Stefania Bellavia 
email: stefania.bellavia@de.unifi.it@homepage
  
Silvia Magheri 
  
Claudia Miani 
email: clau-dia.miani@bancaditalia.it
  
  
  
Inexact Newton methods for model simulation

Keywords: Inexact Newton methods, globalization strategy, preconditioners, forward looking models, matrix-free Inexact Newton methods, globalization strategy, preconditioners, forward looking models, matrix-free

published or not. The documents may come    

Introduction

Nonlinear forward-looking models solved for forward consistent expectations give rise to large scale and highly structured nonlinear systems. In order to cope with the high dimension of these systems, several algorithms were designed (see for example [START_REF] Boucekkine | An Alternative Methodology for Solving Nonlinear Forward-Looking Models[END_REF][START_REF] Juillard | An algorithm competition: First-order iterations versus Newton-based techniques[END_REF][START_REF] Juillard | DYNARE: A program for the resolution and simulation of dynamic models with forward variables through the use of a relaxation algorithm[END_REF][START_REF] Fair | Solution and Maximum Likelihood Estimation of Dynamic Nonlinear Rational Expectations[END_REF][START_REF] Hollinger | Beyond Newton: Robust Method for Solving Large Nonlinear Models in TROLL[END_REF][START_REF] Hollinger | The Stacked-Time Simulator in TROLL: A Robust Algorithm for Solving Forward-Looking Models[END_REF][START_REF] Gilli | Krylov Methods for Solving Models with Forward-Looking Variables[END_REF][START_REF] Pauletto | Computational solution of large-scale macroeconometric models[END_REF]). In the Extended Fair-Taylor approach [START_REF] Fair | Solution and Maximum Likelihood Estimation of Dynamic Nonlinear Rational Expectations[END_REF] the nonlinear system is split into small blocks and then an iterative procedure is used to ensure consistency across blocks until the full system converges. The horizon is extended to guarantee a stable path within the range of simulation. Peculiarity of this approach is the small memory requirement, but in some situations it may fail to converge or it converges slowly. A widely used technique is the Newton-Raphson based Laffargue-Boucekkine-Juillard (L-B-J) algorithm [START_REF] Boucekkine | An Alternative Methodology for Solving Nonlinear Forward-Looking Models[END_REF][START_REF] Juillard | DYNARE: A program for the resolution and simulation of dynamic models with forward variables through the use of a relaxation algorithm[END_REF][START_REF] Hollinger | The Stacked-Time Simulator in TROLL: A Robust Algorithm for Solving Forward-Looking Models[END_REF]. In this approach the block-structure of the Jacobian matrix of the nonlinear system is exploited in the linear algebra phase of the Newton-method in order to save memory storage.

Interestingly, other techniques are possible and procedures based on Newton-Krylov methods have been employed by Gilli and Pauletto [START_REF] Gilli | Krylov Methods for Solving Models with Forward-Looking Variables[END_REF][START_REF] Pauletto | Computational solution of large-scale macroeconometric models[END_REF] to solve forward-looking models. Krylov methods [START_REF] Kelley | Iterative Methods for Linear and Nonlinear Equations[END_REF] are a broad class of iterative linear algebra methods that includes GMRES [START_REF] Saad | GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems[END_REF], which is of particular interest here. Newton-Krylov methods are combination of Newton-type procedures for nonlinear systems and Krylov methods for solving the arising Newton linear systems. Specifically, if we seek for a zero of a nonlinear function F : IR N → IR N , at a generic iteration k of a Newton-Krylov method, a Krylov solver is applied to the Newton equation

F (y k )s = -F (y k ), (1) 
where y k is the current iterate and F is the Jacobian matrix of the nonlinear function F . Tipically, the Krylov solver is applied to the Newton equation, until an iterate, say s satisfies

F (y k ) + F (y k )s ≤ ηk F (y k ) ,
where η k ∈ (0, 1) is commonly called forcing term. The vector s is an Inexact Newton step and is used to form the next iterate. Good performance of Newton-Krylov methods have been observed in the solution of a great variety of large scale nonlinear systems (see for example [START_REF] Pernice | NITSOL: a new iterative solver for nonlinear systems[END_REF][START_REF] Pawlowski | Globalization techniques for Newton-Krylov methods and applications to the fullycoupled solution of the Navier-Stokes equations[END_REF][START_REF] Bellavia | Globalization strategies for Newton-Krylov methods for stabilized FEM discretization of Navier-Stokes equations[END_REF][START_REF] Bellavia | A globally convergent Newton-GMRES subspace method for systems of nonlinear equations[END_REF] and the references therein) and in the solution of forward-looking models, as it is highlighted by the works of Gilli and Pauletto [START_REF] Gilli | Krylov Methods for Solving Models with Forward-Looking Variables[END_REF][START_REF] Pauletto | Computational solution of large-scale macroeconometric models[END_REF].

Here we focus on the numerical solution of forward-looking models by Newton-GMRES methods, that are Newton-Krylov methods where the iterative solver GMRES [START_REF] Saad | GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems[END_REF] is used in the linear algebra phase. An interesting feature of Newton-GMRES methods is that they require only the action of the Jacobian of the linear system on vectors. This allows matrix-free implementations in which these products are approximated without forming and storing F (y k ). For this reason they are called matrix-free methods. This characteristic is shared with all Newton-Krylov methods employing a transpose-free iterative linear solver as GMRES, TFQMR [START_REF] Freund | A transpose-free quasi-minimum residual algorithm for non-Hermitian linear systems[END_REF], BICGSTAB [START_REF] Van Der Vorst | BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems[END_REF]. The matrix-free feature of Newton-GMRES enables saving computational time everytime forming the Jacobian represents a significant fraction of the total execution time. We emphasize that when the analitic Jacobian is not available, approximating it by finite differences is generally the dominant cost of a Newton-type methods employing either iterative or direct solver for computing the Newton step.

Starting from Gilli and Pauletto approach, we move a step further investigating on some algorithmic choices that are crucial for efficiency and robustness of Newton-GMRES methods. First, we focus on the accuracy requirements for the computation of the Inexact Newton step. Well chosen forcing terms allow to improve the efficiency of the method. Forward-looking models often show a low level of nonlinearity and solving the Newton systems with high accuracy is unproductive. In other words, small forcing terms in these applications, lead to oversolve the Newton equation, by which we mean imposing an accuracy on the solution of the Newton system that it is not necessary to produce a progress towards the solution of the nonlinear system. Then, in the applications we are dealing with, the choice of costant and relatively large forcing terms leads to save linear iterations.

Second, we turn our attention to preconditioning issues. In fact, Krylov iterative solvers sometime suffer from a slow convergence and therefore a preconditioner for the Newton system must be used. The aim of preconditioning is to reduce the number of Krylov solver iterations. Unfortunately, the need of a preconditioner, in principle destroys the matrix-free feature of Newton-Krylov solvers. Widely used algebraic preconditioner are Jacobian-based, requiring the evaluation of the Jacobian blocks at each nonlinear iteration, which is computationally expensive. A possible alternative is given by the frozen preconditioner that is reusing the same preconditioner on several Newton iterations. Very often, the performance of a frozen preconditioner deteriorates with the progress of the nonlinear iterations. This is not true in this context, as given the weak nonlinearities of economic models, the Jacobian of the arising nonlinear systems does not change significantly from one nonlinear iteration to another and high accuracy in the solution of the Newton equation is not required. Indeed, from our numerical experience we noticed only a mild deterioration of the frozen preconditioner's performance as the nonlinear process goes on. Therefore, in our approach the preconditioner is computed only at the first nonlinear iteration and then it is reused in all the subsequent iterations. Then, the combination of frozen preconditioners and matrix-free methods allows to avoid the computation of the Jacobian at each nonlinear iteration.

