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Abstract

The new concept of multilevel network is introduced in order to em-

body some topological properties of complex systems with structures in the

mesoscale which are not completely captured by the classical models. This

new model, which generalizes the hyper-network and hyper-structure models,

fits perfectly with several real-life complex systems, including social and public

transportation networks. We present an analysis of the structural properties

of the multilevel network, including the clustering and the metric structures.

Some analytical relationships amongst the efficiency and clustering coefficient

of this new model and the corresponding parameters of the underlying net-

work are obtained. Finally some random models for multilevel networks are

given to illustrate how different multilevel structures can produce similar un-

derlying networks and therefore that the mesoscale structure should be taken

into account in many applications.

1 Introduction

During the last years the scientific community has shown that many relevant prop-
erties of communication systems, social networks and other biological and techno-
logical systems may be described in terms of complex network properties, including
structural and dynamical properties and the interplay between them (see, for ex-
ample, [1], [2], [5],[7], [8], [14] or [19] and the references therein). The emergence of
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these appealing results has forged the Complex Networks Analysis as an attractive
and multidisciplinary branch of research that includes topics of sociology (social
networks), biological sciences (including metabolic and protein networks, genetic
regulatory network and many others), neuro-sciences (neural interaction networks,
cortical networks) engineering (phone call networks, computers in telecommuni-
cation networks, Internet, the World Wide Web), theoretical physics and applied
mathematics.

The working objects of the Complex Networks Analysis are graphs (which are
called complex networks) which occasionally prove unable to capture the details
present in some real-life problems. One example of this situation can be found in
sociology. Social networks analysis is used in the social and behavioral sciences, as
well as in economics, marketing, and industrial engineering ([20]), but some questions
related to the structure of social networks have been not properly understood. From
the fact that a social network can be understood as a set of people or groups of people
with some pattern of contacts or interactions between them ([18],[20]) - think of the
Facebook network - it might seem that all the connections or social relationships
between the members of that network take place at the same level. But the real
situation is far from this. The real relationships amongst the members of a social
network take place (mostly) inside of different groups (levels) and therefore they
cannot be properly modeled if only the natural local-scale point of view used in
classic complex network models is taken into account. This phenomenon is related
to the fact that several real-life complex systems have a community structure [11]
that takes place in a scale that lies between the local and the global one and that
gives information about the structure-functionality relationship. The problem of
finding and analyzing the community structure of a complex network is one of the
hot spots of the complex network analysis, since these meso-scale structures reveal
valuable information about roles of groups of nodes [15].

The main goal of this paper is to present the concept of multilevel network as a
new model useful to analyze with detail complex systems that have some structures
in the mesoscale level. As we pointed out before, this kind of networks are present
in many real-life situations, not only in social networks, but also in communication
networks and all the other examples that exhibit a community structure. The in-
troduction of a sharp mathematical model that fits this new structures may prove
crucial to properly analyze the dynamics that take place in these complex systems
which are far from being completely understood. An example of these phenomena
is the dissemination of culture in social networks by using the Axelrod Model that
has been recently studied by using meso-scale networks [12]. Yet the study of other
meso-scaled complex networks and their dynamics is one of the scientific challenges
of the nowadays complex network analysis. There are other mathematical models
that consider non-local structures such as the hypergraphs (or hypernetworks) [4]
or the hyper-structures [9] but they are not able to combine the local scale with
the global and the mesoscale structures of the system. For example, if we want to
model how a rumor is spread within a social network, it is necessary to have in mind
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not only that different groups are linked only through some of their members but
also that two people who know the same person don’t have necessarily to know each
other, and, in fact, these two people may belong to different groups or levels. If we
try to model this situation with hyper-networks, then we will only be taking into
account the social groups and not the actual relationships between their members;
in contrast if we use the hyper-structure model, then we won’t possibly know to
which social group each contact between two nodes belongs.

After multilevel networks are defined, we present a structural analysis of these
objects in terms of the clustering coefficient and the metric structure which must
be properly defined in this setting. We will compare these parameters with the
corresponding ones for the underlying projection networks and we will present the
analytical relationships between them. Despite the fact that there are sharp connec-
tions between the structural properties of the multilevel network and the properties
of their projection and layer (or slice) networks, we will present some examples that
exhibit the deep differences between the classic complex network approach and this
new point of view.

Finally, in section 3, we will give several growing models to produce multilevel
random networks, inspired by the Barabási-Albert preferential attachment model of
complex networks [3]. These methods are inspired by the bipartite networks models
introduced by Ramasco et al. [17] and by M.Peltomäki and M.Alava [16], but in this
case we have to take into account the meso-scale nature of the multilevel structure.
The use of growing random models is natural since many of the examples in real
life that can be modeled by multilevel networks, such as social or transportation
networks, are dynamic models whose structure grows in time by addition of new
nodes, links and layers. By using these models we perform several random testings
that show that we can get very different multilevel networks (i.e. with very different
meso-scale structure) which still have similar local and global structures when con-
sidered as classic complex network. For example, we exhibit a multilevel network
that at the meso-scale is like an Erdős-Rényi random network, but it has a scale-free
structure if we consider it as a complex network. These random testings reinforce
the idea that in many cases we must take into account the meso-scale structure in
order to get deep understanding of the structure and dynamics of many complex
systems.

