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Inexact Newton methods for model simulation

Stefania Bellavia § Silvia Magheri Claudia Miani ¶

14 dicembre 2010

Abstract

Robust and efficient solution techniques for solving macroeconometric
models are increasingly becoming a key factor in developing models em-
ployed by policy-making institutions for policy simulations and forecast-
ing. Traditionally, when solved in presence of forward-looking variables,
these models are nonlinear, large-scale and sparse and give rise to large
and highly structured nonlinear systems.

This paper proposes a Newton-GMRES method obtained tuning up
the basic algorithm by properly choosing the forcing terms sequence and
the preconditioning strategy. In addition, the Newton-GMRES method is
wrapped into a globalization strategy based on a non monotone linesearch
technique in order to enlarge its convergence basin and to enhance its
robustness. The combination of these ingredients yields a reliable method
with low memory requirements.

Numerical experiments using the MULTIMOD model and a basic Real
Business Cycle model are presented. A Matlab code based on this ap-
proach is provided.

keywords Inexact Newton methods, globalization strategy, preconditioners,
forward looking models, matrix-free

1 Introduction

Nonlinear forward-looking models solved for forward consistent expectations
give rise to large scale and highly structured nonlinear systems. In order to
cope with the high dimension of these systems, several algorithms were designed
(see for example [7, 24, 23, 14, 21, 20, 17, 34]). In the Extended Fair-Taylor
approach [14] the nonlinear system is split into small blocks and then an itera-
tive procedure is used to ensure consistency across blocks until the full system
converges. The horizon is extended to guarantee a stable path within the range
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of simulation. Peculiarity of this approach is the small memory requirement,
but in some situations it may fail to converge or it converges slowly. A widely
used technique is the Newton-Raphson based Laffargue-Boucekkine-Juillard (L-
B-J) algorithm [7, 23, 20]. In this approach the block-structure of the Jacobian
matrix of the nonlinear system is exploited in the linear algebra phase of the
Newton-method in order to save memory storage.

Interestingly, other techniques are possible and procedures based on Newton-
Krylov methods have been employed by Gilli and Pauletto [17, 34] to solve
forward-looking models. Krylov methods [25] are a broad class of iterative
linear algebra methods that includes GMRES [39], which is of particular interest
here. Newton-Krylov methods are combination of Newton-type procedures for
nonlinear systems and Krylov methods for solving the arising Newton linear
systems. Specifically, if we seek for a zero of a nonlinear function F : IRN → IRN ,
at a generic iteration k of a Newton-Krylov method, a Krylov solver is applied
to the Newton equation

F ′(yk)s = −F (yk), (1)

where yk is the current iterate and F ′ is the Jacobian matrix of the nonlinear
function F . Tipically, the Krylov solver is applied to the Newton equation, until
an iterate, say s̄ satisfies

‖F (yk) + F ′(yk)s̄‖ ≤ η̄k‖F (yk)‖,

where ηk ∈ (0, 1) is commonly called forcing term. The vector s̄ is an Inexact
Newton step and is used to form the next iterate. Good performance of Newton-
Krylov methods have been observed in the solution of a great variety of large
scale nonlinear systems (see for example [37, 35, 1, 4] and the references therein)
and in the solution of forward-looking models, as it is highlighted by the works
of Gilli and Pauletto [17, 34].

Here we focus on the numerical solution of forward-looking models by Newton-
GMRES methods, that are Newton-Krylov methods where the iterative solver
GMRES [39] is used in the linear algebra phase. An interesting feature of
Newton-GMRES methods is that they require only the action of the Jacobian of
the linear system on vectors. This allows matrix-free implementations in which
these products are approximated without forming and storing F ′(yk). For this
reason they are called matrix-free methods. This characteristic is shared with
all Newton-Krylov methods employing a transpose-free iterative linear solver as
GMRES, TFQMR [15], BICGSTAB [40]. The matrix-free feature of Newton-
GMRES enables saving computational time everytime forming the Jacobian
represents a significant fraction of the total execution time. We emphasize that
when the analitic Jacobian is not available, approximating it by finite differences
is generally the dominant cost of a Newton-type methods employing either it-
erative or direct solver for computing the Newton step.

Starting from Gilli and Pauletto approach, we move a step further investi-
gating on some algorithmic choices that are crucial for efficiency and robustness
of Newton-GMRES methods. First, we focus on the accuracy requirements for
the computation of the Inexact Newton step. Well chosen forcing terms allow
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to improve the efficiency of the method. Forward-looking models often show a
low level of nonlinearity and solving the Newton systems with high accuracy is
unproductive. In other words, small forcing terms in these applications, lead to
oversolve the Newton equation, by which we mean imposing an accuracy on the
solution of the Newton system that it is not necessary to produce a progress
towards the solution of the nonlinear system. Then, in the applications we are
dealing with, the choice of costant and relatively large forcing terms leads to
save linear iterations.

Second, we turn our attention to preconditioning issues. In fact, Krylov
iterative solvers sometime suffer from a slow convergence and therefore a pre-
conditioner for the Newton system must be used. The aim of preconditioning is
to reduce the number of Krylov solver iterations. Unfortunately, the need of a
preconditioner, in principle destroys the matrix-free feature of Newton-Krylov
solvers. Widely used algebraic preconditioner are Jacobian-based, requiring the
evaluation of the Jacobian blocks at each nonlinear iteration, which is computa-
tionally expensive. A possible alternative is given by the frozen preconditioner
that is reusing the same preconditioner on several Newton iterations. Very of-
ten, the performance of a frozen preconditioner deteriorates with the progress
of the nonlinear iterations. This is not true in this context, as given the weak
nonlinearities of economic models, the Jacobian of the arising nonlinear systems
does not change significantly from one nonlinear iteration to another and high
accuracy in the solution of the Newton equation is not required. Indeed, from
our numerical experience we noticed only a mild deterioration of the frozen pre-
conditioner’s performance as the nonlinear process goes on. Therefore, in our
approach the preconditioner is computed only at the first nonlinear iteration
and then it is reused in all the subsequent iterations. Then, the combination of
frozen preconditioners and matrix-free methods allows to avoid the computation
of the Jacobian at each nonlinear iteration.

Third, we embed the Newton-GMRES method into a nonmonotone line-
search globalization strategy. In fact, the guarantee of convergence of Newton-
Krylov methods is local, as in any Newton-like method, and the numerical
method may fail in finding a solution even though a well defined solution ex-
ists. The globalization strategy allows to enlarge the convergence region of the
Newton-GMRES method and enhances its robustness. Line-search globalization
strategies date back to 70’s and are widely used in the numerical optimization
community, but to our knowledge they are seldom used in computational econo-
metrics, despite their use allows to obtain convergence in economic experiments
where great magnitude of the shocks are involved.

Combining the previously outlined ingredients we obtain a procedure that
requires low computational cost and memory requirements, moreover the con-
vergence is guaranteed provided that the nonlinear function defining the model
is continuosly differentiable in a region containing the generated sequence.

We show the behaviour of our procedure on the MULTIMOD (MULTI-region
econometric MODel) model, developed by the International Monetary Fund
[30, 31, 28] and we compare our approach with the original Gilli and Pauletto
approach [17] and with the Newton method obtained computing the newton
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step by direct methods for sparse and large linear systems. Moreover, in order
to get more insight into the the behaviour and the robustness of our proposal
we apply our procedure to nonlinear systems arising from a real business cycle
models given in [26] and we compare its performance with those of the Newton
method employing direct solvers, with and without globalization strategy.

A Matlab code, named NGMS (Newton GMRES for Model Simulation),
based on this approach has been developed and will be freely accessible through
the web site: http://ngms.de.unifi.it. With NGMS we intend to provide a
theoretically well-founded solver that could be a valid tool for the numerical
solution of forward looking models.

2 Forward looking models

The presence of forward (rational) expectations introduces a dependency of the
solution in period t on anticipated changes at future dates. Solving for consistent
expectation means that the rational expectations are given by the conditional
expectation of the model. The forward dependency requires the specification of
a ’terminal point’ beyond the (lenght-T )horizon of the simulation. We stack the
model period-by-period and solve simultaneously through T periods. Consider,
at period t the following nonlinear forward-looking model:

f1(yt−r̄, ....yt, ..., yt+k̄, zt, a) = 0
...

fn(yt−r̄, ....yt, ..., yt+k̄, zt, a) = 0

(2)

where yt ∈ IRn are the endogenous variables at period t, zt ∈ IRn are the
exogenous variables at period t, the parameters a ∈ IRp are given. Here, r̄
indicates the maximum lag and k̄ the maximum lead. Due to the presence of
leads and lags, solving the model (2) in [t1, tf ], requires r̄ initial conditions and
k̄ final conditions: i.e. the values of yt1−i, i = 1, . . . , r̄ and ytf+j , j = 1, . . . , k̄.
Once these conditions are available the equations are stacked from period t1 to
period tf and the following nonlinear system is obtained:

F (y) = 0 F : IRnT → IRnT , y ∈ IRnT (3)

where T = tf − t1 + 1,

y =

 yt1
...
ytf

 ∈ IRnT , F (y) =

 F1(y)
...

FT (y)

 (4)

Fj(y) =

 f1(ytj−r̄, . . . , ytj , . . . , ytj+k̄, z, a)
...

fn(ytj−r̄, . . . , ytj , . . . , ytj+k̄, z, a)

 , j = 1, . . . , T. (5)
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Then, given the matrices:

Dj(y) =
∂Fj(y)
∂yj

∈ IRn×n, j = 1, . . . , T

Ei,j(y) = ∂Fi(y)
∂yi−j

∈ IRn×n, i = 2, . . . , T j = 1, . . . ,min(i− 1, r̄)

Ai,j(y) = ∂Fi(y)
∂yi+j

∈ IRn×n, i = 1, . . . , T − 1 j = 1, . . . ,min(T − i, k̄)

the Jacobian F ′ of F exhibits the following block-banded structure:

F ′(y) =



D1(y) A1,1(y) · · · · · · A1,k̄(y)

E2,1(y) D2(y) A2,1(y) · · · · · · A2,k̄(y)

E3,2(y) E3,1(y) D3(y) A3,1(y) · · · A3,k̄−1(y)

. . .
. . .