Third, we embed the Newton-GMRES method into a nonmonotone linesearch globalization strategy. In fact, the guarantee of convergence of Newton-Krylov methods is local, as in any Newton-like method, and the numerical method may fail in finding a solution even though a well defined solution exists. The globalization strategy allows to enlarge the convergence region of the Newton-GMRES method and enhances its robustness. Line-search globalization strategies date back to 70's and are widely used in the numerical optimization community, but to our knowledge they are seldom used in computational econometrics, despite their use allows to obtain convergence in economic experiments where great magnitude of the shocks are involved.

Combining the previously outlined ingredients we obtain a procedure that requires low computational cost and memory requirements, moreover the convergence is guaranteed provided that the nonlinear function defining the model is continuosly differentiable in a region containing the generated sequence.

We show the behaviour of our procedure on the MULTIMOD (MULTI-region econometric MODel) model, developed by the International Monetary Fund [START_REF] Masson | MULTIMOD: A Multi-Region Econometric Model[END_REF][START_REF] Masson | MULTIMOD Mark II: A Revised and Extended Model[END_REF][START_REF] Laxton | MULTI-MOD Mark III: The Core Dynamic and Steady-State Models[END_REF] and we compare our approach with the original Gilli and Pauletto approach [START_REF] Gilli | Krylov Methods for Solving Models with Forward-Looking Variables[END_REF] and with the Newton method obtained computing the newton step by direct methods for sparse and large linear systems. Moreover, in order to get more insight into the the behaviour and the robustness of our proposal we apply our procedure to nonlinear systems arising from a real business cycle models given in [START_REF] King | Resuscitating Real Business Cycles[END_REF] and we compare its performance with those of the Newton method employing direct solvers, with and without globalization strategy.

A Matlab code, named NGMS (Newton GMRES for Model Simulation), based on this approach has been developed and will be freely accessible through the web site: http://ngms.de.unifi.it. With NGMS we intend to provide a theoretically well-founded solver that could be a valid tool for the numerical solution of forward looking models.

Forward looking models

The presence of forward (rational) expectations introduces a dependency of the solution in period t on anticipated changes at future dates. Solving for consistent expectation means that the rational expectations are given by the conditional expectation of the model. The forward dependency requires the specification of a 'terminal point' beyond the (lenght-T )horizon of the simulation. We stack the model period-by-period and solve simultaneously through T periods. Consider, at period t the following nonlinear forward-looking model:

     f 1 (y t-r , ....y t , ..., y t+ k, z t , a) = 0 . . . f n (y t-r , ....y t , ..., y t+ k, z t , a) = 0 (2) 
where y t ∈ IR n are the endogenous variables at period t, z t ∈ IR n are the exogenous variables at period t, the parameters a ∈ IR p are given. Here, r indicates the maximum lag and k the maximum lead. Due to the presence of leads and lags, solving the model (2) in [t 1 , t f ], requires r initial conditions and k final conditions: i.e. the values of y t1-i , i = 1, . . . , r and y t f +j , j = 1, . . . , k. Once these conditions are available the equations are stacked from period t 1 to period t f and the following nonlinear system is obtained:

F (y) = 0 F : IR nT → IR nT , y ∈ IR nT (3) 
where Then, given the matrices:

T = t f -t 1 + 1, y =    y t1 . . . y t f    ∈ IR nT , F (y) =    F 1 (y) . . . F T (y)    (4) 
D j (y) = ∂Fj (y) ∂yj ∈ IR n×n , j = 1, . . . , T E i,j (y) = ∂Fi(y) ∂yi-j ∈ IR n×n , i = 2, . . . , T j = 1, . . . , min(i -1, r) A i,j (y) = ∂Fi(y) ∂yi+j ∈ IR n×n , i = 1, . . . , T -1 j = 1, . . . , min(T -i, k)
the Jacobian F of F exhibits the following block-banded structure:

F (y) =                      D 1 (y) A 1,1 (y) • • • • • • A 1, k(y) E 2,1 (y) D 2 (y) A 2,1 (y) • • • • • • A 2, k(y) E 3,2 (y) E 3,1 (y) D 3 (y) A 3,1 (y) • • • A 3, k-1 (y) . . . . . . . . . . . . E T,r (y) • • • E T,1 (y) D T (y)                      . ( 6 
)
3 Newton-Krylov methods

In this section we briefly describe Newton-Krylov methods for the solution of nonlinear systems of equations. Given a system of nonlinear equations F (y) = 0, where F : IR N → IR N is continuously differentiable, Newton-Krylov methods belong to the class of Inexact Newton methods [START_REF] Dembo | Inexact Newton methods[END_REF], iterative processes that result in the following scheme, where the superscript k denotes the iteration's number:

Let y 0 be given. For k = 0 until "convergence" do: Find some ηk ∈ [0, 1) and sk that satisfy

F (y k ) + F (y k )s k ≤ ηk F (y k ) , (7) 
Set

y k+1 = y k + sk .
Clearly, these methods are variants of Newton's method in which at each iteration the Newton equation

F (y k )s = -F (y k ), k ≥ 0, (8) 
is solved only approximately. In a Newton-Krylov framework, a Krylov linear solver is applied to (8) and it is iterate till an Inexact Newton step sk satisfying

F (y k ) + F (y k )s k ≤ ηk F (y k ) ,
is computed. This approach is widely used whenever large scale nonlinear systems have to be solved.

Local convergence analysis for Inexact Newton methods [START_REF] Dembo | Inexact Newton methods[END_REF] shows that, under standard conditions on the function F , if y 0 is sufficiently close to a solution y * of the nonlinear system and the ηk 's are uniformly bounded away from one, then the sequence {y k } converges to y * . Moreover, the choice of the forcing term ηk has a strong relevance on the performance of Inexact Newton methods as it is shown in [START_REF] Dembo | Inexact Newton methods[END_REF]. At this regard, we recall that, if {η k } → 0 then {y k } exhibits local q-superlinear convergence to a solution y * , while if {η k } = O(F (y k )) the convergence rate is quadratic. In [START_REF] Eisenstat | Choosing the forcing terms in an inexact Newton method[END_REF] two choices of ηk 's yielding up to quadratic rate of convergence have been proposed.

Let us now focus on Newton-GMRES, namely the Newton-Krylov method where GMRES is used to compute the Inexact Newton step.

GMRES (Generalized Minimal RESidual) is an iterative Krylov method for solving indefinite systems of linear equations [START_REF] Saad | GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems[END_REF]. GMRES applied to (8) minimizes the residual norm F (y k ) + F (y k )s over all corrections in the current Krylov subspace. Because iterates are based on this norm minimization property, the method does not break down in exact arithmetic, i.e., a new iterate can always be constructed if the current iterate is not the solution, provided the coefficient matrix is nonsingular.

An attractive feature of GMRES applied to the Newton equation ( 8) is that it requires only the action of the Jacobian F on a vector v. For an appropriately chosen scalar , this action can be approximated by finite differences ( [START_REF] Kelley | Iterative Methods for Linear and Nonlinear Equations[END_REF])

F (y)v ∼ F (y + v) -F (y) , (9) 
giving rise to a process that is referred to as "matrix-free". In other words, a Newton-GMRES method can be implemented without requiring the computation and the storage of the Jacobian F .

Newton-GMRES for model simulation

Here, we focus on the solution of (3) and we describe the approach taken in implementing a Newton-GMRES method specially designed for this class of problems. We assume that the Jacobian is not available and we approximate the blocks of the Jacobian that are needed to build the preconditioner, by finite differences.

More precisely, we describe our choice of the forcing terms sequence {η k }, of the preconditioner and of the employed non monotone globalization strategy. Finally, we give the algorithm summarizing the adopted approaches. 

The forcing terms

Our choice of the forcing terms sequence is strictly related to the nature of macroeconometric models. Indeed, these models generally do not show an high level of nonlinearity and are equipped with a good approximation of the solution. In fact, even in presence of "moderate" shocks, the approximation given by the hystorical series are good enough and classical Newton-methods converge in a very low number of iterations. Then, it is not necessary to solve the Newton equation ( 8) to high accuracy, as a crude approximation of the Newton step is very often good enough to produce progress towards the solution. This way, pointless iterations of the iterative solver GMRES are avoided. In other words, in this type of applications, a less accurate solution of (8) may be both cheaper and effective enough in reducing the norm of F .