2 Multilevel Networks: A Structural Analysis

As we pointed out in the previous section, a sort of naive approach to complex
systems with structures in the mesoscale could suggest that hyper-networks and
hyper-structures fit perfectly to these real-life systems. The key-point that makes
these mathematical model not to be the best solution for systems with structures in
the mesoscale has to do with the fact that both hyper-networks and hyper-structures
are node-based models, while many real systems combine a node-based point of
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view with a link-based perspective. For example, if we have a look again at a
social network with structures in the mesoscale (such as several social groups within
its structure), when we consider a relationship between two members of one social
group(or several), we have to take into account not only the social groups that hold
the members, but also the social groups that hold the relationship itself, i.e., if, for
example, there is a relationship between two people that share the same working
group and the same sport group, we have to highlight if the relationship is due to
sharing the same group of work or it has sport nature. This fact is not particular
of social networks with structures in the mesoscale and a similar situation occurs,
for example, in public transportation systems, where a link between two stations
belonging to several transport lines can occur as a part of different lines.

In order to avoid this node-based nature of hyper-networks and hyper-structures,
we propose to introduce the following concept that combines the node-based with
the link-based perspective:

Definition 2.1 Let G = (X, E) be a network. A multilevel network is a triple
M = (X, E,S), where S = {S1, . . . , Sp} is a family of subgraphs Sq = (Xq, Eq) of G
such that

(i) X =

p
⋃

j=1

Xj ,

(ii) E =

p
⋃

j=1

Ej.

The network G is the projection network of M and each subgraph Sj ∈ S is
called a slice of the multilevel network M .

This mathematical model perfectly suits social systems (as well as other complex
systems) with structures in the mesoscale, since each social group can be understood
as a slice graph in a multilevel network; thus we are simultaneously taking into
account the nature of the links (i.e. relationships) and the nodes involved.

It is easy to check that this new mathematical object extends both the classic
complex network model and also the hyper-network model [4]. Let us point it out
very briefly. On the one hand, if G = (X, E) is a network, then it can be easily seen
as a multilevel network by considering M = (X, E,S), where S = {G}.

On the other hand if H = (X, H) is an hyper-network (i.e. X is a non-empty
set of nodes and H = {H1, . . . , Hp} is a family of non-empty subsets of X, each of
them called and hyper-link of H), then it can be seen as the multilevel set M =
(X, EH,SH), given by

SH = {KH1
, . . . , KHp

},

where KHj
= (Hj, Ej) is the complete network obtained by linking every pair of
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nodes of Hj and

EH =

p
⋃

r=1

Er.

By using similar arguments we can show that every hyper-structure [9] can be
understood as a particular multilevel network, by considering one slice network for
each hyper-link in the hyper-structure and each slice graph being a set of isolated
nodes.

Once we have introduced this new and novel mathematical object, we have to give
suitable structural parameters to analyze it. We can give natural extensions of many
of the usual tools of the complex networks’ analysis, such as the clustering coefficient,
an adjacency matrix/tensor, a natural network representation as a tripartite network
or a geodesic structure, among many others.

2.1 Clustering of multilevel networks

In this subsection we extend the graph clustering coefficient introduced by Watts and
Strogatz in [21] to multilevel networks and we establish some relationships between
the clustering coefficient of a multilevel network, the clustering coefficient of its slices
and the clustering coefficient of its projection network. Recall that given a network
G = (X, E) the clustering coefficient of a given node i is defined as

cG(i) =
number of links between the neighbors of i

largest possible number of links between the neighbors of i
.

We take a/0 to be 0 for every number a. Thus, if we think of three people i,j and k
with mutual relations between i and j as well as between i and k, the clustering
coefficient of i is supposed to represent the likeliness that j and k are also related.
The clustering coefficient of G is usually defined as the average of the clustering
coefficients of all nodes.

In order to give a definition of the clustering coefficient of a node in a multilevel
network M = (X, E,S), where S = {S1, . . . , Sp} and Sq = (Xq, Eq) for every
1 ≤ q ≤ p, we need to introduce some notation. For every node i ∈ X call N (i) the
set of all neighbors of the node i in the projection graph G. For every q = 1, . . . , p
we will denote Nq(i) = N (i) ∩ Xq and Gq(i) the subgraph of the slice Sq generated
by Nq(i), i.e. Gq(i) = (Nq(i), Eq(i)), where

Eq(i) =
{

{k, j} ∈ Eq| k, j ∈ Nq(i)
}

.

Similarly we will define G(i) as the subgraph of the projection network G generated
by N (i), i.e. G(i) = (N (i), E(i)), where

E(i) =
{

{k, j} ∈ E| k, j ∈ N (i)
}

.
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In addition the complete graph generated by Nq(i) will be denoted as usual by
KNq(i). Note that the largest possible number of links between the nodes of Nq(i) is
precisely the number of links in KNq(i), i.e.

|Eq(i)| ≤
|Nq(i)|(|Nq(i)| − 1)

2
,

where |Nq(i)| stands as above for the cardinality of Nq(i). With the previous nota-
tion we give the following

Definition 2.2 Let M = (X, E,S) be a multilevel network. The clustering coeffi-

cient of a given node i in M is defined as

CM(i) =

2

p
∑

q=1

|Eq(i)|

p
∑

q=1

|Nq(i)|(|Nq(i)| − 1)

.

The clustering coefficient of M is the average of all CM(i) over the set of nodes.

Notice that the clustering coefficient might have been defined differently. For
instance we might have considered the clustering coefficient of each Sq, say cq(i),
and then take the average over the set {Sq}

p
q=1. However we have opted for a

definition that embodies the following idea: it is possible for a given node i to have
two neighbors k, j with {i, k} ∈ Eq, {i, j} ∈ Eq′ with q 6= q′ and such that there
is a link {j, k} ∈ Eq′′ with q′′ 6= q, q′. This is a natural situation when we think of
social networks; indeed, one person i knows j from the aerobic class, i also knows k
from her reading club while j and k know each other from the supermarket. This
sort of situation produces more links in the subgraphs Gq(i) defined above than
those already present in the slice Sq. Taking the alternative definition based on the
clustering coefficients of the slices would not help to discriminate such situations;
in contrast the definition proposed does. The following example should clarify this
situation and justifies the restrictions of theorem 2.4.