. . .
. . .

ET,r̄(y) · · · ET,1(y) DT (y)



. (6)

3 Newton-Krylov methods

In this section we briefly describe Newton-Krylov methods for the solution of
nonlinear systems of equations. Given a system of nonlinear equations F (y) = 0,
where F : IRN 7→ IRN is continuously differentiable, Newton-Krylov methods
belong to the class of Inexact Newton methods [11], iterative processes that
result in the following scheme, where the superscript k denotes the iteration’s
number:

Let y0 be given.
For k = 0 until “convergence” do:

Find some η̄k ∈ [0, 1) and s̄k that satisfy

‖F (yk) + F ′(yk)s̄k‖ ≤ η̄k‖F (yk)‖, (7)

Set yk+1 = yk + s̄k.

Clearly, these methods are variants of Newton’s method in which at each
iteration the Newton equation

F ′(yk)s = −F (yk), k ≥ 0, (8)

is solved only approximately.
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In a Newton-Krylov framework, a Krylov linear solver is applied to (8) and

it is iterate till an Inexact Newton step s̄k satisfying

‖F (yk) + F ′(yk)s̄k‖ ≤ η̄k‖F (yk)‖,

is computed. This approach is widely used whenever large scale nonlinear sys-
tems have to be solved.

Local convergence analysis for Inexact Newton methods [11] shows that,
under standard conditions on the function F , if y0 is sufficiently close to a
solution y∗ of the nonlinear system and the η̄k’s are uniformly bounded away
from one, then the sequence {yk} converges to y∗. Moreover, the choice of the
forcing term η̄k has a strong relevance on the performance of Inexact Newton
methods as it is shown in [11]. At this regard, we recall that, if {η̄k} → 0
then {yk} exhibits local q-superlinear convergence to a solution y∗, while if
{η̄k} = O(F (yk)) the convergence rate is quadratic. In [13] two choices of η̄k’s
yielding up to quadratic rate of convergence have been proposed.

Let us now focus on Newton-GMRES, namely the Newton-Krylov method
where GMRES is used to compute the Inexact Newton step.

GMRES (Generalized Minimal RESidual) is an iterative Krylov method for
solving indefinite systems of linear equations [39]. GMRES applied to (8) min-
imizes the residual norm ‖F (yk) + F ′(yk)s‖ over all corrections in the current
Krylov subspace. Because iterates are based on this norm minimization prop-
erty, the method does not break down in exact arithmetic, i.e., a new iterate
can always be constructed if the current iterate is not the solution, provided the
coefficient matrix is nonsingular.

An attractive feature of GMRES applied to the Newton equation (8) is that
it requires only the action of the Jacobian F ′ on a vector v. For an appropriately
chosen scalar ε, this action can be approximated by finite differences ([25])

F ′(y)v ∼ F (y + εv)− F (y)

ε
, (9)

giving rise to a process that is referred to as “matrix-free”. In other words, a
Newton-GMRES method can be implemented without requiring the computa-
tion and the storage of the Jacobian F ′.

4 Newton-GMRES for model simulation

Here, we focus on the solution of (3) and we describe the approach taken in
implementing a Newton-GMRES method specially designed for this class of
problems. We assume that the Jacobian is not available and we approximate
the blocks of the Jacobian that are needed to build the preconditioner, by finite
differences.

More precisely, we describe our choice of the forcing terms sequence {η̄k},
of the preconditioner and of the employed non monotone globalization strategy.
Finally, we give the algorithm summarizing the adopted approaches.
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4.1 The forcing terms

Our choice of the forcing terms sequence is strictly related to the nature of
macroeconometric models. Indeed, these models generally do not show an high
level of nonlinearity and are equipped with a good approximation of the solution.
In fact, even in presence of ”moderate” shocks, the approximation given by the
hystorical series are good enough and classical Newton-methods converge in a
very low number of iterations. Then, it is not necessary to solve the Newton
equation (8) to high accuracy, as a crude approximation of the Newton step is
very often good enough to produce progress towards the solution. This way,
pointless iterations of the iterative solver GMRES are avoided. In other words,
in this type of applications, a less accurate solution of (8) may be both cheaper
and effective enough in reducing the norm of F .

Then, despite a forcing sequence {η̄k} converging to zero produces a fast
convergence of the Inexact-Newton method to the solution, due to the charac-
teristic of the class of models we are interested in, here we choose a constant
forcing sequence with η̄k = η̄0 for any k.

4.2 The preconditioner

Effective preconditioning of the Newton systems is the most crucial ingredient
for obtaining good performance of Newton-Krylov methods. The term precon-
ditioning refers to transforming the Newton system into another system with
more favoureable properties for the iterative solver (GMRES in our implemen-
tation). A preconditioner for the k-th Newton system is a matrix P k such that
the preconditioned system takes the following form:

(P k)−1F ′(yk)s = −(P k)−1F (yk).

Generally speaking, if P k is a good preconditioner for F ′(yk), we expect that the
iterative solver converges faster on the preconditioned system than on the origi-
nal one. When GMRES, or any iterative solver, is applied to the preconditioned
system it is not necessary to form the preconditioned matrix (P k)−1F ′(yk) ex-
plicitely; the action of the preconditioned matrix on a vector v is accomplished
approximating the vector w = F ′(yk)v by finite-differences and computing
z = (P k)−1w solving a linear system of the form P kz = w ( (P k)−1 is not
explicitely known). Algebraic preconditioner gives the preconditioner in a fac-
torized and sparse form so that the solution of such linear systems is not an
expensive task [6].

In our implementation of the Newton-GMRES method for forward-looking
models, we provide two different preconditioners. Our choice of the precondi-
tioners is strictly connected to the choice of the forcing terms: as we solve the
linear systems only to a modest accuracy we can rely on unexpensive precon-
ditioners, which are good enough to provide a step s̄k satisfying (7) within a
reasonable number of GMRES iterations, despite are not able to really capture
the ill-conditioning of the Jacobian matrix.
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A quite common preconditioner for block-banded matrix as (6) evaluated at

yk, is the so called Jacoby preconditioner, i.e.

P k =


D1(yk)

D2(yk)
. . .

DT (yk)

 . (10)

Anyway, as observed in [34], blocks Dj(y
k) for j = 1, . . . , T share the same

structure. In fact, at the k-th nonlinear iteration, Dj(y
k) =

∂Fj(yk)
∂yj

with Fj

given in (4) and the only difference among the Fj is the period they are referred
to. Therefore, in [17], at each Newton-GMRES iteration, the block diagonal
preconditioner P k = diag(D1(yk), . . . , D1(yk)) is used, with D1(yk) given by
the (1,1) block diagonal of F ′(yk). Then, following this strategy, at iteration k
of the Newton-GMRES method only the (1,1) block diagonal of F ′(yk) needs
to be evaluated. Further, its LU decomposition has to be computed, since at
each GMRES iteration a linear system with coefficient matrix P k has to be
solved. Gilli and Pauletto provided interesting numerical results adopting this
approach.

However, due to the low level of nonlinearity of these models it is not nec-
essary to recompute the preconditioner at each nonlinear iteration. In our ap-
proach, we compute the preconditioner only at the first Newton-GMRES iter-
ation and then we freeze it, that is we use the same preconditioner throughout
the whole iterative process. This way, we need only to compute the (1,1) block
diagonal of F ′(y0) and its LU decomposition. Summarizing, at each Newton-
GMRES iteration, we use the preconditioner

P k ≡ PD = diag(D1(y0), . . . , D1(y0)) k ≥ 0 (11)

where D1(y0) is given by the (1,1) block diagonal of F ′(y0). In the sequel we will
refer to this preconditioner with the name PD (Block-Diagonal Preconditioner).

However, when T becomes large, this preconditioner may become less effec-
tive. Then, we rely on the following more expensive preconditioner and at each
nonlinear iteration we employ

P k ≡ PB =



D1(y0) A1,1(y0) · · · A1,k̃(y0)

E2,1(y0) D2(y0) A2,1(y0) · · · A′
2,k̃

(y0)

E3,2(y0) E3,1(y0) D3(y0) · · · A3,k̃−1(y0)

. . .
. . .

. . .

ET,r̃(y0) · · · DT (y0)


(12)

with k̃ ≤ k̄ and r̃ ≤ r̄. In the sequel PB (Block-Banded Preconditioner) will
indicate preconditioner (12).
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Clearly, when k̃ = k̄ and r̃ = r̄ we have PB = F ′(y0), while when k̃ = 0 and

r̃ = 0, PB reduces to:

PB = diag(D1(y0), . . . , DT (y0)). (13)

In any case, we remark that we always freeze the preconditioner, that is
the factorization of the preconditioner is computed only at the first nonlinear
iteration. The blocks of F ′(y0) required by the preconditioner are approximated
by finite differences.

4.3 The globalization strategy

In the approach detailed above the linear systems are solved only to a modest
accuracy and as a consequence we rely on a very rough approximation of the
Newton step. Then we may need to merge our Inexact-Newton method into a
globalization strategy. This allows us to monitor the progress of the method
toward a solution of the nonlinear system and to reduce the value of the merit
function ‖F‖2 even if we do not have at disposal a good step to update the
current iterate. Moreover, in some situation, for example when severe shocks
are used or when we simulate the model for forecasting, the initial guess provided
by the hystorical data is not good enough and Newton-like methods fail. In these
cases, a globalization strategy is fundamental to enlarge the convergence basin
of a Newton-like method and to enhance its robustness.

There are two major categories of globalizations: linesearch methods in
which step lenghts are adjusted (usually shortened) to obtain a satisfactory
step and trust region methods in which a step is ideally chosen minimizing a
local model of ‖F‖2 within a specified trust-region (see [25, 12, 32] for details).
A further possibility is to employ homotopy methods. In this approach an
easy problem with well known solution is gradually transformed into the orig-
inal problem F (y) = 0, building an homotopy map or varying the parameter
values in case of parameter dependent nonlinear systems. Homotopy methods
are known to be more robust than Newton-like methods embedded into a line-
search or a trust-region strategy, but they are generally more expensive and be-
come complicated near a bifurcation point, requiring sophisticated approaches
[32]. Moreover, we are not aware of implementations of homotopy methods
in a matrix-free setting as the Jacobian is generally required to devise efficient
and theoretical supported implementations of these strategies. Regarding trust-
region methods, dogleg strategy in conjunction with Inexact-Newton methods
can be devised [36], but at least an approximation of the Jacobian is required.
Then, in our opinion, in this context the linesearch strategy is the best option
for the following reasons: easy to implement, matrix-free compatible, strong
theoretically supported in conjunction with Inexact Newton methods.