Then, despite a forcing sequence {η k } converging to zero produces a fast convergence of the Inexact-Newton method to the solution, due to the characteristic of the class of models we are interested in, here we choose a constant forcing sequence with ηk = η0 for any k.

The preconditioner

Effective preconditioning of the Newton systems is the most crucial ingredient for obtaining good performance of Newton-Krylov methods. The term preconditioning refers to transforming the Newton system into another system with more favoureable properties for the iterative solver (GMRES in our implementation). A preconditioner for the k-th Newton system is a matrix P k such that the preconditioned system takes the following form:

(P k ) -1 F (y k )s = -(P k ) -1 F (y k ).
Generally speaking, if P k is a good preconditioner for F (y k ), we expect that the iterative solver converges faster on the preconditioned system than on the original one. When GMRES, or any iterative solver, is applied to the preconditioned system it is not necessary to form the preconditioned matrix (P k ) -1 F (y k ) explicitely; the action of the preconditioned matrix on a vector v is accomplished approximating the vector w = F (y k )v by finite-differences and computing z = (P k ) -1 w solving a linear system of the form P k z = w ( (P k ) -1 is not explicitely known). Algebraic preconditioner gives the preconditioner in a factorized and sparse form so that the solution of such linear systems is not an expensive task [START_REF] Benzi | Preconditioning Techniques for Large Linear Systems: A Survey[END_REF].

In our implementation of the Newton-GMRES method for forward-looking models, we provide two different preconditioners. Our choice of the preconditioners is strictly connected to the choice of the forcing terms: as we solve the linear systems only to a modest accuracy we can rely on unexpensive preconditioners, which are good enough to provide a step sk satisfying [START_REF] Boucekkine | An Alternative Methodology for Solving Nonlinear Forward-Looking Models[END_REF] within a reasonable number of GMRES iterations, despite are not able to really capture the ill-conditioning of the Jacobian matrix. A quite common preconditioner for block-banded matrix as (6) evaluated at y k , is the so called Jacoby preconditioner, i.e.

P k =      D 1 (y k ) D 2 (y k ) . . . D T (y k )      . ( 10 
)
Anyway, as observed in [START_REF] Pauletto | Computational solution of large-scale macroeconometric models[END_REF], blocks D j (y k ) for j = 1, . . . , T share the same structure. In fact, at the k-th nonlinear iteration, D j (y k ) = ∂Fj (y k ) ∂yj with F j given in (4) and the only difference among the F j is the period they are referred to. Therefore, in [START_REF] Gilli | Krylov Methods for Solving Models with Forward-Looking Variables[END_REF], at each Newton-GMRES iteration, the block diagonal preconditioner P k = diag(D 1 (y k ), . . . , D 1 (y k )) is used, with D 1 (y k ) given by the (1,1) block diagonal of F (y k ). Then, following this strategy, at iteration k of the Newton-GMRES method only the (1,1) block diagonal of F (y k ) needs to be evaluated. Further, its LU decomposition has to be computed, since at each GMRES iteration a linear system with coefficient matrix P k has to be solved. Gilli and Pauletto provided interesting numerical results adopting this approach.

However, due to the low level of nonlinearity of these models it is not necessary to recompute the preconditioner at each nonlinear iteration. In our approach, we compute the preconditioner only at the first Newton-GMRES iteration and then we freeze it, that is we use the same preconditioner throughout the whole iterative process. This way, we need only to compute the (1,1) block diagonal of F (y 0 ) and its LU decomposition. Summarizing, at each Newton-GMRES iteration, we use the preconditioner

P k ≡ P D = diag(D 1 (y 0 ), . . . , D 1 (y 0 )) k ≥ 0 ( 11 
)
where D 1 (y 0 ) is given by the (1,1) block diagonal of F (y 0 ). In the sequel we will refer to this preconditioner with the name P D (Block-Diagonal Preconditioner). However, when T becomes large, this preconditioner may become less effective. Then, we rely on the following more expensive preconditioner and at each nonlinear iteration we employ

P k ≡ P B =              D 1 (y 0 ) A 1,1 (y 0 ) • • • A 1, k(y 0 ) E 2,1 (y 0 ) D 2 (y 0 ) A 2,1 (y 0 ) • • • A 2, k(y 0 ) E 3,2 (y 0 ) E 3,1 (y 0 ) D 3 (y 0 ) • • • A 3, k-1 (y 0 ) . . . . . . . . . E T,r (y 0 ) • • • D T (y 0 )              (12) 
with k ≤ k and r ≤ r. In the sequel P B (Block-Banded Preconditioner) will indicate preconditioner [START_REF] Dennis | Numerical methods for uncostrained optimization and nonlinear equations[END_REF]. Clearly, when k = k and r = r we have P B = F (y 0 ), while when k = 0 and r = 0, P B reduces to:

P B = diag(D 1 (y 0 ), . . . , D T (y 0 )). ( 13 
)
In any case, we remark that we always freeze the preconditioner, that is the factorization of the preconditioner is computed only at the first nonlinear iteration. The blocks of F (y 0 ) required by the preconditioner are approximated by finite differences.

The globalization strategy

In the approach detailed above the linear systems are solved only to a modest accuracy and as a consequence we rely on a very rough approximation of the Newton step. Then we may need to merge our Inexact-Newton method into a globalization strategy. This allows us to monitor the progress of the method toward a solution of the nonlinear system and to reduce the value of the merit function F 2 even if we do not have at disposal a good step to update the current iterate. Moreover, in some situation, for example when severe shocks are used or when we simulate the model for forecasting, the initial guess provided by the hystorical data is not good enough and Newton-like methods fail. In these cases, a globalization strategy is fundamental to enlarge the convergence basin of a Newton-like method and to enhance its robustness.

There are two major categories of globalizations: linesearch methods in which step lenghts are adjusted (usually shortened) to obtain a satisfactory step and trust region methods in which a step is ideally chosen minimizing a local model of F 2 within a specified trust-region (see [START_REF] Kelley | Iterative Methods for Linear and Nonlinear Equations[END_REF][START_REF] Dennis | Numerical methods for uncostrained optimization and nonlinear equations[END_REF][START_REF] Nocedal | Numerical Optimization[END_REF] for details). A further possibility is to employ homotopy methods. In this approach an easy problem with well known solution is gradually transformed into the original problem F (y) = 0, building an homotopy map or varying the parameter values in case of parameter dependent nonlinear systems. Homotopy methods are known to be more robust than Newton-like methods embedded into a linesearch or a trust-region strategy, but they are generally more expensive and become complicated near a bifurcation point, requiring sophisticated approaches [START_REF] Nocedal | Numerical Optimization[END_REF]. Moreover, we are not aware of implementations of homotopy methods in a matrix-free setting as the Jacobian is generally required to devise efficient and theoretical supported implementations of these strategies. Regarding trustregion methods, dogleg strategy in conjunction with Inexact-Newton methods can be devised [START_REF] Pawlowski | Inexact Newton dogleg methods[END_REF], but at least an approximation of the Jacobian is required. Then, in our opinion, in this context the linesearch strategy is the best option for the following reasons: easy to implement, matrix-free compatible, strong theoretically supported in conjunction with Inexact Newton methods.

Inexact Newton methods embedded into a linesearch strategy result in the following scheme. At iteration k, the Inexact Newton step sk is computed and the new iterate has the form y k+1 = y k + λs k where 0 < λ ≤ 1 is such that with α ∈ (0, 1). It is quite important to note, at this stage, that an Inexact Newton step satisfying [START_REF] Boucekkine | An Alternative Methodology for Solving Nonlinear Forward-Looking Models[END_REF] with η k < 1 is ensured to be a descent direction for F (y) 2 at y k , i.e.

