conditions:

Wh
s = 0 for all h, W 0

vi
= ∞ for all i 6= 0.

Where N(vi) is the neighborhood of the node vi. Similarly

to proofs given in [11], we can prove that this algorithm

converges to the α-shortest path tree even if different nodes

are slow to propagate or calculate their Wvi
, and/or Ci,j .

We give in algorithm (1) a distributed construction of the α-

SPT. The sink initiates the construction by sending a broadcast

message with its null cost. When a node receives the setup

message, it computes the α-cost to the sink if it selects the

sender as parent, for that, it multiply the received cost by α

and add the link cost. If the computed value is lower than

the local minimum cost, the node updates its cost, selects the

sender node as temporary parent and re-broadcasts the setup

message with the new local cost.

We notice that our construction has the same complexity

as the basic shortest path tree construction without any

extra-communication overheads. In addition, the additional

computation overhead is insignificant. Our solution can be

used with periodic update as well as the adaptive approaches.

Input: Network topology G

Output: α-Shortest Path routing Tree

Initialization:

Ws = 0, par(s) = s

Wvi
= ∞ , par(vi) = Null for i = 1, ..., N

Sink s : Broadcast 〈s,Ws〉
Upon receiving 〈vj ,Wj〉 at vi

1 if (Wvi
> α×Wvj

+ Ci,j ) then

2 Wvi
= α×Wvj

+ Ci,j ;

3 par(vi) = vj ;

4 Broadcast 〈vi,Wi〉 ;
end

Algorithm 1: α-shortest path tree construction algorithm

All existing strategies described above can be adapted to

maintain the constructed α-SPT.

In the next section, we apply the α-shortest path tree to

the energy-aware routing and we show through simulations

that our approach allows to enhance the network lifetime

compared to the basic one.

V. APPLICATION TO THE ENERGY-AWARE CONTEXT

The routing in wireless sensor networks has been exten-

sively investigated [12] [14][13] in the literature so far, a

particular attention was paid to energy-aware routing. As

shown before, the shortest path tree construction based on the

remaining energy is one of the favorite approaches commonly

used to ensure energy-aware data routing in WSN. In this

section, we apply our solution to the energy-aware context

when we consider a cost function based on the residual energy

level of nodes. First, we model the energy consumption and

we define the network lifetime of any constructed routing tree.

Next, we compare our approach with different α values to the

basic shortest path tree one and we present and discuss the

simulation results.

A. Energy model and network lifetime definition

In what follows, we use the model defined in section 2.

In addition, we assume that each node vi has a battery with a

finite initial energy level Ei while the sink is supposed to have

unlimited energy amount. We rely on the well known model

proposed in [21] which was widely used in the literature. To

send one bit of data from node vi to node vj , the consumed

energy at the node vi is given by:

TXi,j = Eelec + Eamp × d2i,j
While the consumed energy, when receiving one bit of data

from any node at the node vi, is given by:

RXi = Eelec

Where Eelec is the energy consumed in the transceiver cir-

cuitry when transmitting or reciving, and Eamp is the energy

consumed at the transmit amplifier to achieve one meter.

Without loss of generality, we assume that we use a TDMA-

like MAC which allows to avoid collisions. On the other hand,

we focus on the power consumption during the transmission

and the reception and we neglect the energy consumption



during the idle mode.

We assume that each node generates periodically one data

packet of k bits, we denote a period time by round. We define

πi,j as the amount of data sent from node vi to node vj at

each round. For any given tree structure, we define:

• Childi : the direct children of node vi in the tree;

• pi the unique parent of the node vi in the tree.

We define the network lifetime as the time until the first

node runs out of energy. A detailed discussion of many

network lifetime definitions used in the literature can be found

in [22]. Using our model, the network lifetime of a given tree

is then defined as:

LifeT ime(Tree) = Max T

s.t. ∀vi ∈ V :

T ×RXi × (
∑

j∈Childi

πj,i) + T × TXi,pi × πi,pi ≤ Ei,

πi,pi =
∑

j∈Childi

πj,i + k (1)

The lifetime of each node is then:

Ti =

⌊

Ei

RXi × (
∑

j∈Childi
πj,i) + TXi,pi × πi,pi

⌋

(2)

The system 1 can then be written as follows:

LifeT ime(Tree) = Minvi∈V Ti

s.t. ∀vi ∈ V :

Ti =

⌊

Ei

RXi × (
∑

j∈Childi
πj,i) + TXi,pi × πi,pi

⌋

πi,pi =
∑

j∈Childi

πj,i + k (3)

We use this definition to compare the network lifetime of

our approach when (α > 1) to the network lifetime of the

basic SPT.

B. Simulation Results

Based on the presented energy model, we conducted ex-

tensive simulations using MATLAB in order to compare the

network lifetime depending on α values while considering

the impact of the network density, the network size and the

network topology. We recall that the case α = 1 represents

the basic SPT.

We suppose that each node has an initial energy randomly

selected between 5 joules and 20 joules. We summarize in

table II the other common simulation parameters.

To each link eij = (vi, vj), we assign the following cost:

Cij = e
Emax−Ei

β (4)

Where: Emax represents the maximum energy level and β

is used in order to obtain costs in a reasonable scale, its

value does not influent critically the constructed structure.