Inexact Newton methods embedded into a linesearch strategy result in the
following scheme. At iteration k, the Inexact Newton step s̄k is computed and
the new iterate has the form yk+1 = yk + λs̄k where 0 < λ ≤ 1 is such that

||F (yk+1)‖2 < (1− αλ)‖F (yk)‖2 (14)
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with α ∈ (0, 1). It is quite important to note, at this stage, that an Inexact
Newton step satisfying (7) with ηk < 1 is ensured to be a descent direction for
‖F (y)‖2 at yk, i.e.

(∇‖F (yk)‖2)T s̄k < 0,

see [8]. Therefore, the existence of λ satisfying (14) is guaranteed.
Moreover, our numerical experience enlighted that a nonmonotone strategy

is enough to enhance robustness of Newton-GMRES methods when applied
to forward-looking models. In other words, it is not necessary to impose a
monotone decrease of the merit function ‖F‖2, but it is enough to obtain a
reduction within q ≥ 1 iterations. Then, the acceptance criterion (14) is relaxed
and the nonlinear residual at yk+1 is required to satisfy the following condition:

||F (yk+1)‖2 < (1− αλ)Mk (15)

where
Mk = max{‖F (yk)‖2, ‖F (yk−1)‖2, . . . , ‖F (yk−q)‖2}, (16)

q ≥ 0 is a given integer and the superscript k indicates the iteration number.
The choices q > 0 and q = 0 correspond to a nonmonotone and to a monotone
strategy, respectively.

4.4 The algorithm and the Matlab code

Now, we sketch the algorithm that is the core of our code.

NGMS Method
Let y0, η ∈ (0, 1), α ∈ (0, 1), 0 < θm < θmax < 1, q ≥ 1, P, r̃, k̃, G, M nt, tol nt
be given.
1. If P=1

Compute by finite differences the (1,1) diagonal block of F ′(y0)
and perform its LU factorization.

else
Compute by finite differences the preconditioner (12)
and perform its LU factorization.

2. For iter = 1, . . . ,M nt
2.1 Using GMRES (with preconditioner PD given in (11) if P=1,

with preconditioner PB given in (12) otherwise),
compute s̄k such that

‖F (yk) + F ′(yk)s̄k‖ ≤ η‖F (yk)‖.

2.2 Set λ = 1.
2.3 If G=1 ( Perform the linesearch strategy)

2.3.1Compute Mk by (16).
2.3.2 While ‖F (yk + λs̄k)‖2 ≥ (1− αλ)Mk do:

Choose θ ∈ [θm, θmax].
Update λ = θλ.
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2.4 Set yk+1 = yk + λs̄k.
2.5 If ‖F (yk+1)‖ < tol nt then EXIT

The previous algorithm is the core of the Matlab code NGMS. We have
striven to make NGMS as simple to use as possible. The use of NGMS requires
only a minimal description of the problem to be solved: the size of the problem,
the initial approximate solution, the stopping tolerances tol nt, the number of
allowed nonlinear iteration M nt and a user-supplied function for evaluating the
non linear function (2). At this regard, it should be underlined that in many
macroeconometrics models the variables can be reordered so that the nonlinear
systems exhibits a large block of interdependent equations, which is preceeded
and followed by recursive equations. This way, only the block of interdependent
equations is needed to be solved by the NGMS method. Our Matlab code is
structured in order to exploit this decomposition whenever it is available.

Finally, the user is required to specify the value of the forcing term (that is
taken constant throughout all the iterative process), the choice of the precondi-
tioner and if the globalization strategy is desidered.

The parameters P, r̃ and k̃, in input govern the choice of preconditioner. If P
is set to one the preconditioner PD given in (11) is used. Its factors L and U are
computed at the beginning of the iterative process and are then used at each
iteration of GMRES to solve the linear systems with coefficient matrix given by
the preconditioner PD. With the choice P=2, k̃ = 0 and r̃ = 0, the preconditioner
PB given by (13) is used. In this case, as well as in the more expensive case, k̃ > 0
and/or r̃ > 0 the LU factorization of the whole preconditioner is computed. The
LU factorizations needed to factorize the preconditioner are computed with the
built-in Matlab function lu with syntax that allows to apply LU factorization of
sparse matrices developed in UMFPACK package [10]. In this case preordering
and symbolic analysis that limit fill-in in the LU factorization are carried out.

In Step, 2.1, we use GMRES(m) (GMRES with restart) with m = 150, a
maximum of 10 restarts and with null initial guess. If GMRES is not able to
provide a step s̄k satisfing (7) within the maximum number of allowed iterations,
if

||F (yk) + F ′(yk)s̄k||
||F (yk)||

< 1 (17)

we go on with the last step computed by GMRES, otherwise the NGMS Matlab
code stops with a failure. This choice is motivated by the fact that if (17)
is satisfied, then s̄k is a descent direction for ‖F‖2 at yk. Therefore, if the
globalization strategy is activated, s̄k may be good enough to produce progress
towards the solution, even if it does not solve the Newton equation to the
prescribed accuracy.

Products of F ′(yk) with vectors that are required by GMRES are approxi-
mated using the finite-difference formula given in (9) with

ε =
√
εm‖yk‖/‖v‖,

where εm is the machine precision.
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In Step 2.3.1-2.3.2 the nonmonotone linesearch strategy is performed, if it is

required by the user. That is, if the parameter G that governs this choice is set
to 1. In the linesearch strategy, moving along the direction of the initial Inexact
step s̄k, successively shorter steps of the form sk = λs̄k are selected until the
sufficient decrease condition (15) is met; this process is commonly refereed to
as backtracking. In our Matlab implementation, the parameter α is set to 10−4,
q is set to 6 and the choice of the scalar θ is performed using the three-point
parabolic model as described in [25]. If the sufficient decrease condition (15) is
not satisfied within 10 backtracks, we go on with the last computed value of λ.

In Step 2.5 the tolerance tol nt is used to control the level of accuracy and
the algorithm is stopped as soon as the stopping criterion

‖F (yk+1)‖ < tol nt (18)

is met. If the above stopping criterion is not satisfied within M nt iterations
the algorithm stops with a failure. In the NGMS Matlab code the process is
terminate with an error condition in this case.

As a final remark, we would like to stress that, if the globalization strategy
is adopted (G = 1), the Inexact-Newton method that is the basement of our
approach is globally convergent provided that the nonlinear function F is con-
tinuosly differentiable in an open set containing the generated sequence. Then,
if this condition is satisfied, the convergence does not depend in a critical way
on the closeness of the initial guess to the solution. Moreover, eventually the
Inexact Newton step s̄k is taken. In other words, the decrease condition (15) is
satisfied with λ = 1.

5 Numerical results

In this section we report on our numerical experience with the code NGMS.
The tests were conducted on a Intel Xeon (TM) 3.4 Ghz, 1GB RAM using

MATLAB 7.0. The machine precision is εm ' 2.10−16.
The initial guess y0 was those provided by the hystorical data, M nt was set

to 100 and tol nt = 10−6.
Results are reported in tables where the following data are shown: the pre-

conditioner used in the column P, the number it new of performed nonlinear
iterations, the average number A gmit of performed GMRES iterations, the
norm of the function F at the final iterate in column ‖F‖, the execution time in
seconds in column time, the time (in seconds) spent to build the preconditioner
and its LU factorization in column time prec, the number N bt of performed
backtracks in the linesearch strategy. Failures of the method due to a break-
down in the linear algebra phase (GMRES is not able to provide an Inexact
Newton step that satisfies (17)) are indicated in the tables by the symbol ”-”.
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T P it new A gmit ‖F‖ time

5 PD 21 3 7.d-7 3.3
10 PD 27 7 4.d-7 6.1
20 PD 25 15 5.d-7 11.6
30 PD 24 22 9.d-7 19.6
50 PD 24 47 8.d-7 57.9
50 PB 24 25 5.d-7 83.2
60 PD 24 70 9.d-7 107.1
60 PB 24 30 5.d-7 107.3
80 PD - - - -
80 PB 23 52 9.d-7 192.7
100 PB - - - -

Table 1: Temporary shock: CA G is increased by 1 per cent of CA GDP in
t1 = 2001, η = 0.5.

5.1 Multimod model

In the first sets of experiments we apply NGMS to the MULTIMOD (MULTI-
region econometric MODel) model, version Mark III, developed by the Interna-
tional Monetary Fund [30, 31, 28]. This is a forward-looking model with 601
equations, a maximum lag of 3 periods, and a maximum lead of 10 periods. To
our knowledge the analytic jacobian of the model is not available.

In order to analyze the computational performance of NGMS, we conducted
experiments with different choices of the forcing term η. We used constant
forcing terms and we compare the behaviour of our code solving the linear
systems to a modest accuracy (η = 0.5 and η = 0.1) and to a tight accuracy
(η = 10−4). Moreover, our runs were performed varying the value of T . More
precisely, we considered nonlinear systems arising by stacking T periods, with
T = 5, 10, 20, 30, 50, 60, 80, 100. As a result, the dimension of the problems
solved varies from 3005 to 60100. We always activate the globalization strategy
if necessary, and employ preconditioner PD. Moreover, in order to compare the
behaviour of the preconditioners, problems corresponding to T ≥ 50 have been
solved using both preconditioners PD and PB given by (13), that is PB with
k̃ = r̃ = 0.

In tables 1-3 we report the results obtained with different values of η and
different values of T . We started the simulation at t1 = 2001 and shocked the
variable of Canada’s government expeditures by the 1% of Canadian GDP for
the first year of simulation. In these simulations the linesearch strategy is never
activated.

As we can see from these tables and we can expect from the theory, the
number of outer iterations required by the Newton-GMRES method grows as
the accuracy in the solution of the nonlinear systems decreases.