Example 2.3 If we consider the multilevel network M = (X, E,S) where X =
{1, 2, 3, 4}, S = {S1, S2, S3} and G is as in the next figure, it is easy to check that
cG(i) = 1 for all i ∈ X but however cSq

(i) = 0 for all i ∈ X and q = 1, 2, 3.

As we have seen in the last example, the clustering coefficient of the projected
graph G and the clustering coefficient of each slice of M may be very different.
However we are interested in establishing relations between the clustering coefficient
of the multilevel network, CM(i), and the clustering coefficient in the projected
network, cG(i), if possible. That is the target of the next theorem:
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Figure 1: An example of the extreme difference between clustering coefficients

Theorem 2.4 Let M = (X, E,S) be a multilevel network and i ∈ X. If we consider
A(i) = {q ∈ {1, . . . , p} | |Nq(i)| < 2} and we denote θ(i) = |A(i)|, then

1

p − θ(i)
cG(i) ≤ CM(i) ≤ p cG(i)

(

1 + (p − 1)

(

4 +
θ(i)

p − θ(i)

))

. (2.1)

Furthermore, if M is homogeneous (i.e. Xq = X for every Sq = (Xq, Eq) ∈ S), then

1

p − θ(i)
cG(i) ≤ CM(i) ≤ cG(i). (2.2)

Proof:
Let us start with the left-hand inequality in (2.1). Using that Nq(i) ⊆ N (i) for
every 1 ≤ q ≤ p and E(i) = ∪p

q=1Eq(i), we get that

cG(i) =
2|E(i)|

|N (i)|(|N (i)| − 1)
=

∑p
q=1 |Nq(i)|(|Nq(i)| − 1)

|N (i)|(|N (i)| − 1)
·

2|E(i)|
∑p

q=1 |Nq(i)|(|Nq(i)| − 1)

≤ (p − θ(i))
2|E(i)|

∑p
q=1 |Nq(i)|(|Nq(i)| − 1)

≤ (p − θ(i))
2
∑p

q=1 |Eq(i)|
∑p

q=1 |Nq(i)|(|Nq(i)| − 1)

= (p − θ(i))CM(i) ,

since

p
∑

q=1

|Nq(i)|(|Nq(i)| − 1) =
∑

q /∈A(i)

|Nq(i)|(|Nq(i)| − 1) ≤ (p− θ(i))(|N (i)|(|N (i)| − 1)) .

In order to prove the remaining inequality notice that the number of links in
the complete graph built up on the set of nodes N (i) never exceeds the sum over
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q = 1, . . . , p of the numbers of links of the complete graphs built up on the sets of
nodes Nq(i) plus all the links possibly obtained by joining nodes of Nk(i) to nodes
of Nj(i) where k and j are chosen among all possible pairs (k, j) with 1 ≤ k < j ≤ p,
i.e.

|N (i)|(|N (i)| − 1)

2
≤

1

2

p
∑

q=1

|Nq(i)|(|Nq(i)| − 1) +
∑

k<j

|Nk(i)||Nj(i)|, (2.3)

where the last sum has
(

p
2

)

terms. Notice also that we can always assume, by
rearranging if necessary, that |Nq(i)| ≤ |Nq+1(i)| for 1 ≤ q ≤ p − 1. In addition to
this, observe finally that

∑

k<j

|Nj(i)| (|Nk(i)| − 1) ≤

p
∑

q=1

[

(|Nq(i)| − 1)|Nq(i)|(q − 1)
]

≤ (p − 1)

p
∑

q=1

(|Nq(i)| − 1)|Nq(i)|.

(2.4)

Thus, since Eq(i) ⊆ E(i) for every 1 ≤ q ≤ p and by using (2.3)

CM(i) =
2
∑p

q=1 |Eq(i)|
∑p

q=1 |Nq(i)|(|Nq(i)| − 1)
≤

2p|E(i)|
∑p

q=1 |Nq(i)|(|Nq(i)| − 1)

= p cG(i)
|N (i)|(|N (i)| − 1)

∑p
q=1 |Nq(i)|(|Nq(i)| − 1)

= p cG(i)

(

1 +
2
∑

k<j |Nk(i)||Nj(i)|
∑p

q=1 |Nq(i)|(|Nq(i)| − 1)

)

.

(2.5)

Notice that if 1 ≤ k < j ≤ p, then

|Nk(i)||Nj(i)| = (|Nk(i)| − 1 + 1) |Nj(i)| ≤ (|Nk(i)| − 1) |Nj(i)| + |Nj(i)|.

Now if we combine the last formula with (2.5), we get that

CM(i) ≤ p cG(i)

(

1 +
2
∑

k<j |Nk(i)||Nj(i)|
∑p

q=1 |Nq(i)|(|Nq(i)| − 1)

)

≤ p cG(i)

(

1 + 2(p − 1) + 2

∑p
q=1(q − 1)|Nq(i)|

∑p
q=1 |Nq(i)| (|Nq(i)| − 1)

)

≤ p cG(i)

(

1 + 2(p − 1) + 2
(p − 1)

∑p
q=1 |Nq(i)|

∑p
q=1 |Nq(i)| (|Nq(i)| − 1)

)

.