(∇ F (y k ) 2 ) T sk < 0, see [START_REF] Brown | Convergence theory of nonlinear Newton-Krylov algorithms[END_REF]. Therefore, the existence of λ satisfying ( 14) is guaranteed. Moreover, our numerical experience enlighted that a nonmonotone strategy is enough to enhance robustness of Newton-GMRES methods when applied to forward-looking models. In other words, it is not necessary to impose a monotone decrease of the merit function F 2 , but it is enough to obtain a reduction within q ≥ 1 iterations. Then, the acceptance criterion ( 14) is relaxed and the nonlinear residual at y k+1 is required to satisfy the following condition:

||F (y k+1 ) 2 < (1 -αλ)M k (15) 
where

M k = max{ F (y k ) 2 , F (y k-1 ) 2 , . . . , F (y k-q ) 2 }, (16) 
q ≥ 0 is a given integer and the superscript k indicates the iteration number.

The choices q > 0 and q = 0 correspond to a nonmonotone and to a monotone strategy, respectively.

The algorithm and the Matlab code

Now, we sketch the algorithm that is the core of our code.

NGMS Method

Let y 0 , η ∈ (0, 1), α ∈ (0, 1), 0 < θ m < θ max < 1, q ≥ 1, P, r, k, G, M nt, tol nt be given.

If P=1

Compute by finite differences the (1,1) diagonal block of F (y 0 ) and perform its LU factorization. else Compute by finite differences the preconditioner [START_REF] Dennis | Numerical methods for uncostrained optimization and nonlinear equations[END_REF] and perform its LU factorization. 2. For iter = 1, . . . , M nt 2.1 Using GMRES (with preconditioner P D given in (11) if P=1, with preconditioner P B given in (12) otherwise), compute sk such that The previous algorithm is the core of the Matlab code NGMS. We have striven to make NGMS as simple to use as possible. The use of NGMS requires only a minimal description of the problem to be solved: the size of the problem, the initial approximate solution, the stopping tolerances tol nt, the number of allowed nonlinear iteration M nt and a user-supplied function for evaluating the non linear function [START_REF] Bellavia | STRSCNE: A scaled trust-region solver for constrained nonlinear equations[END_REF]. At this regard, it should be underlined that in many macroeconometrics models the variables can be reordered so that the nonlinear systems exhibits a large block of interdependent equations, which is preceeded and followed by recursive equations. This way, only the block of interdependent equations is needed to be solved by the NGMS method. Our Matlab code is structured in order to exploit this decomposition whenever it is available.

F (y k ) + F (y k )s k ≤ η F (y k ) . 2.2 Set λ = 1. 2.3 If G=1 ( Perform the linesearch strategy) 2.3.1Compute M k by (16). 2.3.2 While F (y k + λ sk ) 2 ≥ (1 -αλ)M k do: Choose θ ∈ [θ m , θ max ]. Update λ = θλ.
Finally, the user is required to specify the value of the forcing term (that is taken constant throughout all the iterative process), the choice of the preconditioner and if the globalization strategy is desidered.

The parameters P, r and k, in input govern the choice of preconditioner. If P is set to one the preconditioner P D given in ( 11) is used. Its factors L and U are computed at the beginning of the iterative process and are then used at each iteration of GMRES to solve the linear systems with coefficient matrix given by the preconditioner P D . With the choice P=2, k = 0 and r = 0, the preconditioner P B given by ( 13) is used. In this case, as well as in the more expensive case, k > 0 and/or r > 0 the LU factorization of the whole preconditioner is computed. The LU factorizations needed to factorize the preconditioner are computed with the built-in Matlab function lu with syntax that allows to apply LU factorization of sparse matrices developed in UMFPACK package [START_REF] Davis | Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal method[END_REF]. In this case preordering and symbolic analysis that limit fill-in in the LU factorization are carried out.

In Step, 2.1, we use GMRES(m) (GMRES with restart) with m = 150, a maximum of 10 restarts and with null initial guess. If GMRES is not able to provide a step sk satisfing [START_REF] Boucekkine | An Alternative Methodology for Solving Nonlinear Forward-Looking Models[END_REF] within the maximum number of allowed iterations, if

||F (y k ) + F (y k )s k || ||F (y k )|| < 1 (17) 
we go on with the last step computed by GMRES, otherwise the NGMS Matlab code stops with a failure. This choice is motivated by the fact that if ( 17) is satisfied, then sk is a descent direction for F 2 at y k . Therefore, if the globalization strategy is activated, sk may be good enough to produce progress towards the solution, even if it does not solve the Newton equation to the prescribed accuracy. Products of F (y k ) with vectors that are required by GMRES are approximated using the finite-difference formula given in [START_REF] Conn | Trust-region methods[END_REF] In Step 2.3.1-2.3.2 the nonmonotone linesearch strategy is performed, if it is required by the user. That is, if the parameter G that governs this choice is set to 1. In the linesearch strategy, moving along the direction of the initial Inexact step sk , successively shorter steps of the form s k = λs k are selected until the sufficient decrease condition ( 15) is met; this process is commonly refereed to as backtracking. In our Matlab implementation, the parameter α is set to 10 -4 , q is set to 6 and the choice of the scalar θ is performed using the three-point parabolic model as described in [START_REF] Kelley | Iterative Methods for Linear and Nonlinear Equations[END_REF]. If the sufficient decrease condition ( 15) is not satisfied within 10 backtracks, we go on with the last computed value of λ.

In Step 2.5 the tolerance tol nt is used to control the level of accuracy and the algorithm is stopped as soon as the stopping criterion

F (y k+1 ) < tol nt (18) 
is met. If the above stopping criterion is not satisfied within M nt iterations the algorithm stops with a failure. In the NGMS Matlab code the process is terminate with an error condition in this case.

As a final remark, we would like to stress that, if the globalization strategy is adopted (G = 1), the Inexact-Newton method that is the basement of our approach is globally convergent provided that the nonlinear function F is continuosly differentiable in an open set containing the generated sequence. Then, if this condition is satisfied, the convergence does not depend in a critical way on the closeness of the initial guess to the solution. Moreover, eventually the Inexact Newton step sk is taken. In other words, the decrease condition ( 15) is satisfied with λ = 1.

Numerical results

In this section we report on our numerical experience with the code NGMS.

The tests were conducted on a Intel Xeon (TM) 3.4 Ghz, 1GB RAM using MATLAB 7.0. The machine precision is m 2.10 -16 .

The initial guess y 0 was those provided by the hystorical data, M nt was set to 100 and tol nt = 10 -6 .

Results are reported in tables where the following data are shown: the preconditioner used in the column P, the number it new of performed nonlinear iterations, the average number A gmit of performed GMRES iterations, the norm of the function F at the final iterate in column F , the execution time in seconds in column time, the time (in seconds) spent to build the preconditioner and its LU factorization in column time prec, the number N bt of performed backtracks in the linesearch strategy. Failures of the method due to a breakdown in the linear algebra phase (GMRES is not able to provide an Inexact Newton step that satisfies [START_REF] Gilli | Krylov Methods for Solving Models with Forward-Looking Variables[END_REF]) are indicated in the tables by the symbol "-". 

Multimod model

In the first sets of experiments we apply NGMS to the MULTIMOD (MULTIregion econometric MODel) model, version Mark III, developed by the International Monetary Fund [START_REF] Masson | MULTIMOD: A Multi-Region Econometric Model[END_REF][START_REF] Masson | MULTIMOD Mark II: A Revised and Extended Model[END_REF][START_REF] Laxton | MULTI-MOD Mark III: The Core Dynamic and Steady-State Models[END_REF]. This is a forward-looking model with 601 equations, a maximum lag of 3 periods, and a maximum lead of 10 periods. To our knowledge the analytic jacobian of the model is not available. In order to analyze the computational performance of NGMS, we conducted experiments with different choices of the forcing term η. We used constant forcing terms and we compare the behaviour of our code solving the linear systems to a modest accuracy (η = 0.5 and η = 0.1) and to a tight accuracy (η = 10 -4 ). Moreover, our runs were performed varying the value of T . More precisely, we considered nonlinear systems arising by stacking T periods, with T = 5, 10, 20, 30, 50, 60, 80, 100. As a result, the dimension of the problems solved varies from 3005 to 60100. We always activate the globalization strategy if necessary, and employ preconditioner P D . Moreover, in order to compare the behaviour of the preconditioners, problems corresponding to T ≥ 50 have been solved using both preconditioners P D and P B given by [START_REF] Eisenstat | Choosing the forcing terms in an inexact Newton method[END_REF], that is P B with k = r = 0.