On the other hand, the average number of GMRES iterations obviously
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T P it new A gmit ‖F‖ time time prec

5 PD 8 8 3.d-7 3 0.9
10 PD 8 20 5.d-7 4 0.9
20 PD 8 41 2.d-7 9 0.9
30 PD 8 64 1.d-7 17.3 0.9
50 PD 8 130 1.d-7 53.9 0.9
50 PB 8 70 1.d-7 76.4 47.3
60 PD 8 203 1.d-7 95.4 0.9
60 PB 8 82 1.d-7 96.1 55.2
80 PD - - - - -
80 PB 8 134 4.d-7 171.8 77.3
100 PB - - - - -

Table 2: Temporary shock: CA G is increased by 1 per cent of CA GDP in
t1 = 2001, η = 0.1.

T P it new A gmit ‖F‖ time

5 PD 3 31 1.d-7 2.5
10 PD 3 73 1.d-7 4.5
20 PD 3 162 1.d-7 12.3
30 PD 3 234 2.d-7 22.6
50 PD 3 521 7.d-7 78.5
50 PB 3 276 6.d-7 93.7
60 PD 4 719 3.d-9 132.3
60 PB 4 324 3.d-9 121.3
80 PD - - - -
80 PB 4 753 3.d-9 369.5
100 PB - - - -

Table 3: Temporary shock: CA G is increased by 1 per cent of CA GDP in
t1 = 2001, η = 10−4.
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Figure 1: temporary shock with different η

increases with decreasing η and becomes large whenever η = 10−4 is used. On
this set of problems preconditioner PB is more effective than preconditioner
PD: the average number of GMRES iterations reduces greatly when PB is used.
However, the cost of computing and factorizing the preconditioner must be
paid of. In fact, the cost of computing and factorizing PB is T times those of
computing and factorizing PD and this cost dominates the cost of the whole
procedure for T ≤ 50. This is shown in Table 2, where the time spent to build
the preconditioner and its LU factorization is reported. We underline that this
time is independent on T , whenever the preconditioner PD is used. Moreover,
this time does not depend on the forcing term η adopted. As a result, in the
solution of tests with T ≤ 50, even if less GMRES iterations are performed,
the execution time with PB is higher than with PD, independent on the chosen
forcing term.

On the other hand, we can observe that the Newton systems become more
difficult to be solved as T increases. In fact, the number of GMRES iterations
increases with T and for T > 50, PB becomes competitive. Finally, for T > 60,
PD does not accelerate the convergence of GMRES and this yields a failure of
NGMS. Then, for T > 60, PB has to be used. We would like to underline that
failures of the method due to failures of GMRES in providing an Inexact Newton
step satisfying (17) are not to be ascribed to the choice of the maximum number
of allowed GMRES iterations or to the freezing of the preconditioner. Indeed,
these failures occur in the first nonlinear iteration and are not recovered even
allowing a greater number of GMRES iterations before restarting (namely GM-
RES(250)) . The point is that the preconditioner is not effective and GMRES
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η = 0.1 η = 10−4

T P it new A gmit time it new A gmit time

5 PD 8 8 10..7 3 31 4.6
10 PD 8 20 11 3 73 6.6
20 PD 8 41 15.6 8 163 14.3
30 PD 8 63 23 3 233 24.8
50 PD 8 127 59.8 3 520 81.2
50 PB 8 70 411.5 3 276 187.5
60 PD 8 195 115.4 4 720 136.5
60 PB 8 81 500.3 4 323 226.4
80 PD - - - - - -
80 PB 8 134 718.9 4 720 585.3
100 PB - - - -

Table 4: Temporary shock: CA G is increased by 1 per cent of CA GDP in
t1 = 2001, recomputed preconditioner

gets stuck.
Looking to the overall computational time, in Figure 1 we plot the execution

time versus T , for different values of η. For T > 60, we report the execution
times with preconditioner PB .

From this picture it is clear that it is not necessary to solve the linear systems
with a tight accuracy and the best choice seems to be η = 0.1.

Moreover, we underline that the behaviour of the code on these tests does
not depend on the freezing of the Jacobian. In Table 4 we report, both for
η = 0.1 and η = 10−4 , the number of performed GMRES iterations and the
execution time, when the Jacobian is recomputed at each nonlinear iterations.
The comparison between this table and Tables 2 and Table 3 makes clear that
recomputation of the preconditioner does not yield reduction in the number of
GMRES iterations and obviously increases the execution time of the method.
The increase is more evident when η = 0.1 is used, as the method performes
a higher number of nonlinear iteration and this calls for a higher number of
preconditioner recomputations.

All things considered, in the remaining of the subsection η = 0.1 is used,
PD (frozen) is adopted whenever T ≤ 50, while PB (frozen) is employed for the
larger tests.

In passing we note that Gilli and Pauletto in [17] adopted the choice η = 10−4

combined with the recomputation of the Jacobian at each nonlinear iteration.
Therefore, our numerical experience (see Tables 2 and Table 4) makes clear
that our choice of using greater η (i.e. η = 0.1) and freezing the preconditioner
yields to an improvement of Gilli and Pauletto’s proposal. This is still true if the
analytic jacobian is available, since there is not any advantage in recomputing
the preconditioner in terms of GMRES iterations and the benefit of using a
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greater η does not depend on the time spent at the first nonlinear iteration to
approximate the Jacobian’s blocks needed to build the preconditioner.

In order to get more insight into the behaviour of our implementation of
Newton-GMRES methods, we compare our approach with the “exact” Newton
method obtained employing direct methods for sparse and large linear systems.
More precisely, the Newton method has been implemented solving the Newton
equation by the built-in Matlab function lu with syntax that allows to apply
LU factorization of sparse matrices developed in UMFPACK package [10]. We
have run the Newton method with T = 5, 10, 20, 30, 50. In all cases it takes
four nonlinear iterations to get the required approximate solution. Then, as
expected, the convergence of the nonlinear procedure is slower when only ap-
proximate solutions of the linear systems are computed. However, the execution
time is drammatically higher (from 134 seconds with T = 5 till 2894 seconds
with T = 50), when the exact approach is adopted. We underline the 95% per-
cent of the execution time is spent in the approximation of the nonzero blocks
of the Jacobian, while the time spent to solve the Newton equation is negligi-
ble because the built-in Matlab function lu is a C- precompiled function. This
clearly shows that the use of a matrix-free approach combined with a frozen
preconditioner allows to obtain a very efficient procedure as the approximation
of the Jacobian at each nonlinear iteration is avoided. Moreover, also a great
saving in terms of memory storage is obtained as only the diagonal blocks of
the Jacobian need to be stored. On the opposite, a large fill-in occurs in the LU
factorization of the Jacobian, even if the built-in Matlab function lu carries out
preordering and symbolic analysis to limit fill-in. This can been seen in figure
2 where we plot the sparsity pattern of the original Jacobian, along with the
sparsity factors of its factors L and U . These plots are obtained with T = 30
and the Jacobian has been evaluated at the initial guess used to perform the
runs.

The second set of experiments is carried out shocking with a permanent 10
per cent and 20 per cent increase in CA MT starting in t1 = 2001. This tests
are more difficult to be solved as we can see from Table 5. In fact, we needed to
activate the linesearch strategy in order to get the convergence of the method
in the majority of the runs.

Our final set of experiments with the Multimod model is carried out in
order to investigate if the use of the globalization strategy allows us to solve
models with “severe” shocks. This can be seen from Table 6, where, for T = 50,
we report the obtained results using eight shocks; namely, 3 increasing shocks
to real Governament expenditure (G) of France, 20% increase in the target
money supply (MT) of Canada, US, and Germany and an increase of 10% and
20% to the target money supply of all industrial countries. We can see from
this table that, thanks to the globalization strategy, we managed to solve all
the tests. At this regard it should be underlined that for some tests, a great
number of backtracks has been performed and the globalization strategy was
crucial to obtain the convergence. In fact the classical Newton method without
globalization strategy fails on these tests.
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Figure 2: sparsity pattern and number of nonzeros entries of the Jacobian and
its factors.

T P shock 10% shock 20%
it new A gmit N bt it new A gmit N bt

5 PD 10 10 1 11 10 1
10 PD 10 23 1 11 22 1
20 PD 9 44 0 10 47 1
30 PD 9 67 0 10 70 1
50 PD 10 157 1 10 142 1
60 PB 10 100 1 12 122 5
80 PB 18 220 22 22 240 34
100 PB 53 457 173 86 510 341

Table 5: Permanent shock: permanent 10 per cent and 20 per cent increase in
CA MT starting in t1 = 2001, η = 0.1.
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variable shock it new A gmit N bt ‖F‖ time

FR G 5% 10 113 0 6.d-7 62.1
FR G 10% 11 112 0 2.d-7 68.5
FR G 20% 16 101 3 3.d-7 86.6
CA MT 20% 10 142 1 7.d-7 78.2
US MT 20% 21 310 35 2.d-7 356.8
GR MT 20% 30 348 71 2.d-7 575.2
MT all countries 10% 18 268 23 3.d-7 261.9
MT all countries 20% 22 300 39 7.d-7 358.4

Table 6: Different kind of permanent shock with T = 50, η = 0.1 e P = PD.

5.2 Real Business Cycle model

In this subsection numerical results obtained with NGMS applied to a real busi-
ness cycle model are shown. Simulating the real business cycle models [27, 29]
is a popular topic in modern dynamic macroeconomics. The model specification
follows from the solution of dynamic optimization problems under uncertainty
by optimizing agents populating the economy. The set of conditions characteriz-
ing the equilibrium gives rise to a nonlinear dynamic system of equations. Here,
we use a basic RBC model with monopolistic competition, calibrated for the
US economy, as shown in [26]. When the framework is deterministic, the RBC
model is used with the assumption of perfect foresight. This means that, when
the effect of a temporary technology shock is analysed, at the beginning of the
period the shock is revealed to everyone. Armed with this information agents
then make their optimal consumption and investment decisions. Most often the
model is supposed to be in a state of equilibrium in the first period, when the
shock hits the economy. The purpose of the simulation is to describe the reac-
tion to the shock, until the system returns to the original state of equilibrium
(if the model is stable). Besides that, we study the response to a permanent
shock to technology, simulating the model trajectory in a long enough horizon
to come permanently to a new state of equilibrium. The basic RBC model is a
forward-looking model with 8 equations, lag and lead of 1 period. We solved the
model stacking T = 2000 periods with t1 = 1 and tf = 2001, so that we obtain
a nonlinear system of dimension 16000 × 16000. Based on the computational
experience gained on the MULTIMOD model we solved the nonlinear sytems
arising from this model using η = 0.1. We performed runs using preconditioner
PD, preconditioner PB with k̃ = r̃ = 0 (see (13)) and the banded preconditioner
PB with one lower and upper block diagonals, that is k̃ = r̃ = 1. Note that in
this latter case, PB ≡ F ′(y0). Observe that the matrix F ′(y0) is very sparse and
we have verified that only moderate fill-in occurs during its LU factorization.
Then, factors L and U remain really very sparse.