It is easy to check that if q ∈ A(i), then |Nq(i)| (|Nq(i)| − 1) = 0, which makes that

p
∑

q=1

|Nq(i)| (|Nq(i)| − 1) =
∑

q /∈A(i)

|Nq(i)| (|Nq(i)| − 1) ≥
∑

q /∈A(i)

|Nq(i)|.
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Hence

∑p
q=1 |Nq(i)|

∑p
q=1 |Nq(i)| (|Nq(i)| − 1)

≤

∑

q /∈A(i) |Nq(i)| +
∑

q∈A(i) |Nq(i)|
∑

q /∈A(i) |Nq(i)|

≤ 1 +
θ(i)

2(p − θ(i))
,

since if q ∈ A(i), then |Nq(i)| ≤ 1, while if q /∈ A(i), then |Nq(i)| ≥ 2. Finally, if we
use the last upper bound, we obtain that

CM(i) ≤ p cG(i)

(

1 + 2(p − 1) + 2
(p − 1)

∑p
q=1 |Nq(i)|

∑p
q=1 |Nq(i)| (|Nq(i)| − 1)

)

≤ p cG(i)

(

1 + (p − 1)

(

4 +
θ(i)

p − θ(i)

))

.

On the other hand, if M is homogeneous, then the same techniques as before
show that cG(i) ≤ (p − θ(i))CM(i). Since M is homogeneous, then Nq(i) = N (i)
and Eq(i) ⊆ E(i) for every 1 ≤ q ≤ p. Therefore we conclude that

CM(i) =
2
∑p

q=1 |Eq(i)|
∑p

q=1 |Nq(i)|(|Nq(i)| − 1)

≤
2p|E(i)|

∑p
q=1 |N (i)|(|N (i)| − 1)

=
2|E(i)|

|N (i)|(|N (i)| − 1)
= cG(i).

�

Remark 2.5 The definition of θ(i) shows that the estimation in the previous the-
orem gets coarser as the number of slices for which i has strictly less than two
neighbors (possibly zero) increases; in a “normal” scenario this situation will not
occur and the estimation will involve a polynomial of degree two in p. Anyway, since
0 ≤ θ(i) ≤ p and the function f(x) = x/(p − x) is increasing in [0, p), then the last
result ensures that

CM(i) ≤ g(p) cG(i),

where g(p) is of order pα with α ∈ [2, 3], but still it is not obvious whether the
exponent 2 can be lowered.

As it was said above there are other possible definitions for the clustering of a
node in a multilevel network, based on the clusterings of that node in the slices,
and then it is natural to have then related by means of estimations. However a
remark is in order. Notice that it is possible to construct a network whose slices
have clustering coefficients zero for every node while the clustering coefficient of the
projection network is 1 for every node. Indeed, if we consider the example 2.3 as our
multilevel network M , then it is straightforward to check that for a given node i,
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its clustering coefficient in each of the slices, cq(i), is zero, and hence every convex
combination of them, while the clustering coefficient CM(i) is 1. This means that
we cannot expect to estimate CM(i) from convex combinations of {cq(i)}

p
q=1. Still

it makes sense to give a “slicewise” definition for the clustering coefficient of the
node i in a multilevel network M and find estimations by means of the clustering
already defined. Again some notation is required. Call

N ∗
q (i) = {j ∈ X | j is a neighbor of i in Sq}

and Gq(i) = (N ∗
q (i), Eq(i)), where

Eq(i) =
{

{k, j} ∈ Eq | k, j ∈ N ∗
q (i)

}

Note that Gq(i) is the subgraph of the slice Sq generated by N ∗
q (i). Thus the

following definition is proposed.

Definition 2.6 Let M = (X, E,S) be a multilevel network and i be a given node
of M . The slice clustering coefficient of i is defined as

Csl
G(i) =

2

p
∑

q=1

|Eq(i)|

p
∑

q=1

|N ∗
q (i)|(|N ∗

q (i)| − 1)

.

Notice that Gq(i) is a subgraph of Gq(i) as was illustrated in the example above.
Accordingly N ∗

q (i) ⊆ Nq(i) and hence the largest possible number of links between
neighbours of i in the q-slice, cannot exceed the corresponding largest possible num-
ber of links between neighbours of i in Nq(i). As above we have the relation

|N (i)|(|N (i)| − 1)

2
≤

1

2

p
∑

q=1

|N ∗
q (i)|(|N ∗

q (i)| − 1) +
∑

k<j

|N ∗
k (i)||N ∗

j (i)|,

where the last sum has
(

p
2

)

terms. Also we can assume, after rearrangement, that
|N ∗

q (i)| ≤ |N ∗
q+1(i)| for all 1 ≤ q ≤ p. Thus by mimicking the proof of Theorem 2.4,

we can get a relationship between the clustering coefficient in the projected network
cG(i) and the slice clustering coefficient Csl

G(i).

Theorem 2.7 Let M = (X, E,S) be a multilevel network and i be a given node of
M . Call A(i) = {q ∈ {1, . . . , p} | |N ∗

q (i)| < 2} and θ(i) = |A(i)|. Then

C
sl
G(i) ≤ p cG(i)

(

1 + (p − 1)

(

4 +
θ(i)

p − θ(i)

))

.
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Notice that there are other possible variations for the definition of the slice

clustering coefficient of a node i. For example, the average over the clustering
coefficients cq(i) of the slides:

Csl
G(i) =

1

p

p
∑

q=1

cq(i) .

The relation between this definition and definition 2.6

p min
1≤q≤p

|N ∗
q (i)|(|N ∗

q (i)| − 1)

2
Csl

G(i) ≤ Csl
G(i) ≤ p max

1≤q≤p

|N ∗
q (i)|(|N ∗

q (i)| − 1)

2
Csl

G(i)

is easily derived from the following lemma.

Lemma 2.8 If a1, a2, . . . , an ∈ [0,∞) and b1, b2, . . . , bn ∈ (0,∞), then

n min1≤i≤n bi
∑n

i=1 bi

(

1

n

n
∑

i=1

ai

bi

)

≤

∑n
i=1 ai

∑n
i=1 bi

≤
n max1≤i≤n bi
∑n

i=1 bi

(

1

n

n
∑

i=1

ai

bi

)

.

Proof:
It is straightforward since

∑n
i=1 ai

∑n
i=1 bi

=

n
∑

i=1

(

bi
∑n

j=1 bj

)

ai

bi
.