In tables 1-3 we report the results obtained with different values of η and different values of T . We started the simulation at t 1 = 2001 and shocked the variable of Canada's government expeditures by the 1% of Canadian GDP for the first year of simulation. In these simulations the linesearch strategy is never activated.

As we can see from these tables and we can expect from the theory, the number of outer iterations required by the Newton-GMRES method grows as the accuracy in the solution of the nonlinear systems decreases.

On the other hand, the average number of GMRES iterations obviously 13 increases with decreasing η and becomes large whenever η = 10 -4 is used. On this set of problems preconditioner P B is more effective than preconditioner P D : the average number of GMRES iterations reduces greatly when P B is used. However, the cost of computing and factorizing the preconditioner must be paid of. In fact, the cost of computing and factorizing P B is T times those of computing and factorizing P D and this cost dominates the cost of the whole procedure for T ≤ 50. This is shown in Table 2, where the time spent to build the preconditioner and its LU factorization is reported. We underline that this time is independent on T , whenever the preconditioner P D is used. Moreover, this time does not depend on the forcing term η adopted. As a result, in the solution of tests with T ≤ 50, even if less GMRES iterations are performed, the execution time with P B is higher than with P D , independent on the chosen forcing term.

On the other hand, we can observe that the Newton systems become more difficult to be solved as T increases. In fact, the number of GMRES iterations increases with T and for T > 50, P B becomes competitive. Finally, for T > 60, P D does not accelerate the convergence of GMRES and this yields a failure of NGMS. Then, for T > 60, P B has to be used. We would like to underline that failures of the method due to failures of GMRES in providing an Inexact Newton step satisfying [START_REF] Gilli | Krylov Methods for Solving Models with Forward-Looking Variables[END_REF] are not to be ascribed to the choice of the maximum number of allowed GMRES iterations or to the freezing of the preconditioner. Indeed, these failures occur in the first nonlinear iteration and are not recovered even allowing a greater number of GMRES iterations before restarting (namely GM-RES(250)) . The point is that the preconditioner is not effective and GMRES 15 Looking to the overall computational time, in Figure 1 we plot the execution time versus T , for different values of η. For T > 60, we report the execution times with preconditioner P B .

From this picture it is clear that it is not necessary to solve the linear systems with a tight accuracy and the best choice seems to be η = 0.1.

Moreover, we underline that the behaviour of the code on these tests does not depend on the freezing of the Jacobian. In Table 4 we report, both for η = 0.1 and η = 10 -4 , the number of performed GMRES iterations and the execution time, when the Jacobian is recomputed at each nonlinear iterations. The comparison between this table and Tables 2 andTable 3 makes clear that recomputation of the preconditioner does not yield reduction in the number of GMRES iterations and obviously increases the execution time of the method. The increase is more evident when η = 0.1 is used, as the method performes a higher number of nonlinear iteration and this calls for a higher number of preconditioner recomputations.

All things considered, in the remaining of the subsection η = 0.1 is used, P D (frozen) is adopted whenever T ≤ 50, while P B (frozen) is employed for the larger tests.

In passing we note that Gilli and Pauletto in [START_REF] Gilli | Krylov Methods for Solving Models with Forward-Looking Variables[END_REF] adopted the choice η = 10 -4 combined with the recomputation of the Jacobian at each nonlinear iteration. Therefore, our numerical experience (see Tables 2 andTable 4) makes clear that our choice of using greater η (i.e. η = 0.1) and freezing the preconditioner yields to an improvement of Gilli and Pauletto's proposal. This is still true if the analytic jacobian is available, since there is not any advantage in recomputing the preconditioner in terms of GMRES iterations and the benefit of using a greater η does not depend on the time spent at the first nonlinear iteration to approximate the Jacobian's blocks needed to build the preconditioner.

In order to get more insight into the behaviour of our implementation of Newton-GMRES methods, we compare our approach with the "exact" Newton method obtained employing direct methods for sparse and large linear systems. More precisely, the Newton method has been implemented solving the Newton equation by the built-in Matlab function lu with syntax that allows to apply LU factorization of sparse matrices developed in UMFPACK package [START_REF] Davis | Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal method[END_REF]. We have run the Newton method with T = 5, 10, 20, 30, 50. In all cases it takes four nonlinear iterations to get the required approximate solution. Then, as expected, the convergence of the nonlinear procedure is slower when only approximate solutions of the linear systems are computed. However, the execution time is drammatically higher (from 134 seconds with T = 5 till 2894 seconds with T = 50), when the exact approach is adopted. We underline the 95% percent of the execution time is spent in the approximation of the nonzero blocks of the Jacobian, while the time spent to solve the Newton equation is negligible because the built-in Matlab function lu is a C-precompiled function. This clearly shows that the use of a matrix-free approach combined with a frozen preconditioner allows to obtain a very efficient procedure as the approximation of the Jacobian at each nonlinear iteration is avoided. Moreover, also a great saving in terms of memory storage is obtained as only the diagonal blocks of the Jacobian need to be stored. On the opposite, a large fill-in occurs in the LU factorization of the Jacobian, even if the built-in Matlab function lu carries out preordering and symbolic analysis to limit fill-in. This can been seen in figure 2 where we plot the sparsity pattern of the original Jacobian, along with the sparsity factors of its factors L and U . These plots are obtained with T = 30 and the Jacobian has been evaluated at the initial guess used to perform the runs.

The second set of experiments is carried out shocking with a permanent 10 per cent and 20 per cent increase in CA MT starting in t 1 = 2001. This tests are more difficult to be solved as we can see from Table 5. In fact, we needed to activate the linesearch strategy in order to get the convergence of the method in the majority of the runs.

Our final set of experiments with the Multimod model is carried out in order to investigate if the use of the globalization strategy allows us to solve models with "severe" shocks. This can be seen from Table 6, where, for T = 50, we report the obtained results using eight shocks; namely, 3 increasing shocks to real Governament expenditure (G) of France, 20% increase in the target money supply (MT) of Canada, US, and Germany and an increase of 10% and 20% to the target money supply of all industrial countries. We can see from this table that, thanks to the globalization strategy, we managed to solve all the tests. At this regard it should be underlined that for some tests, a great number of backtracks has been performed and the globalization strategy was crucial to obtain the convergence. In fact the classical Newton method without globalization strategy fails on these tests. 

Real Business Cycle model

In this subsection numerical results obtained with NGMS applied to a real business cycle model are shown. Simulating the real business cycle models [START_REF] Kydland | Time to Build and Aggregate Fluctuations[END_REF][START_REF] Long | Real business cycles[END_REF] is a popular topic in modern dynamic macroeconomics. The model specification follows from the solution of dynamic optimization problems under uncertainty by optimizing agents populating the economy. The set of conditions characterizing the equilibrium gives rise to a nonlinear dynamic system of equations. Here, we use a basic RBC model with monopolistic competition, calibrated for the US economy, as shown in [START_REF] King | Resuscitating Real Business Cycles[END_REF]. When the framework is deterministic, the RBC model is used with the assumption of perfect foresight. This means that, when the effect of a temporary technology shock is analysed, at the beginning of the period the shock is revealed to everyone. Armed with this information agents then make their optimal consumption and investment decisions. Most often the model is supposed to be in a state of equilibrium in the first period, when the shock hits the economy. The purpose of the simulation is to describe the reaction to the shock, until the system returns to the original state of equilibrium (if the model is stable). Besides that, we study the response to a permanent shock to technology, simulating the model trajectory in a long enough horizon to come permanently to a new state of equilibrium. The basic RBC model is a forward-looking model with 8 equations, lag and lead of 1 period. We solved the model stacking T = 2000 periods with t 1 = 1 and t f = 2001, so that we obtain a nonlinear system of dimension 16000 × 16000. Based on the computational experience gained on the MULTIMOD model we solved the nonlinear sytems arising from this model using η = 0.1. We performed runs using preconditioner P D , preconditioner P B with k = r = 0 (see [START_REF] Eisenstat | Choosing the forcing terms in an inexact Newton method[END_REF]) and the banded preconditioner P B with one lower and upper block diagonals, that is k = r = 1. Note that in this latter case, P B ≡ F (y 0 ). Observe that the matrix F (y 0 ) is very sparse and we have verified that only moderate fill-in occurs during its LU factorization. Then, factors L and U remain really very sparse.