We start with a temporary (nine periods) shock to the level of technology
set to the value of 0.1 (the level of technology at steady state is zero). Then,

19

Page 19 of 40

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
shock P it new A gmit N bt ‖F‖ time

0.1 PD 6 335 0 4.d-7 140.8
0.1 PB 4 1.2 0 3.d-7 7.7
0.3 PD 7 353 0 4.d-7 169.7
0.3 PB 5 1.8 0 3.d-7 8.8
0.5 PD 7 352 0 3.d-7 164.4
0.5 PB 5 1.8 0 2.d-7 8.3
0.8 PD - - - - -
0.8 PB 7 3.6 2 3.d-7 11.2
1.0 PB 9 6.3 5 8.d-7 13.2

Table 7: Temporary (nine periods) shock to the level of technology; η = 0.1,
preconditioners PD and PB with k̃ = r̃ = 1 .

we increase the value of the shock up to 1. In theory the model goes back
asymptotically to initial equilibrium no matter of the size of the shock. When we
simulate numerically the model equations, it happens that big shocks (beyond
0.8) cause the model does not converge at all when a Newton-type method not
equipped with a globalizaztion strategy is employed. The numerical procedure
presented here, thanks to the globalization strategy, permits to simulate the
response to shocks of magnitude 1, as shown in Table 7, where results obtained
with both preconditioners PD and PB with k̃ = r̃ = 1 are given.

Some comments on Table 7 are in order. We observe that the construc-
tion and LU factorization of PD takes about 10−2 seconds where building and
factorizing PB requires about 5.6 second. However, Table 7 shows that our
approach with PB is really more efficient than with PD, despite the higher PB

construction cost. This is due to the fact that preconditioner PD is not ef-
fective even in the first nonlinear iteration, where it is built on information of
the current Jacobian. As a result, a great number of linear iterations is per-
formed. On the contrary, preconditioner PB is the true Jacobian at the first
nonlinear iteration and its performance does not deteriorate at all as the non-
linear process goes on. As a result, Inexact Newton steps are computed with
an extremely low number of GMRES iterations. So, the great savings in the
number of linear iterations compensates the extra work for computing PB . We
performed runs also with the block diagonal preconditioner PB given in (13)
(k̃ = r̃ = 0). However, despite in this case all diagonal blocks of F ′(y0) are
retained, the preconditioner shows the same behaviour as PD does. In other
words, retaing the diagonal blocks instead of approximating them with D1(y0)
does not enhance preconditioner’s performance. We would like to stress that this
behaviour of block diagonal preconditioners PD and PB does not depend on the
fact that they are taken frozen. This is evident from Figure 3, where, the per-
formance of the frozen preconditioners and of their recomputed counterparts, in
the solution oof the nonlinear system corresponding to the shock’s value 0.3, are
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Figure 3: Comparison between frozen and recomputed preconditioner:
GMRES(m) iterations versus the nonlinear iterations.

compared. Let PDR and PBR be the block diagonal preconditioners recomputed
at each nonlinear iteration, i.e. PDR = diag(D1(yk), . . . , D1(yk)), for k ≥ 0 and
PBR = diag(D1(yk), . . . , DT (yk)), for k ≥ 0. In the upper part of Figure 3, we
plot the number of GMRES(m) iterations performed at each nonlinear iteration
using the frozen preconditioner PD and the recomputed preconditioner PDR.
The same chart with PB and PBR is produced in the bottom part. We can
see from this picture that the frozen preconditioner slightly deteriorates with
respect to the recomputed one and the recomputation of the preconditioner at
each nonlinear iteration does not improve substantially its quality.

Note also that the globalization strategy is activate with larger shocks. As
the shock increases, the nonlinear systems become more difficult to be solved
and, when it is greater than 0.5, GMRES with preconditioner PD fails in pro-
ducing the Inexact Newton step at the first nonlinear iteration, so this failure
is not to be ascribed to the fact that the preconditioner is frozen.

We would like to stress that using preconditioner PB with k̃ = r̃ = 1 does not
produce memory saving with respect to a Newton approach employing direct
methods, as PB = F ′(y0), but the computation of the Jacobian at each nonlinear
iteration is avoided and a more efficient procedure is obtained. We underline
also that only the preconditioner is frozen, while the current Jacobian is “felt”
through the approximation of its action on a vector by finite-differences. So, the
method employed here is different from a traditional modified Newton method
where the Jacobian is held frozen. In table 8 we report the results obtained with
the “exact” Newton method obtained solving the Newton equation by the built-
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EN G EN

shock it new N bt ‖F‖ time it new ‖F‖ time

0.1 3 0 1.d-10 18.9 3 1.d-10 18.9
0.3 4 0 6.d-12 25.0 4 6.d-12 25.0
0.5 4 1 1.d-9 25.1 4 3.d-7 24.9
0.8 5 2 2.d-10 32.3 8 3.d-7 49.3
1.0 5 4 1.d-9 32.3 - - -

Table 8: Temporary (nine periods) shock to the level of technology; η = 0.1.

in Matlab function lu with syntax that allows to apply LU factorization of sparse
matrices developed in UMFPACK package [10]. We report results obtained
using the exact Newton method with and without globalization strategy. In
the Table, these two procedures are indicated as EN G (Exact Newton with
Globalization) and EN (Exact Newton), respectively.

The comparison between Table 7 and Table 8 shows that the inexact ap-
proach with preconditioner PB clearly outperforms EN G in terms of computa-
tional time. Moreover, Table 8 enlights that the globalization strategy is crucial
to obtain convergence for the largest shock even when the Newton direction
is computed by a direct solver. Indeed, Newton method without globalization
strategy fails in simulating response to the biggest shock. Further, the global-
ization strategy speeds-up the convergence of the Newton method when a shock
of magnitute 0.8 is applied, reducing the overall computational cost.

Finally, we would like to underline that both NGMS and EN G fail in solving
the model with shocks of magnitude greater than 1 despite the globalization
strategy; these failures are to be ascribed to the fact that the nonlinear function
F describing the model is not defined everywhere and both procedures generate
an iterate yk that does not belong to the domain of the function F .

The experiments with a permanent shock to the level of technology are
even more revealing the robustness and efficiency of our technique. We can
deal with permanent shocks of magnitude up to 0.3, as it is shown in Table 9.
We underline that the globalization strategy was crucial to obtain convergence
for shocks grater than 0.1. Indeed, both the inexact method and its exact
counterpart fail on these tests if the globalization strategy is not employed.
Finally, again failures for shocks values greater than 0.3 of both the inexact and
the exact approach, are to be ascribed to the fact that both methods do not
handle the situation where the nonlinear function is not defined everywhere in
IRn.

6 Conclusion and Perspective

We have presented our numerical experience with Newton-GMRES methods for
forward-looking models. In our approach the Jacobian of the model is not re-
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shock P it new A gmit N bt ‖F‖ time

0.1 PB 6 2.5 0 1.d-7 9.1
0.2 PB 7 3.7 1 2.d-7 10.2
0.3 PB 7 4.5 4 1.d-7 10.9

Table 9: Permanent shock to the level of technology; η = 0.1, preconditioner
PB .

quired and the method requires limited memory storage. The Newton-GMRES
method is wrapped into a nonmonotone linesearch strategy and this allows to
solve also models with severe shocks. The reported numerical results suggest
that the related Matlab code NGMS could be a valid tool for the numerical
solution of forward-looking models. However, it should be taken into account
that the variables involved in these models are not meaningfull everywhere; for
example, some variables need to be positive in order to have an economical
meaning. Moreover the domain of the nonlinear function F does not coincide
with IRn. Our numerical experimentation makes clear that when a Newton-like
method is employed to solve these models, it may happen that an iterate yk does
not belong to the domain of the function F and the procedure breaks down. In
the NGMS code, this event is reported with a warning message. It seems then
desiderable, to develop a variant of this code, able to overcome this failures
and to cope with the constraints that need to be imposed to the variables of
the model. Approaches able to handle the bounds on the variable have been
proposed in [2, 5, 3], but they cannot be realized in a matrix-free manner.
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Inexact Newton methods for model simulation

Stefania Bellavia § Silvia Magheri Claudia Miani ¶

14 febbraio 2011

Abstract

Robust and efficient solution techniques for solving macroeconometric

models are increasingly becoming a key factor in developing models em-

ployed by policy-making institutions for policy simulations and forecast-

ing. Traditionally, when solved in presence of forward-looking variables,

these models are nonlinear, large-scale and sparse and give rise to large

and highly structured nonlinear systems.

This paper proposes a Newton-GMRES method obtained tuning up

the basic algorithm by properly choosing the forcing terms sequence and

the preconditioning strategy. In addition, the Newton-GMRES method is

wrapped into a globalization strategy based on a non monotone linesearch

technique in order to enlarge its convergence basin and to enhance its

robustness. The combination of these ingredients yields a reliable method

with low memory requirements.

Numerical experiments using the MULTIMOD model and a basic Real

Business Cycle model are presented. A Matlab code based on this ap-

proach is provided.

keywords Inexact Newton methods, globalization strategy, preconditioners,
forward looking models, matrix-free

1 Introduction

Nonlinear forward-looking models solved for forward consistent expectations
give rise to large scale and highly structured nonlinear systems. In order to
cope with the high dimension of these systems, several algorithms were designed
(see for example [7, 24, 23, 14, 21, 20, 17, 34]). In the Extended Fair-Taylor
approach [14] the nonlinear system is split into small blocks and then an itera-
tive procedure is used to ensure consistency across blocks until the full system
converges. The horizon is extended to guarantee a stable path within the range
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broso 6/17, 50134, Firenze, Italy, e–mail: stefania.bellavia@de.unifi.it,
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of simulation. Peculiarity of this approach is the small memory requirement,
but in some situations it may fail to converge or it converges slowly. A widely
used technique is the Newton-Raphson based Laffargue-Boucekkine-Juillard (L-
B-J) algorithm [7, 23, 20]. In this approach the block-structure of the Jacobian
matrix of the nonlinear system is exploited in the linear algebra phase of the
Newton-method in order to save memory storage.