�

The following examples illustrate the behavior of the different concepts of clus-
tering previously introduced. As it can be seen, if each one is separately evaluated
one gets extremely different values.

Example 2.9 Consider M = (X, E,S) with X = {1, 2, . . . , n} and the slice set
S = {§1, S2}, where

S1 = ({1, 2, 3}, {{1, 2}, {1, 3}, {2, 3}})

S2 = ({1, 2, . . . , n}, {{1, 2}, {1, 3}, . . . , {1, n}, {2, 3}}).

In this case

Csl
G(1) =

1

2

(

1

1
+

1

(n − 1)(n − 2)/2

)

∼
1

2

while

csl
G(1) =

1 + 1

1 + (n − 1)(n − 2)/2
= O

(

1

n2

)

.

We see that the two local clustering coefficients dramatically differ for n � 1.
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On the other hand, if we take M = (X, E,S) with X = {1, 2, . . . , n2} and the

slice set is given by S = {S1, S2, . . . , Sn}, where Sj = (X, Ej) and

E1 =
{

{i, j} : 1 ≤ i < j ≤ n2
}

,

Ej = {{1, 2}, . . . {1, n}, {j, j + 1}} if 2 ≤ j ≤ n − 1,

En = {{1, 2}, . . . {1, n}, {2, n}} ,

then

Csl
G(1) =

1

n

(

(n2 − 1)(n2 − 2)/2

(n2 − 1)(n2 − 2)/2
+

1

(n − 1)(n − 2)/2
+ · · · +

1

(n − 1)(n − 2)/2

)

= O

(

1

n2

)

,

while

Csl
G(1) =

(n2 − 1)(n2 − 2)/2 + 1 + . . . + 1

(n2 − 1)(n2 − 2)/2 + (n − 1)(n − 2)/2 + . . . + (n − 1)(n − 2)/2
∼ 1 .

Also in this case the two local clustering coefficients are very different for n � 1.

Example 2.10 Consider M = (X, E,S), where the slice Sj = (Xj, Ej) is defined
by Xj = {1, j + 1, j + 2} and Ej = {{1, j + 1}, {1, j + 2}, {j + 1, j + 2}} for

1 ≤ j ≤ n − 2, Xn−1 = {1, 2, n}, En−1 = {{1, 2}, {1, n}, {2, n}}. Then Csl
G(1) = 1

while cG(1) = O(1/n).

Example 2.11 Now consider M = (X, E,S) with Xj = X = {1, 2, . . . , n} and
Ej = {{1, k} : 2 ≤ k ≤ n} ∪ {{j + 1, k} : 2 ≤ k ≤ n, k 6= j + 1} for 1 ≤ j ≤ n − 1.

Then cG(1) = 1 while Csl
G(1) = O(1/n).

Example 2.12 If we take M = (X, E,S) with Xj = X = {1, 2, . . . , n} and Ej =
{{1, j+1}, {1, j+2}, {j+1, j+2}} for 1 ≤ j ≤ n−2, En−1 = {{1, 2}, {1, n}, {2, n}}.

Then Csl
G(1) = 1 while CM(1) = O(1/n2).

Example 2.13 Consider M = (X, E,S) with Xj = X = {1, 2, . . . , 2n}, A =
{{1, k} : 2 ≤ k ≤ n} ∪ {{k, l} : n + 1 ≤ k < l ≤ 2n}, Ej = A ∪ {{j + 1, j + 2}} for
1 ≤ j ≤ n−2, En−1 = A∪{{n, 2}}, En = {{1, k} : 2 ≤ k ≤ 2n}. Then CM(1) ∼ 1/4

while Csl
G(1) = O(1/n2).

Example 2.14 Consider M = (X, E,S) with Xi,j = X = {1, 2, . . . , n} and Ei,j =

{{i, j}} for 1 ≤ i < j ≤ n. Then Csl
G(1) = 0, CM(1) = O(1/n2) and cG(1) = 1.

Example 2.15 Consider M = (X, E,S) with X = {1, 2, . . . , n}, X1 = {1, 2, 3},
with E1 = {{1, 2}, {1, 3}, {2, 3}} and Xj = {1, j + 2} with Ej = {{1, j + 2}} for
j = 2, . . . , n − 2.
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Then

cG(1) =
1

(n − 1)(n − 2)
= O(1/n2)

while

CM(1) =
1 + 0 + · · ·+ 0

1 + 0 + · · ·+ 0
= 1.

We conclude this section with a final observation. All what has been said refers
to local clustering coefficients. The aggregation of the local quantities into a global
one, or clustering of M , can naturally be considered. We leave the details to the
reader.

2.2 Metric Structure: Distances and Efficiency

If we want to introduce metric tools in a multilevel network M = (X, E,S), we first
have to give the notion of path and length. A path ω in M = (X, E,S) is a set of
the form ω = {(`1, · · · , `q), (S1, · · · , Sq)} such that

(i) (`1, · · · , `q) is a path in (X, E),

(ii) (S1, · · · , Sq) is a sequence of slice graphs S1, · · · , Sq ∈ S,

(iii) For every 1 ≤ j ≤ q, we have that `j is an edge in the slice graph Sj .

By using this concept we can introduce a metric structure in a multilevel graph
M = (X, E,S) as follows.

Definition 2.16 Let M = (X, E,S) be a multilevel network, β ≥ 0 fixed and
ω = {(`1, · · · , `q), (S1, · · · , Sq)} be a path in M . The length of ω is the nonnegative
value

`(ω) = q + β

q
∑

j=2

∆(j),

where

∆(j) =

{

1 if Sj 6= Sj−1,
0 otherwhise.

The distance in M between two nodes i, j ∈ X is the minimal length among all
possible paths in M from i to j.