We start with a temporary (nine periods) shock to the level of technology set to the value of 0. we increase the value of the shock up to 1. In theory the model goes back asymptotically to initial equilibrium no matter of the size of the shock. When we simulate numerically the model equations, it happens that big shocks (beyond 0.8) cause the model does not converge at all when a Newton-type method not equipped with a globalizaztion strategy is employed. The numerical procedure presented here, thanks to the globalization strategy, permits to simulate the response to shocks of magnitude 1, as shown in Table 7, where results obtained with both preconditioners P D and P B with k = r = 1 are given. Some comments on Table 7 are in order. We observe that the construction and LU factorization of P D takes about 10 -2 seconds where building and factorizing P B requires about 5.6 second. However, Table 7 shows that our approach with P B is really more efficient than with P D , despite the higher P B construction cost. This is due to the fact that preconditioner P D is not effective even in the first nonlinear iteration, where it is built on information of the current Jacobian. As a result, a great number of linear iterations is performed. On the contrary, preconditioner P B is the true Jacobian at the first nonlinear iteration and its performance does not deteriorate at all as the nonlinear process goes on. As a result, Inexact Newton steps are computed with an extremely low number of GMRES iterations. So, the great savings in the number of linear iterations compensates the extra work for computing P B . We performed runs also with the block diagonal preconditioner P B given in (13) ( k = r = 0). However, despite in this case all diagonal blocks of F (y 0 ) are retained, the preconditioner shows the same behaviour as P D does. In other words, retaing the diagonal blocks instead of approximating them with D 1 (y 0 ) does not enhance preconditioner's performance. We would like to stress that this behaviour of block diagonal preconditioners P D and P B does not depend on the fact that they are taken frozen. This is evident from Figure 3, where, the performance of the frozen preconditioners and of their recomputed counterparts, in the solution oof the nonlinear system corresponding to the shock's value 0. compared. Let P DR and P BR be the block diagonal preconditioners recomputed at each nonlinear iteration, i.e. P DR = diag(D 1 (y k ), . . . , D 1 (y k )), for k ≥ 0 and P BR = diag(D 1 (y k ), . . . , D T (y k )), for k ≥ 0. In the upper part of Figure 3, we plot the number of GMRES(m) iterations performed at each nonlinear iteration using the frozen preconditioner P D and the recomputed preconditioner P DR . The same chart with P B and P BR is produced in the bottom part. We can see from this picture that the frozen preconditioner slightly deteriorates with respect to the recomputed one and the recomputation of the preconditioner at each nonlinear iteration does not improve substantially its quality.

Note also that the globalization strategy is activate with larger shocks. As the shock increases, the nonlinear systems become more difficult to be solved and, when it is greater than 0.5, GMRES with preconditioner P D fails in producing the Inexact Newton step at the first nonlinear iteration, so this failure is not to be ascribed to the fact that the preconditioner is frozen.

We would like to stress that using preconditioner P B with k = r = 1 does not produce memory saving with respect to a Newton approach employing direct methods, as P B = F (y 0 ), but the computation of the Jacobian at each nonlinear iteration is avoided and a more efficient procedure is obtained. We underline also that only the preconditioner is frozen, while the current Jacobian is "felt" through the approximation of its action on a vector by finite-differences. So, the method employed here is different from a traditional modified Newton method where the Jacobian is held frozen. In table 8 we report the results obtained with the "exact" Newton method obtained solving the Newton equation by the built-21 in Matlab function lu with syntax that allows to apply LU factorization of sparse matrices developed in UMFPACK package [START_REF] Davis | Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal method[END_REF]. We report results obtained using the exact Newton method with and without globalization strategy. In the Table, these two procedures are indicated as EN G (Exact Newton with Globalization) and EN (Exact Newton), respectively. The comparison between Table 7 and Table 8 shows that the inexact approach with preconditioner P B clearly outperforms EN G in terms of computational time. Moreover, Table 8 enlights that the globalization strategy is crucial to obtain convergence for the largest shock even when the Newton direction is computed by a direct solver. Indeed, Newton method without globalization strategy fails in simulating response to the biggest shock. Further, the globalization strategy speeds-up the convergence of the Newton method when a shock of magnitute 0.8 is applied, reducing the overall computational cost.

Finally, we would like to underline that both NGMS and EN G fail in solving the model with shocks of magnitude greater than 1 despite the globalization strategy; these failures are to be ascribed to the fact that the nonlinear function F describing the model is not defined everywhere and both procedures generate an iterate y k that does not belong to the domain of the function F .

The experiments with a permanent shock to the level of technology are even more revealing the robustness and efficiency of our technique. We can deal with permanent shocks of magnitude up to 0.3, as it is shown in Table 9. We underline that the globalization strategy was crucial to obtain convergence for shocks grater than 0.1. Indeed, both the inexact method and its exact counterpart fail on these tests if the globalization strategy is not employed. Finally, again failures for shocks values greater than 0.3 of both the inexact and the exact approach, are to be ascribed to the fact that both methods do not handle the situation where the nonlinear function is not defined everywhere in IR n .

Conclusion and Perspective

We have presented our numerical experience with Newton-GMRES methods for forward-looking models. In our approach the Jacobian of the model is not re- quired and the method requires limited memory storage. The Newton-GMRES method is wrapped into a nonmonotone linesearch strategy and this allows to solve also models with severe shocks. The reported numerical results suggest that the related Matlab code NGMS could be a valid tool for the numerical solution of forward-looking models. However, it should be taken into account that the variables involved in these models are not meaningfull everywhere; for example, some variables need to be positive in order to have an economical meaning. Moreover the domain of the nonlinear function F does not coincide with IR n . Our numerical experimentation makes clear that when a Newton-like method is employed to solve these models, it may happen that an iterate y k does not belong to the domain of the function F and the procedure breaks down. In the NGMS code, this event is reported with a warning message. It seems then desiderable, to develop a variant of this code, able to overcome this failures and to cope with the constraints that need to be imposed to the variables of the model. Approaches able to handle the bounds on the variable have been proposed in [START_REF] Bellavia | STRSCNE: A scaled trust-region solver for constrained nonlinear equations[END_REF][START_REF] Bellavia | Subspace Trust-Region methods for large bound constrained nonlinear equations[END_REF][START_REF] Bellavia | Constrained Dogleg Methods for nonlinear systems with simple bounds[END_REF], but they cannot be realized in a matrix-free manner.
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Abstract Robust and efficient solution techniques for solving macroeconometric models are increasingly becoming a key factor in developing models employed by policy-making institutions for policy simulations and forecasting. Traditionally, when solved in presence of forward-looking variables, these models are nonlinear, large-scale and sparse and give rise to large and highly structured nonlinear systems.

This paper proposes a Newton-GMRES method obtained tuning up the basic algorithm by properly choosing the forcing terms sequence and the preconditioning strategy. In addition, the Newton-GMRES method is wrapped into a globalization strategy based on a non monotone linesearch technique in order to enlarge its convergence basin and to enhance its robustness. The combination of these ingredients yields a reliable method with low memory requirements.