Interestingly, other techniques are possible and procedures based on Newton-
Krylov methods have been employed by Gilli and Pauletto [17, 34] to solve
forward-looking models. Krylov methods [25] are a broad class of iterative
linear algebra methods that includes GMRES [39], which is of particular interest
here. Newton-Krylov methods are combination of Newton-type procedures for
nonlinear systems and Krylov methods for solving the arising Newton linear
systems. Specifically, if we seek for a zero of a nonlinear function F : IRN → IRN ,
at a generic iteration k of a Newton-Krylov method, a Krylov solver is applied
to the Newton equation

F ′(yk)s = −F (yk), (1)

where yk is the current iterate and F ′ is the Jacobian matrix of the nonlinear
function F . Tipically, the Krylov solver is applied to the Newton equation, until
an iterate, say s̄ satisfies

‖F (yk) + F ′(yk)s̄‖ ≤ η̄k‖F (yk)‖,

where ηk ∈ (0, 1) is commonly called forcing term. The vector s̄ is an Inexact

Newton step and is used to form the next iterate. Good performance of Newton-
Krylov methods have been observed in the solution of a great variety of large
scale nonlinear systems (see for example [37, 35, 1, 4] and the references therein)
and in the solution of forward-looking models, as it is highlighted by the works
of Gilli and Pauletto [17, 34].

Here we focus on the numerical solution of forward-looking models by Newton-
GMRES methods, that are Newton-Krylov methods where the iterative solver
GMRES [39] is used in the linear algebra phase. An interesting feature of
Newton-GMRES methods is that they require only the action of the Jacobian of
the linear system on vectors. This allows matrix-free implementations in which
these products are approximated without forming and storing F ′(yk). For this
reason they are called matrix-free methods. This characteristic is shared with
all Newton-Krylov methods employing a transpose-free iterative linear solver as
GMRES, TFQMR [15], BICGSTAB [40]. The matrix-free feature of Newton-
GMRES enables saving computational time everytime forming the Jacobian
represents a significant fraction of the total execution time. We emphasize that
when the analitic Jacobian is not available, approximating it by finite differences
is generally the dominant cost of a Newton-type methods employing either it-
erative or direct solver for computing the Newton step.

Starting from Gilli and Pauletto approach, we move a step further investi-
gating on some algorithmic choices that are crucial for efficiency and robustness
of Newton-GMRES methods. First, we focus on the accuracy requirements for
the computation of the Inexact Newton step. Well chosen forcing terms allow
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to improve the efficiency of the method. Forward-looking models often show a
low level of nonlinearity and solving the Newton systems with high accuracy is
unproductive. In other words, small forcing terms in these applications, lead to
oversolve the Newton equation, by which we mean imposing an accuracy on the
solution of the Newton system that it is not necessary to produce a progress
towards the solution of the nonlinear system. Then, in the applications we are
dealing with, the choice of costant and relatively large forcing terms leads to
save linear iterations.

Second, we turn our attention to preconditioning issues. In fact, Krylov
iterative solvers sometime suffer from a slow convergence and therefore a pre-
conditioner for the Newton system must be used. The aim of preconditioning is
to reduce the number of Krylov solver iterations. Unfortunately, the need of a
preconditioner, in principle destroys the matrix-free feature of Newton-Krylov
solvers. Widely used algebraic preconditioner are Jacobian-based, requiring the
evaluation of the Jacobian blocks at each nonlinear iteration, which is computa-
tionally expensive. A possible alternative is given by the frozen preconditioner
that is reusing the same preconditioner on several Newton iterations. Very of-
ten, the performance of a frozen preconditioner deteriorates with the progress
of the nonlinear iterations. This is not true in this context, as given the weak
nonlinearities of economic models, the Jacobian of the arising nonlinear systems
does not change significantly from one nonlinear iteration to another and high
accuracy in the solution of the Newton equation is not required. Indeed, from
our numerical experience we noticed only a mild deterioration of the frozen pre-
conditioner’s performance as the nonlinear process goes on. Therefore, in our
approach the preconditioner is computed only at the first nonlinear iteration
and then it is reused in all the subsequent iterations. Then, the combination of
frozen preconditioners and matrix-free methods allows to avoid the computation
of the Jacobian at each nonlinear iteration.

Third, we embed the Newton-GMRES method into a nonmonotone line-
search globalization strategy. In fact, the guarantee of convergence of Newton-
Krylov methods is local, as in any Newton-like method, and the numerical
method may fail in finding a solution even though a well defined solution ex-
ists. The globalization strategy allows to enlarge the convergence region of the
Newton-GMRES method and enhances its robustness. Line-search globalization
strategies date back to 70’s and are widely used in the numerical optimization
community, but to our knowledge they are seldom used in computational econo-
metrics, despite their use allows to obtain convergence in economic experiments
where great magnitude of the shocks are involved.

Combining the previously outlined ingredients we obtain a procedure that
requires low computational cost and memory requirements, moreover the con-
vergence is guaranteed provided that the nonlinear function defining the model
is continuosly differentiable in a region containing the generated sequence.

We show the behaviour of our procedure on the MULTIMOD (MULTI-region

econometric MODel) model, developed by the International Monetary Fund
[30, 31, 28] and we compare our approach with the original Gilli and Pauletto
approach [17] and with the Newton method obtained computing the newton
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step by direct methods for sparse and large linear systems. Moreover, in order
to get more insight into the the behaviour and the robustness of our proposal
we apply our procedure to nonlinear systems arising from a real business cycle
models given in [26] and we compare its performance with those of the Newton
method employing direct solvers, with and without globalization strategy.

A Matlab code, named NGMS (Newton GMRES for Model Simulation),
based on this approach has been developed and will be freely accessible through
the web site: http://ngms.de.unifi.it. With NGMS we intend to provide a
theoretically well-founded solver that could be a valid tool for the numerical
solution of forward looking models.

2 Forward looking models

The presence of forward (rational) expectations introduces a dependency of the
solution in period t on anticipated changes at future dates. Solving for consistent
expectation means that the rational expectations are given by the conditional
expectation of the model. The forward dependency requires the specification of
a ’terminal point’ beyond the (lenght-T )horizon of the simulation. We stack the
model period-by-period and solve simultaneously through T periods. Consider,
at period t the following nonlinear forward-looking model:











f1(yt−r̄, ....yt, ..., yt+k̄, zt, a) = 0
...

fn(yt−r̄, ....yt, ..., yt+k̄, zt, a) = 0

(2)

where yt ∈ IRn are the endogenous variables at period t, zt ∈ IRn are the
exogenous variables at period t, the parameters a ∈ IRp are given. Here, r̄
indicates the maximum lag and k̄ the maximum lead. Due to the presence of
leads and lags, solving the model (2) in [t1, tf ], requires r̄ initial conditions and
k̄ final conditions: i.e. the values of yt1−i, i = 1, . . . , r̄ and ytf+j , j = 1, . . . , k̄.
Once these conditions are available the equations are stacked from period t1 to
period tf and the following nonlinear system is obtained:

F (y) = 0 F : IRnT → IRnT , y ∈ IRnT (3)

where T = tf − t1 + 1,

y =







yt1

...
ytf






∈ IRnT , F (y) =







F1(y)
...

FT (y)






(4)

Fj(y) =







f1(ytj−r̄, . . . , ytj
, . . . , ytj+k̄, z, a)
...

fn(ytj−r̄, . . . , ytj
, . . . , ytj+k̄, z, a)






, j = 1, . . . , T. (5)
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Then, given the matrices:

Dj(y) =
∂Fj(y)

∂yj
∈ IRn×n, j = 1, . . . , T

Ei,j(y) = ∂Fi(y)
∂yi−j

∈ IRn×n, i = 2, . . . , T j = 1, . . . , min(i − 1, r̄)

Ai,j(y) = ∂Fi(y)
∂yi+j

∈ IRn×n, i = 1, . . . , T − 1 j = 1, . . . , min(T − i, k̄)

the Jacobian F ′ of F exhibits the following block-banded structure:

F ′(y) =











































D1(y) A1,1(y) · · · · · · A1,k̄(y)

E2,1(y) D2(y) A2,1(y) · · · · · · A2,k̄(y)

E3,2(y) E3,1(y) D3(y) A3,1(y) · · · A3,k̄−1(y)

. . .
. . .

. . .
. . .

ET,r̄(y) · · · ET,1(y) DT (y)











































. (6)

3 Newton-Krylov methods

In this section we briefly describe Newton-Krylov methods for the solution of
nonlinear systems of equations. Given a system of nonlinear equations F (y) = 0,
where F : IRN 7→ IRN is continuously differentiable, Newton-Krylov methods
belong to the class of Inexact Newton methods [11], iterative processes that
result in the following scheme, where the superscript k denotes the iteration’s
number:

Let y0 be given.
For k = 0 until “convergence” do:

Find some η̄k ∈ [0, 1) and s̄k that satisfy

‖F (yk) + F ′(yk)s̄k‖ ≤ η̄k‖F (yk)‖, (7)

Set yk+1 = yk + s̄k.

Clearly, these methods are variants of Newton’s method in which at each
iteration the Newton equation

F ′(yk)s = −F (yk), k ≥ 0, (8)

is solved only approximately.
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In a Newton-Krylov framework, a Krylov linear solver is applied to (8) and

it is iterate till an Inexact Newton step s̄k satisfying

‖F (yk) + F ′(yk)s̄k‖ ≤ η̄k‖F (yk)‖,

is computed. This approach is widely used whenever large scale nonlinear sys-
tems have to be solved.