If we take β = 0, the previous definition gives the natural metric in the projection
graph, while if β > 0, we introduce new metrics that take into account, not only the
global structure of the projection network, but also the interplay between the slice
networks, that help to model the multi-scale nature of real-life social networks.
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Remark 2.17 We could introduce a more general definition of the length of a path
ω in a multilevel network M = (X, E,S) of slices S1, . . . , Sp by replacing the jumping

weight β by a p×p non-negative matrix Θ = (β(Si, Sj)) in order to take into account
that some slices could be closer to an other and therefore we should take different
jumping weights depending on the starting and target slices where the slice jump oc-
curred. Following this idea, the length of a path ω = {(`1, · · · , `q), (Sσ(1), · · · , Sσ(q))}
(where σ : {1, . . . q} −→ {1, . . . , p}) could be defined as

˜̀(ω) = q +

q
∑

j=2

∆̃(j),

where

∆̃(j) =

{

β(Sσ(j−1), Sσ(j)) if Sσ(j) 6= Sσ(j−1),
0 otherwhise.

We could also go further and consider that the jumping weights depend not only
on the two slices involved in the slice jump, but also on the actual node in which
this jump take place, but in any case, it is straightforward to check that the results,
methods and algorithms introduced in this section can be easily mimicked to these
more general metric structures.

One way to calculate the distance matrix, that is a matrix Λ = (λij) that contains
in each position λij the distance in M between vertices i and j in X , is to consider
an auxiliary graph in the following way. Every vertex of the multilevel network M
is represented by a vertex in the auxiliary graph and, if a vertex in M belongs to
two or more slice graphs in M , then we duplicated it as many times as the number
of slide graphs it belongs to. Every edge of E is an edge in the auxiliary graph and
there is one more (weighted) edge for each vertex duplication between the duplicated
vertex and the original one. The distance between a duplicated vertex j and another
vertex k is djk = min{dj′k, dj′′k}, where j ′ and j ′′ are the duplications of vertex j in
the auxiliary graph.

Once we have defined a distance in a multilevel network M = (X, E,S), it is
easy to generalize the concept of efficiency given in [9] to this structure:

Definition 2.18 Let M = (X, E,S) a multilevel network. The efficiency of M is

E(M) =
1

n(n − 1)

∑

i,j∈X,i 6=j

1

dM(i, j)
,

where n is the number of vertices in X and dM(i, j) is the distance in M between
vertices i and j.

It is quite natural to try to establish comparisons between the efficiency E(M)
of a multilevel graph M = (X, E,S) as it was just defined before and the efficiency
E(G) of the underlying graph as a classic complex network, as it was introduced in
[13] (see also [6]). The actual analytical result that connects these two parameters
are given in the following theorem.
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Theorem 2.19 Let M = (X, E,S) a multilevel network, and G = (X, E). Then

1

β + 1
E(G) ≤ E(M) ≤ E(G), (2.6)

where E(G) is the efficiency of the projection network G and E(M) is the efficiency
of the multilevel network M .

Proof:
Let i, j ∈ X and ω be a path in M from i to j. We denote by dM(i, j) the distance
between i, j in the multilevel network M and by dG(i, j) the distance between i, j
in the network G. In a similar way, we denote by `M(ω) its length in the multilevel
network M and by `G(ω) its length in the network G.

It is clear that dM(i, j) ≥ dG(i, j). On the other hand, since ∆(·) ≤ 1 then

dM(i, j) ≤ `M(ω) = `G(ω) + β

`G(ω)
∑

j=2

∆(j)

≤ `G(ω) + β(`G(ω) − 1) = `G(ω)(β + 1) − β ≤ `G(ω)(β + 1),

Hence, since it is clear that dG(i, j) = min{`G(ω)|ω is a path in M from i to j}, we
get that

1

β + 1
dM(i, j) ≤ dG(i, j)

and therefore, by combining the last expressions with the reverse bound obtained
before we obtain that

1

β + 1

1

dG(i, j)
≤

1

dM(i, j)
≤

1

dG(i, j)
,

which gives the result.
�

Remark 2.20 The last bounds are sharp simply by making β −→ 0+.

We are equally interested in obtaining estimations of the efficiency of a multilevel
graph in terms of the efficiencies of its slices. Precisely we obtain the following result.

Theorem 2.21 If M = (X, E,S) is a multilevel network such that S = {S1, . . . , Sp}
and for every 1 ≤ q ≤ p we denote Sq = (Xq, Eq), then

|Xq|(|Xq| − 1)

|X|(|X| − 1)
E(Sq) ≤ E(M), (2.7)

where |Xq| is the number of nodes of Sq and |X| is the number of nodes of M .
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Proof:
If we take 1 ≤ q ≤ p, since Xq ⊆ X and Eq ⊆ E, then for every i, j ∈ Xq and
every path ω in Sq from i to j in Sq, we get that `Sq

(ω) = `M(ω) ≥ dM(i, j). Then
dSq

(i, j) ≥ dM(i, j). Therefore

∑

i,j∈Xq,i 6=j

1

dSq
(i, j)

≤
∑

i,j∈Xq,i 6=j

1

dM(i, j)
≤

∑

i,j∈X,i 6=j

1

dM(i, j)
,

which makes that

E(Sq) =
1

|Xq|(|Xq| − 1)

∑

i,j∈Xq,i 6=j

1

dSq
(i, j)

≤
1

|Xq|(|Xq| − 1)

∑

i,j∈X,i 6=j

1

dM(i, j)
=

|X|(|X| − 1)

|Xq|(|Xq| − 1)
E(M).