Numerical experiments using the MULTIMOD model and a basic Real Business Cycle model are presented. A Matlab code based on this approach is provided.

keywords Inexact Newton methods, globalization strategy, preconditioners, forward looking models, matrix-free

Introduction

Nonlinear forward-looking models solved for forward consistent expectations give rise to large scale and highly structured nonlinear systems. In order to cope with the high dimension of these systems, several algorithms were designed (see for example [START_REF] Boucekkine | An Alternative Methodology for Solving Nonlinear Forward-Looking Models[END_REF][START_REF] Juillard | An algorithm competition: First-order iterations versus Newton-based techniques[END_REF][START_REF] Juillard | DYNARE: A program for the resolution and simulation of dynamic models with forward variables through the use of a relaxation algorithm[END_REF][START_REF] Fair | Solution and Maximum Likelihood Estimation of Dynamic Nonlinear Rational Expectations[END_REF][START_REF] Hollinger | Beyond Newton: Robust Method for Solving Large Nonlinear Models in TROLL[END_REF][START_REF] Hollinger | The Stacked-Time Simulator in TROLL: A Robust Algorithm for Solving Forward-Looking Models[END_REF][START_REF] Gilli | Krylov Methods for Solving Models with Forward-Looking Variables[END_REF][START_REF] Pauletto | Computational solution of large-scale macroeconometric models[END_REF]). In the Extended Fair-Taylor approach [START_REF] Fair | Solution and Maximum Likelihood Estimation of Dynamic Nonlinear Rational Expectations[END_REF] the nonlinear system is split into small blocks and then an iterative procedure is used to ensure consistency across blocks until the full system converges. The horizon is extended to guarantee a stable path within the range of simulation. Peculiarity of this approach is the small memory requirement, but in some situations it may fail to converge or it converges slowly. A widely used technique is the Newton-Raphson based Laffargue-Boucekkine-Juillard (L-B-J) algorithm [START_REF] Boucekkine | An Alternative Methodology for Solving Nonlinear Forward-Looking Models[END_REF][START_REF] Juillard | DYNARE: A program for the resolution and simulation of dynamic models with forward variables through the use of a relaxation algorithm[END_REF][START_REF] Hollinger | The Stacked-Time Simulator in TROLL: A Robust Algorithm for Solving Forward-Looking Models[END_REF]. In this approach the block-structure of the Jacobian matrix of the nonlinear system is exploited in the linear algebra phase of the Newton-method in order to save memory storage.

Interestingly, other techniques are possible and procedures based on Newton-Krylov methods have been employed by Gilli and Pauletto [START_REF] Gilli | Krylov Methods for Solving Models with Forward-Looking Variables[END_REF][START_REF] Pauletto | Computational solution of large-scale macroeconometric models[END_REF] to solve forward-looking models. Krylov methods [START_REF] Kelley | Iterative Methods for Linear and Nonlinear Equations[END_REF] are a broad class of iterative linear algebra methods that includes GMRES [START_REF] Saad | GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems[END_REF], which is of particular interest here. Newton-Krylov methods are combination of Newton-type procedures for nonlinear systems and Krylov methods for solving the arising Newton linear systems. Specifically, if we seek for a zero of a nonlinear function F : IR N → IR N , at a generic iteration k of a Newton-Krylov method, a Krylov solver is applied to the Newton equation

F (y k )s = -F (y k ), (1) 
where y k is the current iterate and F is the Jacobian matrix of the nonlinear function F . Tipically, the Krylov solver is applied to the Newton equation, until an iterate, say s satisfies

F (y k ) + F (y k )s ≤ ηk F (y k ) ,
where η k ∈ (0, 1) is commonly called forcing term. The vector s is an Inexact Newton step and is used to form the next iterate. Good performance of Newton-Krylov methods have been observed in the solution of a great variety of large scale nonlinear systems (see for example [START_REF] Pernice | NITSOL: a new iterative solver for nonlinear systems[END_REF][START_REF] Pawlowski | Globalization techniques for Newton-Krylov methods and applications to the fullycoupled solution of the Navier-Stokes equations[END_REF][START_REF] Bellavia | Globalization strategies for Newton-Krylov methods for stabilized FEM discretization of Navier-Stokes equations[END_REF][START_REF] Bellavia | A globally convergent Newton-GMRES subspace method for systems of nonlinear equations[END_REF] and the references therein) and in the solution of forward-looking models, as it is highlighted by the works of Gilli and Pauletto [START_REF] Gilli | Krylov Methods for Solving Models with Forward-Looking Variables[END_REF][START_REF] Pauletto | Computational solution of large-scale macroeconometric models[END_REF].

Here we focus on the numerical solution of forward-looking models by Newton-GMRES methods, that are Newton-Krylov methods where the iterative solver GMRES [START_REF] Saad | GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems[END_REF] is used in the linear algebra phase. An interesting feature of Newton-GMRES methods is that they require only the action of the Jacobian of the linear system on vectors. This allows matrix-free implementations in which these products are approximated without forming and storing F (y k ). For this reason they are called matrix-free methods. This characteristic is shared with all Newton-Krylov methods employing a transpose-free iterative linear solver as GMRES, TFQMR [START_REF] Freund | A transpose-free quasi-minimum residual algorithm for non-Hermitian linear systems[END_REF], BICGSTAB [START_REF] Van Der Vorst | BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems[END_REF]. The matrix-free feature of Newton-GMRES enables saving computational time everytime forming the Jacobian represents a significant fraction of the total execution time. We emphasize that when the analitic Jacobian is not available, approximating it by finite differences is generally the dominant cost of a Newton-type methods employing either iterative or direct solver for computing the Newton step.

Starting from Gilli and Pauletto approach, we move a step further investigating on some algorithmic choices that are crucial for efficiency and robustness of Newton-GMRES methods. First, we focus on the accuracy requirements for the computation of the Inexact Newton step. Well chosen forcing terms allow to improve the efficiency of the method. Forward-looking models often show a low level of nonlinearity and solving the Newton systems with high accuracy is unproductive. In other words, small forcing terms in these applications, lead to oversolve the Newton equation, by which we mean imposing an accuracy on the solution of the Newton system that it is not necessary to produce a progress towards the solution of the nonlinear system. Then, in the applications we are dealing with, the choice of costant and relatively large forcing terms leads to save linear iterations.

Second, we turn our attention to preconditioning issues. In fact, Krylov iterative solvers sometime suffer from a slow convergence and therefore a preconditioner for the Newton system must be used. The aim of preconditioning is to reduce the number of Krylov solver iterations. Unfortunately, the need of a preconditioner, in principle destroys the matrix-free feature of Newton-Krylov solvers. Widely used algebraic preconditioner are Jacobian-based, requiring the evaluation of the Jacobian blocks at each nonlinear iteration, which is computationally expensive. A possible alternative is given by the frozen preconditioner that is reusing the same preconditioner on several Newton iterations. Very often, the performance of a frozen preconditioner deteriorates with the progress of the nonlinear iterations. This is not true in this context, as given the weak nonlinearities of economic models, the Jacobian of the arising nonlinear systems does not change significantly from one nonlinear iteration to another and high accuracy in the solution of the Newton equation is not required. Indeed, from our numerical experience we noticed only a mild deterioration of the frozen preconditioner's performance as the nonlinear process goes on. Therefore, in our approach the preconditioner is computed only at the first nonlinear iteration and then it is reused in all the subsequent iterations. Then, the combination of frozen preconditioners and matrix-free methods allows to avoid the computation of the Jacobian at each nonlinear iteration.

Third, we embed the Newton-GMRES method into a nonmonotone linesearch globalization strategy. In fact, the guarantee of convergence of Newton-Krylov methods is local, as in any Newton-like method, and the numerical method may fail in finding a solution even though a well defined solution exists. The globalization strategy allows to enlarge the convergence region of the Newton-GMRES method and enhances its robustness. Line-search globalization strategies date back to 70's and are widely used in the numerical optimization community, but to our knowledge they are seldom used in computational econometrics, despite their use allows to obtain convergence in economic experiments where great magnitude of the shocks are involved.