Local convergence analysis for Inexact Newton methods [11] shows that,
under standard conditions on the function F , if y0 is sufficiently close to a
solution y∗ of the nonlinear system and the η̄k’s are uniformly bounded away
from one, then the sequence {yk} converges to y∗. Moreover, the choice of the
forcing term η̄k has a strong relevance on the performance of Inexact Newton
methods as it is shown in [11]. At this regard, we recall that, if {η̄k} → 0
then {yk} exhibits local q-superlinear convergence to a solution y∗, while if
{η̄k} = O(F (yk)) the convergence rate is quadratic. In [13] two choices of η̄k’s
yielding up to quadratic rate of convergence have been proposed.

Let us now focus on Newton-GMRES, namely the Newton-Krylov method
where GMRES is used to compute the Inexact Newton step.

GMRES (Generalized Minimal RESidual) is an iterative Krylov method for
solving indefinite systems of linear equations [39]. GMRES applied to (8) min-
imizes the residual norm ‖F (yk) + F ′(yk)s‖ over all corrections in the current
Krylov subspace. Because iterates are based on this norm minimization prop-
erty, the method does not break down in exact arithmetic, i.e., a new iterate
can always be constructed if the current iterate is not the solution, provided the
coefficient matrix is nonsingular.

An attractive feature of GMRES applied to the Newton equation (8) is that
it requires only the action of the Jacobian F ′ on a vector v. For an appropriately
chosen scalar ε, this action can be approximated by finite differences ([25])

F ′(y)v ∼ F (y + εv) − F (y)

ε
, (9)

giving rise to a process that is referred to as “matrix-free”. In other words, a
Newton-GMRES method can be implemented without requiring the computa-
tion and the storage of the Jacobian F ′.

4 Newton-GMRES for model simulation

Here, we focus on the solution of (3) and we describe the approach taken in
implementing a Newton-GMRES method specially designed for this class of
problems. We assume that the Jacobian is not available and we approximate
the blocks of the Jacobian that are needed to build the preconditioner, by finite
differences.

More precisely, we describe our choice of the forcing terms sequence {η̄k},
of the preconditioner and of the employed non monotone globalization strategy.
Finally, we give the algorithm summarizing the adopted approaches.
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4.1 The forcing terms

Our choice of the forcing terms sequence is strictly related to the nature of
macroeconometric models. Indeed, these models generally do not show an high
level of nonlinearity and are equipped with a good approximation of the solution.
In fact, even in presence of ”moderate” shocks, the approximation given by the
hystorical series are good enough and classical Newton-methods converge in a
very low number of iterations. Then, it is not necessary to solve the Newton
equation (8) to high accuracy, as a crude approximation of the Newton step is
very often good enough to produce progress towards the solution. This way,
pointless iterations of the iterative solver GMRES are avoided. In other words,
in this type of applications, a less accurate solution of (8) may be both cheaper
and effective enough in reducing the norm of F .

Then, despite a forcing sequence {η̄k} converging to zero produces a fast
convergence of the Inexact-Newton method to the solution, due to the charac-
teristic of the class of models we are interested in, here we choose a constant
forcing sequence with η̄k = η̄0 for any k.

4.2 The preconditioner

Effective preconditioning of the Newton systems is the most crucial ingredient
for obtaining good performance of Newton-Krylov methods. The term precon-
ditioning refers to transforming the Newton system into another system with
more favoureable properties for the iterative solver (GMRES in our implemen-
tation). A preconditioner for the k-th Newton system is a matrix P k such that
the preconditioned system takes the following form:

(P k)−1F ′(yk)s = −(P k)−1F (yk).

Generally speaking, if P k is a good preconditioner for F ′(yk), we expect that the
iterative solver converges faster on the preconditioned system than on the origi-
nal one. When GMRES, or any iterative solver, is applied to the preconditioned
system it is not necessary to form the preconditioned matrix (P k)−1F ′(yk) ex-
plicitely; the action of the preconditioned matrix on a vector v is accomplished
approximating the vector w = F ′(yk)v by finite-differences and computing
z = (P k)−1w solving a linear system of the form P kz = w ( (P k)−1 is not
explicitely known). Algebraic preconditioner gives the preconditioner in a fac-
torized and sparse form so that the solution of such linear systems is not an
expensive task [6].

In our implementation of the Newton-GMRES method for forward-looking
models, we provide two different preconditioners. Our choice of the precondi-
tioners is strictly connected to the choice of the forcing terms: as we solve the
linear systems only to a modest accuracy we can rely on unexpensive precon-
ditioners, which are good enough to provide a step s̄k satisfying (7) within a
reasonable number of GMRES iterations, despite are not able to really capture
the ill-conditioning of the Jacobian matrix.
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A quite common preconditioner for block-banded matrix as (6) evaluated at

yk, is the so called Jacoby preconditioner, i.e.

P k =











D1(y
k)

D2(y
k)

. . .

DT (yk)











. (10)

Anyway, as observed in [34], blocks Dj(y
k) for j = 1, . . . , T share the same

structure. In fact, at the k-th nonlinear iteration, Dj(y
k) =

∂Fj(y
k)

∂yj
with Fj

given in (4) and the only difference among the Fj is the period they are referred
to. Therefore, in [17], at each Newton-GMRES iteration, the block diagonal
preconditioner P k = diag(D1(y

k), . . . , D1(y
k)) is used, with D1(y

k) given by
the (1,1) block diagonal of F ′(yk). Then, following this strategy, at iteration k
of the Newton-GMRES method only the (1,1) block diagonal of F ′(yk) needs
to be evaluated. Further, its LU decomposition has to be computed, since at
each GMRES iteration a linear system with coefficient matrix P k has to be
solved. Gilli and Pauletto provided interesting numerical results adopting this
approach.

However, due to the low level of nonlinearity of these models it is not nec-
essary to recompute the preconditioner at each nonlinear iteration. In our ap-
proach, we compute the preconditioner only at the first Newton-GMRES iter-
ation and then we freeze it, that is we use the same preconditioner throughout
the whole iterative process. This way, we need only to compute the (1,1) block
diagonal of F ′(y0) and its LU decomposition. Summarizing, at each Newton-
GMRES iteration, we use the preconditioner

P k ≡ PD = diag(D1(y
0), . . . , D1(y

0)) k ≥ 0 (11)

where D1(y
0) is given by the (1,1) block diagonal of F ′(y0). In the sequel we will

refer to this preconditioner with the name PD (Block-Diagonal Preconditioner).
However, when T becomes large, this preconditioner may become less effec-

tive. Then, we rely on the following more expensive preconditioner and at each
nonlinear iteration we employ

P k ≡ PB =



























D1(y
0) A1,1(y

0) · · · A1,k̃(y0)

E2,1(y
0) D2(y

0) A2,1(y
0) · · · A′

2,k̃
(y0)

E3,2(y
0) E3,1(y

0) D3(y
0) · · · A3,k̃−1(y

0)

. . .
. . .

. . .

ET,r̃(y
0) · · · DT (y0)



























(12)

with k̃ ≤ k̄ and r̃ ≤ r̄. In the sequel PB (Block-Banded Preconditioner) will
indicate preconditioner (12).
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Clearly, when k̃ = k̄ and r̃ = r̄ we have PB = F ′(y0), while when k̃ = 0 and

r̃ = 0, PB reduces to:

PB = diag(D1(y
0), . . . , DT (y0)). (13)

In any case, we remark that we always freeze the preconditioner, that is
the factorization of the preconditioner is computed only at the first nonlinear
iteration. The blocks of F ′(y0) required by the preconditioner are approximated
by finite differences.

4.3 The globalization strategy

In the approach detailed above the linear systems are solved only to a modest
accuracy and as a consequence we rely on a very rough approximation of the
Newton step. Then we may need to merge our Inexact-Newton method into a
globalization strategy. This allows us to monitor the progress of the method
toward a solution of the nonlinear system and to reduce the value of the merit
function ‖F‖2 even if we do not have at disposal a good step to update the
current iterate. Moreover, in some situation, for example when severe shocks
are used or when we simulate the model for forecasting, the initial guess provided
by the hystorical data is not good enough and Newton-like methods fail. In these
cases, a globalization strategy is fundamental to enlarge the convergence basin
of a Newton-like method and to enhance its robustness.

There are two major categories of globalizations: linesearch methods in
which step lenghts are adjusted (usually shortened) to obtain a satisfactory
step and trust region methods in which a step is ideally chosen minimizing a
local model of ‖F‖2 within a specified trust-region (see [25, 12, 32] for details).
A further possibility is to employ homotopy methods. In this approach an
easy problem with well known solution is gradually transformed into the orig-
inal problem F (y) = 0, building an homotopy map or varying the parameter
values in case of parameter dependent nonlinear systems. Homotopy methods
are known to be more robust than Newton-like methods embedded into a line-
search or a trust-region strategy, but they are generally more expensive and be-
come complicated near a bifurcation point, requiring sophisticated approaches
[32]. Moreover, we are not aware of implementations of homotopy methods
in a matrix-free setting as the Jacobian is generally required to devise efficient
and theoretical supported implementations of these strategies. Regarding trust-
region methods, dogleg strategy in conjunction with Inexact-Newton methods
can be devised [36], but at least an approximation of the Jacobian is required.
Then, in our opinion, in this context the linesearch strategy is the best option
for the following reasons: easy to implement, matrix-free compatible, strong
theoretically supported in conjunction with Inexact Newton methods.

Inexact Newton methods embedded into a linesearch strategy result in the
following scheme. At iteration k, the Inexact Newton step s̄k is computed and
the new iterate has the form yk+1 = yk + λs̄k where 0 < λ ≤ 1 is such that

||F (yk+1)‖2 < (1 − αλ)‖F (yk)‖2 (14)
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with α ∈ (0, 1). It is quite important to note, at this stage, that an Inexact
Newton step satisfying (7) with ηk < 1 is ensured to be a descent direction for
‖F (y)‖2 at yk, i.e.