�

Remark 2.22 There is a reverse inequality that can be established when M =
(X, E,S) is an homogeneous multilevel network (i.e., a multilevel network such that
Xq = X for every slice Sq = (Xq, Eq) ∈ S). Indeed, in this case the following relation
is easily obtained

E(Sq) ≤ E(M) ≤ E(G) ≤ (|X| − 1)E(Sq). (2.8)

3 Some models for multilevel random networks

In this final section we present some models to produce multilevel random networks,
inspired by the Barabási-Albert preferential attachment model of complex networks
[3] and several bipartite networks models such as the collaboration network model
proposed by Ramasco et al. [17] or the sublineal preferential attachment bipartite
model introduced by M.Peltomäki and M.Alava [16]. We propose growing ran-
dom models since many of the real-life examples that can be modeled by multilevel
networks, such as social or transportation networks, are dynamic models and their
structure grows in time by addition of new nodes, links and layers. The presented
randomized models are determined by the following rules:

(i) Model parameters. Our models have three main parameters: N , m and pnew.
We set N ∈ N as the number of nodes in the multilevel network while 2 ≤
m ≤ N account of the number of nodes in each layer (i.e. if we take m = 2,
we recover the Barabási-Albert model [3]).

In our model m will be fixed, but it can also be replaced by any other non-
negative integer random variable if we want to produce more general models.
Finally, we set pnew ∈ (0, 1] as the probability of joining a new node to the
multilevel network.

16

Page 16 of 23

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
(ii) Initial conditions. We start with a seed multilevel network made of one single

layer S0 of m nodes that are linked all to all, (i.e. S0 = Km). We can replace
the all-to-all structure by any other structure (such as a scale free or a Erdős-
Rényi network), but the results obtained are statistically equivalent.

(iii) Layer composition. At each time step t, a new layer St of m nodes is added
to the multilevel network. In order to determine St we have to give its nodes
and links. We start by choosing randomly an existing node of the multilevel
network proportionally to its degree (preferential election). Therefore if at
step t − 1, the set of nodes of the multilevel network is {v1, . . . , vn}, and ki

denotes the degree of node vi at time t− 1 in the projection network, then we
choose the node vi randomly and independently with probability

pi =
ki

∑n
j=1 kj

.

The chosen node will be the first node of the new layer St and we call it
coordinator of the layer. As an alternative, we could choose the coordinator
proportionally to the number of layers that it belongs to but, in this case, the
model will be similar to the collaboration network model proposed by Ramasco
em et al. [17]. Each of the remaining m − 1 nodes of St will be a new node
with probability pnew and an existing node with probability (1 − pnew). If we
have to add an already existing node, we will uniformly and independently
choose it at random. Note that we can replace the uniform random selection
by other random procedure (such as preferential selection), but the random
tests done suggest that the multilevel network obtained have statistically the
same structural properties when N is large enough (N > 103). Anyway, we
should have chosen m nodes ṽ1, . . . , ṽm (ṽ1 is the coordinator node) that will
belong to the new layer St.

(iv) Layer inner-structure. Once we have fixed the nodes ṽ1, . . . , ṽm of the new layer
St, we have to give its links. First, we link all the nodes to the coordinator node
in order to warrant that the new layer is connected. In addition to this, we set
new links between each pair of nodes, say vi and vj (with 1 < i 6= j ≤ m) by
using a random linking probability pij that we will present later. At the end
of this step we have defined completely the new layer St.

(v) Finally, we repeat steps (iii) and (iv) until the number of nodes of the multi-
level network is at least N .

These rules define a family of growing models for multilevel random networks
that cover a wide range of different networks with different meso-scalestructure,
simply by changing the linking strategy, pij, at each step. The simplest choice for
this strategy is pij = 1, i.e. an all-to all strategy, thus linking all the nodes in the
new slice. In this way, we recover a model similar to the Ramasco et al. model [17],
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that can be used to produce hyper-networks with a meso-scale structure similar to
that found in scientific collaboration systems.

In this paper we will focus on the following three different linking strategies:

1. Erdős-Rényi type strategy (Model I). We fix a value pij = plink ∈ [0, 1] so that
we add each link {ṽi, ṽj} randomly and independently with probability plink,
for every 2 ≤ i 6= j ≤ m (in what follows we will use a value plink = 0.31).
Note that this strategy does not take into account the meso-scale structure of
the multilevel network, since the existence of the link {ṽi, ṽj} is independent
of the nodes ṽi, ṽj in other slices of the multilevel network. Clearly, this is a
toy model inspired by the classic Erdős-Rényi model.

2. Assortative linking strategy (Model II). For every 2 ≤ i 6= j ≤ m, we add
randomly the link {ṽi, ṽj} proportionally to the number of common slices that
hold simultaneously ṽi and ṽj . Hence if we denote by Qij the number of slices
that hold simultaneously ṽi and ṽj at time step t (including St) and by qi

the number of slices that hold ṽi at time step t (also including St), thus the
probability of linking node ṽi with node ṽi is given by

pij =
2Qij

qi + qj

,

for every 2 ≤ i 6= j ≤ m. The heuristic behind this strategy comes from
social networks, since in this type of networks the relationships in a new social
group are correlated with the previous relationships between the actors in
other social groups [20]. Hence, on the one hand, if two actors that belong
to the new social group coincide in many (previous) social groups, then the
probability of linking in this new social group is big and ,on the other hand,
when two new actors join their first social group, the probability of establishing
a relationship between them it is also high.