The defined link cost function allows, then, to obtain a value
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Fig. 3. Link cost depending on the remaining energy

TABLE II
SUMMARIZE OF THE COMMON SIMULATION PARAMETERS

Parameter Value

Eelec 50 njoules
Eamp 100 pjoules/m2

Transmission range (r) 50 meters
Generated data size per round (k) 16 bytes

Ei (min) 5 joules
Ei (max) 20 joules

increasing from 1 to e
Emax

β , when the energy level of the

source node decreases from Emax to 0. In simulations, we

chose β = Emax

3 in order to obtain link costs belonging to

the interval [1, e3]. We plot in figure 3 the link cost variation

when the remaining energy decreases from Emax = 20 joules

to 0 joules.

1) Impact of network density: In this first scenario, we

studied the impact of network density on the network lifetime

of the constructed α-shortest path tree. The deployment field

is supposed to be a circle with a radius R = 200 meters, the

sink node is set to be at the centre and all sensor nodes are

scattered in the field in a random way.

We plot in the figure 4, the network lifetime depending on
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Fig. 4. Netw. lifetime depending on the α values and the netw. density

the α value, when the number of nodes is between 100 and
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Fig. 5. Network lifetime depending on the α values

400. All the reported results are averaged over 750 runs. In

figure 5, we consider the particular cases when the number of

sensor nodes is respectively 100, 200 and 300.

Results show that higher is α better is the network lifetime,

we choose the optimal α value as the value after which the

network lifetime reaches the maximum value. As shown in

figure 5, the optimal value of α is 6,8 and 8 when the number

of nodes is 100, 200 and 300 respectively.

In figure 6, we plot the network lifetime depending on

the number of nodes (network density) when α=1 (basic

approach), 4 and 7 respectively. The figure shows that our

solution enhances the network lifetime up to 17% compared

to the basic approach. Indeed, in 99% of cases, the first

node which fails is a sink neighbor; our approach based on

the weighted path cost function allows to privilege the node

remaining energy depending on their hop proximity to the sink.

Thus, we choose paths having higher remaining energy at the

most critical nodes.

100 150 200 250 300 350 400
0.5

1

1.5

2
x 10

4

Number of nodes

N
e

tw
o

rk
 l
if
e

ti
m

e

 

 

Alpha =1 (basic approach)

Alpha = 4

Alpha = 7

Fig. 6. Netw. lifetime depending on the netw. density with different α values

2) Impact of network size: In this second scenario, the

network density is constant and set to be 20 nodes per

πr2 m × m. Hence, we varied the radius of the deployment

area R depending on the number of sensor nodes, the sink

node is always set to be at the centre. We study then the

impact of the network size on the network lifetime with

different α values. All the reported results are averaged over

750 runs.

In figure 7, we plot the network lifetime when the network
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Fig. 7. Netw. lifetime depending on the netw. size with different α values

size is between 100 and 400 nodes and when α is respectively

1, 3 and 5. The figure shows that the use of the weighted

shortest path tree allows to enhance network lifetime up to

15% compared to the basic approach. Otherwise, the obtained

results showed that the best network lifetime is reached when

α is between 5 and 6.

3) Impact of network topology: In the two first scenarios,

we used a uniform random distribution to model the node

deployment. In order to study the impact of the network

topology, we consider in this scenario another topology based

on the scale free distribution widely used to model many

kind of computer networks and social networks. The scale

free distribution was used to model cluster-based WSN where

particular nodes having more capabilities are used as routers

to relay and/or to perform data fusion or aggregations [23]. In

order to construct the scale-free graphs, we used the Albert and

Barabasi model [24] where the network grows incrementally.

The number of edges added at each step is set to be 4. We

varied the α values and we calculate the defined lifetime of

each constructed α-SPT. All the reported results are averaged

over 750 runs.
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values (scale free deployment)

We plot in figure 8 the network lifetime when the number

of nodes is between 100 and 400 and when α is respectively

1, 3 and 5. Compared to the basic SPT construction (α = 1)

the use of the weighted shortest path tree construction with

(α ≥ 5) allows to enhance network lifetime up to 20%. The

best network lifetime is reached when α is between 5 and 6.

We notice then that our approach (α-SPT) adapts automatically

to the new free scale topology and maintains the advantage

over the basic approach (SPT).

VI. CONCLUSION

We considered in this paper the shortest path routing tree

approach which is one of the most commonly used methods

to construct routing trees in the many-to-one networks and

particularly in WSN. We showed that the conventional con-

struction used in the literature is unsuitable for WSN because

of the concentric nature of communications. Indeed, existing

constructions aim to minimize the cost to reach the sink at each

node while path costs are computed as a uniform summation

of its link costs. However, in WSN, the criticality of links

depends on their hop proximity to the sink. We proposed a

new weighted path cost function in which we assign efficiently

decreasing weights to link costs depending on their levels in a

given path. Relying on this cost function, we proposed a new

weighted SPT construction which does not introduce extra-

communication overheads. Finally, we considered the energy-

aware routing when we applied our solution to construct more

appropriate routing tree. We conducted extensive simulations

which showed that our approach enhances the network lifetime

up to 20% compared to the basic one.
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