(∇‖F (yk)‖2)T s̄k < 0,

see [8]. Therefore, the existence of λ satisfying (14) is guaranteed.
Moreover, our numerical experience enlighted that a nonmonotone strategy

is enough to enhance robustness of Newton-GMRES methods when applied
to forward-looking models. In other words, it is not necessary to impose a
monotone decrease of the merit function ‖F‖2, but it is enough to obtain a
reduction within q ≥ 1 iterations. Then, the acceptance criterion (14) is relaxed
and the nonlinear residual at yk+1 is required to satisfy the following condition:

||F (yk+1)‖2 < (1 − αλ)Mk (15)

where
Mk = max{‖F (yk)‖2, ‖F (yk−1)‖2, . . . , ‖F (yk−q)‖2}, (16)

q ≥ 0 is a given integer and the superscript k indicates the iteration number.
The choices q > 0 and q = 0 correspond to a nonmonotone and to a monotone
strategy, respectively.

4.4 The algorithm and the Matlab code

Now, we sketch the algorithm that is the core of our code.

NGMS Method

Let y0, η ∈ (0, 1), α ∈ (0, 1), 0 < θm < θmax < 1, q ≥ 1, P, r̃, k̃, G, M nt, tol nt
be given.
1. If P=1

Compute by finite differences the (1,1) diagonal block of F ′(y0)
and perform its LU factorization.

else
Compute by finite differences the preconditioner (12)
and perform its LU factorization.

2. For iter = 1, . . . , M nt
2.1 Using GMRES (with preconditioner PD given in (11) if P=1,

with preconditioner PB given in (12) otherwise),
compute s̄k such that

‖F (yk) + F ′(yk)s̄k‖ ≤ η‖F (yk)‖.

2.2 Set λ = 1.
2.3 If G=1 ( Perform the linesearch strategy)

2.3.1Compute Mk by (16).
2.3.2 While ‖F (yk + λs̄k)‖2 ≥ (1 − αλ)Mk do:

Choose θ ∈ [θm, θmax].
Update λ = θλ.
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2.4 Set yk+1 = yk + λs̄k.
2.5 If ‖F (yk+1)‖ < tol nt then EXIT

The previous algorithm is the core of the Matlab code NGMS. We have
striven to make NGMS as simple to use as possible. The use of NGMS requires
only a minimal description of the problem to be solved: the size of the problem,
the initial approximate solution, the stopping tolerances tol nt, the number of
allowed nonlinear iteration M nt and a user-supplied function for evaluating the
non linear function (2). At this regard, it should be underlined that in many
macroeconometrics models the variables can be reordered so that the nonlinear
systems exhibits a large block of interdependent equations, which is preceeded
and followed by recursive equations. This way, only the block of interdependent
equations is needed to be solved by the NGMS method. Our Matlab code is
structured in order to exploit this decomposition whenever it is available.

Finally, the user is required to specify the value of the forcing term (that is
taken constant throughout all the iterative process), the choice of the precondi-
tioner and if the globalization strategy is desidered.

The parameters P, r̃ and k̃, in input govern the choice of preconditioner. If P
is set to one the preconditioner PD given in (11) is used. Its factors L and U are
computed at the beginning of the iterative process and are then used at each
iteration of GMRES to solve the linear systems with coefficient matrix given by
the preconditioner PD. With the choice P=2, k̃ = 0 and r̃ = 0, the preconditioner
PB given by (13) is used. In this case, as well as in the more expensive case, k̃ > 0
and/or r̃ > 0 the LU factorization of the whole preconditioner is computed. The
LU factorizations needed to factorize the preconditioner are computed with the
built-in Matlab function lu with syntax that allows to apply LU factorization of
sparse matrices developed in UMFPACK package [10]. In this case preordering
and symbolic analysis that limit fill-in in the LU factorization are carried out.

In Step, 2.1, we use GMRES(m) (GMRES with restart) with m = 150, a
maximum of 10 restarts and with null initial guess. If GMRES is not able to
provide a step s̄k satisfing (7) within the maximum number of allowed iterations,
if

||F (yk) + F ′(yk)s̄k||
||F (yk)|| < 1 (17)

we go on with the last step computed by GMRES, otherwise the NGMS Matlab
code stops with a failure. This choice is motivated by the fact that if (17)
is satisfied, then s̄k is a descent direction for ‖F‖2 at yk. Therefore, if the
globalization strategy is activated, s̄k may be good enough to produce progress
towards the solution, even if it does not solve the Newton equation to the
prescribed accuracy.

Products of F ′(yk) with vectors that are required by GMRES are approxi-
mated using the finite-difference formula given in (9) with

ε =
√

εm‖yk‖/‖v‖,

where εm is the machine precision.
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In Step 2.3.1-2.3.2 the nonmonotone linesearch strategy is performed, if it is

required by the user. That is, if the parameter G that governs this choice is set
to 1. In the linesearch strategy, moving along the direction of the initial Inexact
step s̄k, successively shorter steps of the form sk = λs̄k are selected until the
sufficient decrease condition (15) is met; this process is commonly refereed to
as backtracking. In our Matlab implementation, the parameter α is set to 10−4,
q is set to 6 and the choice of the scalar θ is performed using the three-point
parabolic model as described in [25]. If the sufficient decrease condition (15) is
not satisfied within 10 backtracks, we go on with the last computed value of λ.

In Step 2.5 the tolerance tol nt is used to control the level of accuracy and
the algorithm is stopped as soon as the stopping criterion

‖F (yk+1)‖ < tol nt (18)

is met. If the above stopping criterion is not satisfied within M nt iterations
the algorithm stops with a failure. In the NGMS Matlab code the process is
terminate with an error condition in this case.

As a final remark, we would like to stress that, if the globalization strategy
is adopted (G = 1), the Inexact-Newton method that is the basement of our
approach is globally convergent provided that the nonlinear function F is con-
tinuosly differentiable in an open set containing the generated sequence. Then,
if this condition is satisfied, the convergence does not depend in a critical way
on the closeness of the initial guess to the solution. Moreover, eventually the
Inexact Newton step s̄k is taken. In other words, the decrease condition (15) is
satisfied with λ = 1.

5 Numerical results

In this section we report on our numerical experience with the code NGMS.
The tests were conducted on a Intel Xeon (TM) 3.4 Ghz, 1GB RAM using

MATLAB 7.0. The machine precision is εm ' 2.10−16.
The initial guess y0 was those provided by the hystorical data, M nt was set

to 100 and tol nt = 10−6.
Results are reported in tables where the following data are shown: the pre-

conditioner used in the column P, the number it new of performed nonlinear
iterations, the average number A gmit of performed GMRES iterations, the
norm of the function F at the final iterate in column ‖F‖, the execution time in
seconds in column time, the time (in seconds) spent to build the preconditioner
and its LU factorization in column time prec, the number N bt of performed
backtracks in the linesearch strategy. Failures of the method due to a break-
down in the linear algebra phase (GMRES is not able to provide an Inexact
Newton step that satisfies (17)) are indicated in the tables by the symbol ”-”.
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T P it new A gmit ‖F‖ time

5 PD 21 3 7.d-7 3.3
10 PD 27 7 4.d-7 6.1
20 PD 25 15 5.d-7 11.6
30 PD 24 22 9.d-7 19.6
50 PD 24 47 8.d-7 57.9
50 PB 24 25 5.d-7 83.2
60 PD 24 70 9.d-7 107.1
60 PB 24 30 5.d-7 107.3
80 PD - - - -
80 PB 23 52 9.d-7 192.7
100 PB - - - -

Table 1: Temporary shock: CA G is increased by 1 per cent of CA GDP in
t1 = 2001, η = 0.5.

5.1 Multimod model

In the first sets of experiments we apply NGMS to the MULTIMOD (MULTI-

region econometric MODel) model, version Mark III, developed by the Interna-
tional Monetary Fund [30, 31, 28]. This is a forward-looking model with 601
equations, a maximum lag of 3 periods, and a maximum lead of 10 periods. To
our knowledge the analytic jacobian of the model is not available.

In order to analyze the computational performance of NGMS, we conducted
experiments with different choices of the forcing term η. We used constant
forcing terms and we compare the behaviour of our code solving the linear
systems to a modest accuracy (η = 0.5 and η = 0.1) and to a tight accuracy
(η = 10−4). Moreover, our runs were performed varying the value of T . More
precisely, we considered nonlinear systems arising by stacking T periods, with
T = 5, 10, 20, 30, 50, 60, 80, 100. As a result, the dimension of the problems
solved varies from 3005 to 60100. We always activate the globalization strategy
if necessary, and employ preconditioner PD. Moreover, in order to compare the
behaviour of the preconditioners, problems corresponding to T ≥ 50 have been
solved using both preconditioners PD and PB given by (13), that is PB with
k̃ = r̃ = 0.

In tables 1-3 we report the results obtained with different values of η and
different values of T . We started the simulation at t1 = 2001 and shocked the
variable of Canada’s government expeditures by the 1% of Canadian GDP for
the first year of simulation. In these simulations the linesearch strategy is never
activated.

As we can see from these tables and we can expect from the theory, the
number of outer iterations required by the Newton-GMRES method grows as
the accuracy in the solution of the nonlinear systems decreases.

On the other hand, the average number of GMRES iterations obviously
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T P it new A gmit ‖F‖ time time prec

5 PD 8 8 3.d-7 3 0.9
10 PD 8 20 5.d-7 4 0.9
20 PD 8 41 2.d-7 9 0.9
30 PD 8 64 1.d-7 17.3 0.9
50 PD 8 130 1.d-7 53.9 0.9
50 PB 8 70 1.d-7 76.4 47.3
60 PD 8 203 1.d-7 95.4 0.9
60 PB 8 82 1.d-7 96.1 55.2
80 PD - - - - -
80 PB 8 134 4.d-7 171.8 77.3
100 PB - - - - -

Table 2: Temporary shock: CA G is increased by 1 per cent of CA GDP in
t1 = 2001, η = 0.1.

T P it new A gmit ‖F‖ time

5 PD 3 31 1.d-7 2.5
10 PD 3 73 1.d-7 4.5
20 PD 3 162 1.d-7 12.3
30 PD 3 234 2.d-7 22.6
50 PD 3 521 7.d-7 78.5
50 PB 3 276 6.d-7 93.7
60 PD 4 719 3.d-9 132.3
60 PB 4 324 3.d-9 121.3
80 PD - - - -
80 PB 4 753 3.d-9 369.5
100 PB - - - -

Table 3: Temporary shock: CA G is increased by 1 per cent of CA GDP in
t1 = 2001, η = 10−4.
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