3. Disassortative linking strategy (Model III). If we take 2 ≤ i 6= j ≤ m, the
probability of linking ṽi with ṽj in the slice St is inversely proportional to the
number of slices that hold simultaneously ṽi and ṽj, i.e. if we denote by pij

such probability, then

pij = 1 −
2Qij

qi + qj
,

by using the same notation as in the assortative strategy (Model II). Now, the
heuristic inspiring this strategy lies in some transportation networks, such as
the airline networks, where the links in a new line try to connect nodes that are
not connected in previous lines. By using the last expression, the newcomer
nodes of the slice will be linked to old nodes that belong to many slices with
high probability, while the newcomers will not be linked between them also
with high probability. This strategy prevents the multiple reiteration of the

18

Page 18 of 23

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

1 10
1

10
2

10
3

P
(k

)

k

m=5
m=20
m=50

x
-2.5

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

1 10
1

10
2

10
3

P
(k

)

k

m=5
m=20
m=50

x
-2.7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

1 10
1

10
2

10
3

P
(k

)

k

m=5
m=20
m=50

BA

Model I Model II

Model III

C

Figure 2: Random testing of the degree distribution of the projection graph in the
randomized multilevel models. The model I is on the left, the model II is centered
and the Model III is on the right, each of them for m = 5, 20, 50 nodes per slice. In
all cases, the probability of joining a new node to the network is fixed to pnew = 0.202
as in the empirical data obtained in [16]. The distribution of each type of network
and size of slice is computed for 100 random networks of 5000 nodes each one.

same link in different slices and stresses the dissasortativity between newcomer
nodes and nodes that belong to many slices.

Once we have introduced the three linking strategies, we now present some numerical
results to shows that, despite the fact that the above tree rules produce hyper-graphs
with similar projection networks, the structures found in the mesoscale can be quite
different.

Let us start by showing in figure 2 the degree distribution, P (k), of the projection
network. It is clear that the degree distribution of the projection network obtained
in three models display heavy-tailed profiles, and this fact is more relevant if the
number of nodes of each slice is low, since in this case the Big Number Law’s make
that the degree distribution behaves as a power-law, P (k) ∼ k−γ with 2 ≤ γ ≤ 3.
Note that a discretizacion effect appears in all the distribution presented in figure 2
that makes that the degree distribution are oscillatory. This is due to the fact that
each slice has the same number of nodes, and all of them are linked to the coordinator
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Figure 3: Random testing of the hyper-degree distribution, P (q), of the multilevel
models (in log scale) for different number of nodes m in each slice and for two
different values of pnew, combined with some numerical approximation in each case.
The cases m = 5 are on the left, m = 20 are centered and those for m = 50 are on
the right. Besides, the panels on the top show the case pnew = 0.202 while those on
the bottom are for pnew = 0.9. Each distribution P (q) is averaged over 100 random
networks of 5000 nodes each one.

node, which makes that the degree of the nodes are concentrated in some values
modulus m. In order to avoid this effect, we could modify step (i) replacing m by
a non-negative integer random variable that prevents that the degree of each node
increases modulo m. This discretization effect is present in the three models and
increases when the size of the slices is large, but it is more persistent in Model III,
since in this case the dissasortative character of the model stresses this phenomenon.

In addition to the degree distribution of the projection network, in figure 3 we
show the distribution P (q) of the number of slices that hold each node (we call
it hyper-degree distribution for consistency with the hyper-graph theory notation).
Obviously, the hyper-degree of a node, qi, depends on the number of nodes m of
each slide and the probability pnew of adding a new node for constructing each slide
(so that the number of new nodes in each slide is on average mpnew). Therefore,
the distribustion P (q) is not correlated with the linking model used to construct the
network. In figure 3 we show that the behavior of P (q) depends quite strongly on the
particular value of m and pnew. In particular, in figures 3.A, 3.B and 3.C we show
respectively the cases m = 5, m = 20 and m = 50 when pnew is small (pnew = 0.202
as in figure 2). For m = 5, P (q) can be approximated by a stretched exponential
(figure 3.A), while P (q) presents an exponential decay in the cases m = 20 and
m = 50 (figures 3.B and 3.C). When pnew is large (pnew = 0.9 in figures 3.D, 3.E and
3.F) the hyper-degree distributions become more heterogeneous as they are better
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Figure 4: Random testing of the average degree distribution of each slice for 100
random networks of 5000 nodes each one in the randomized multilevel models I, II
and III. The case m = 50 is in panel A (on the left), while the case m = 100 is in
panel B (on the right), both for models I, II and III.

approximated by truncanted power-laws. Remarkably, for m = 5 (figure 3.D) we
obtain the most heterogeneous distribution since P (q) ∼ q−3 for nearly all the range
of q values. The heterogeneity of P (q) decreases with m as the plots for m = 20 and
m = 50 (figures 3.E and 3.F) show. In these latter cases the power law behavior
spans the small hyper-degree classes while, for large q values, a cut-off of the form
exp(−αq2) applies.

Figures 2 and 3 have shown that either structure of the projection network and
hyper-degree distribution are quite similar for the three random models presented.
However, they are very different if we analyze their mesoscale structure, as figure 4
shows. This figure shows, for m = 50 and m = 100, the probability of finding a
node connected to hk nodes within a randomly chosen slice of the network. It is
straightforward to check that since the Erdős-Rényi type strategy is used in Model I,
then the resulting distribution P (hk) is a binomial distribution with parameters m
and plink (asymptotically a Poisson distribution). However, note that in figure 2
we found that the degree distribution of the projection network is scale-free. Corre-
spondingly, Models II and III display totally different mesoscale properties as shown
by their corresponding distributions P (hk). On one hand in Model II we observe
that P (hk) tend to accumulate around the maximum possible value of hk, m, due to
the assortative character of the linking strategy used. Conversely, in Model III the
association between the nodes belonging to the same slice is much lower due to the
disassortativity of the model. Again, while both Models II and III gives two differ-
ent bimodal averaged distributions P (hk), the corresponding distribution for their
projection networks are also of scale-free type. Therefore, these results illustrate
that many different multilevel networks (with different mesoscale structures) can
produce similar projection networks and therefore that we should take into account
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the mesoscale structure in order to give sharper models of many real-life problems.
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