Combining the previously outlined ingredients we obtain a procedure that requires low computational cost and memory requirements, moreover the convergence is guaranteed provided that the nonlinear function defining the model is continuosly differentiable in a region containing the generated sequence.

We show the behaviour of our procedure on the MULTIMOD (MULTI-region econometric MODel) model, developed by the International Monetary Fund [START_REF] Masson | MULTIMOD: A Multi-Region Econometric Model[END_REF][START_REF] Masson | MULTIMOD Mark II: A Revised and Extended Model[END_REF][START_REF] Laxton | MULTI-MOD Mark III: The Core Dynamic and Steady-State Models[END_REF] and we compare our approach with the original Gilli and Pauletto approach [START_REF] Gilli | Krylov Methods for Solving Models with Forward-Looking Variables[END_REF] and with the Newton method obtained computing the newton step by direct methods for sparse and large linear systems. Moreover, in order to get more insight into the the behaviour and the robustness of our proposal we apply our procedure to nonlinear systems arising from a real business cycle models given in [START_REF] King | Resuscitating Real Business Cycles[END_REF] and we compare its performance with those of the Newton method employing direct solvers, with and without globalization strategy.

A Matlab code, named NGMS (Newton GMRES for Model Simulation), based on this approach has been developed and will be freely accessible through the web site: http://ngms.de.unifi.it. With NGMS we intend to provide a theoretically well-founded solver that could be a valid tool for the numerical solution of forward looking models.

Forward looking models

The presence of forward (rational) expectations introduces a dependency of the solution in period t on anticipated changes at future dates. Solving for consistent expectation means that the rational expectations are given by the conditional expectation of the model. The forward dependency requires the specification of a 'terminal point' beyond the (lenght-T )horizon of the simulation. We stack the model period-by-period and solve simultaneously through T periods. Consider, at period t the following nonlinear forward-looking model:

     f 1 (y t-r , ....y t , ..., y t+ k, z t , a) = 0 . . . f n (y t-r , ....y t , ..., y t+ k, z t , a) = 0 (2) 
where y t ∈ IR n are the endogenous variables at period t, z t ∈ IR n are the exogenous variables at period t, the parameters a ∈ IR p are given. Here, r indicates the maximum lag and k the maximum lead. Due to the presence of leads and lags, solving the model (2) in [t 1 , t f ], requires r initial conditions and k final conditions: i.e. the values of y t1-i , i = 1, . . . , r and y t f +j , j = 1, . . . , k. Once these conditions are available the equations are stacked from period t 1 to period t f and the following nonlinear system is obtained:

F (y) = 0 F : IR nT → IR nT , y ∈ IR nT (3) 
where

T = t f -t 1 + 1, y =    y t1 . . . y t f    ∈ IR nT , F (y) =    F 1 (y) . . . F T (y)    (4) 
F j (y) =    f 1 (y tj -r , .
. . , y tj , . . . , y tj+ k, z, a) . . . Then, given the matrices:

D j (y) = ∂Fj (y) ∂yj ∈ IR n×n , j = 1, . . . , T E i,j (y) = ∂Fi(y) ∂yi-j ∈ IR n×n , i = 2, . . . , T j = 1, . . . , min(i -1, r) A i,j (y) = ∂Fi(y) ∂yi+j ∈ IR n×n , i = 1, . . . , T -1 j = 1, . . . , min(T -i, k)
the Jacobian F of F exhibits the following block-banded structure:

F (y) =                      D 1 (y) A 1,1 (y) • • • • • • A 1, k(y) E 2,1 (y) D 2 (y) A 2,1 (y) • • • • • • A 2, k(y) E 3,2 (y) E 3,1 (y) D 3 (y) A 3,1 (y) • • • A 3, k-1 (y) . . . . . . . . . . . . E T,r (y) • • • E T,1 (y) D T (y)                      . (6) 
3 Newton-Krylov methods

In this section we briefly describe Newton-Krylov methods for the solution of nonlinear systems of equations. Given a system of nonlinear equations F (y) = 0, where F : IR N → IR N is continuously differentiable, Newton-Krylov methods belong to the class of Inexact Newton methods [START_REF] Dembo | Inexact Newton methods[END_REF], iterative processes that result in the following scheme, where the superscript k denotes the iteration's number:

Let y 0 be given. For k = 0 until "convergence" do: Find some ηk ∈ [0, 1) and sk that satisfy

F (y k ) + F (y k )s k ≤ ηk F (y k ) , (7) 
Set

y k+1 = y k + sk .
Clearly, these methods are variants of Newton's method in which at each iteration the Newton equation

F (y k )s = -F (y k ), k ≥ 0, (8) 
is solved only approximately. In a Newton-Krylov framework, a Krylov linear solver is applied to (8) and it is iterate till an Inexact Newton step sk satisfying

F (y k ) + F (y k )s k ≤ ηk F (y k ) ,
is computed. This approach is widely used whenever large scale nonlinear systems have to be solved.

Local convergence analysis for Inexact Newton methods [START_REF] Dembo | Inexact Newton methods[END_REF] shows that, under standard conditions on the function F , if y 0 is sufficiently close to a solution y * of the nonlinear system and the ηk 's are uniformly bounded away from one, then the sequence {y k } converges to y * . Moreover, the choice of the forcing term ηk has a strong relevance on the performance of Inexact Newton methods as it is shown in [START_REF] Dembo | Inexact Newton methods[END_REF]. At this regard, we recall that, if {η k } → 0 then {y k } exhibits local q-superlinear convergence to a solution y * , while if {η k } = O(F (y k )) the convergence rate is quadratic. In [START_REF] Eisenstat | Choosing the forcing terms in an inexact Newton method[END_REF] two choices of ηk 's yielding up to quadratic rate of convergence have been proposed.

Let us now focus on Newton-GMRES, namely the Newton-Krylov method where GMRES is used to compute the Inexact Newton step.

GMRES (Generalized Minimal RESidual) is an iterative Krylov method for solving indefinite systems of linear equations [START_REF] Saad | GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems[END_REF]. GMRES applied to (8) minimizes the residual norm F (y k ) + F (y k )s over all corrections in the current Krylov subspace. Because iterates are based on this norm minimization property, the method does not break down in exact arithmetic, i.e., a new iterate can always be constructed if the current iterate is not the solution, provided the coefficient matrix is nonsingular.

An attractive feature of GMRES applied to the Newton equation ( 8) is that it requires only the action of the Jacobian F on a vector v. For an appropriately chosen scalar , this action can be approximated by finite differences ( [START_REF] Kelley | Iterative Methods for Linear and Nonlinear Equations[END_REF])

F (y)v ∼ F (y + v) -F (y) , (9) 
giving rise to a process that is referred to as "matrix-free". In other words, a Newton-GMRES method can be implemented without requiring the computation and the storage of the Jacobian F .

Newton-GMRES for model simulation

Here, we focus on the solution of (3) and we describe the approach taken in implementing a Newton-GMRES method specially designed for this class of problems. We assume that the Jacobian is not available and we approximate the blocks of the Jacobian that are needed to build the preconditioner, by finite differences.

More precisely, we describe our choice of the forcing terms sequence {η k }, of the preconditioner and of the employed non monotone globalization strategy. Finally, we give the algorithm summarizing the adopted approaches. Our choice of the forcing terms sequence is strictly related to the nature of macroeconometric models. Indeed, these models generally do not show an high level of nonlinearity and are equipped with a good approximation of the solution. In fact, even in presence of "moderate" shocks, the approximation given by the hystorical series are good enough and classical Newton-methods converge in a very low number of iterations. Then, it is not necessary to solve the Newton equation ( 8) to high accuracy, as a crude approximation of the Newton step is very often good enough to produce progress towards the solution. This way, pointless iterations of the iterative solver GMRES are avoided. In other words, in this type of applications, a less accurate solution of ( 8) may be both cheaper and effective enough in reducing the norm of F .

Then, despite a forcing sequence {η k } converging to zero produces a fast convergence of the Inexact-Newton method to the solution, due to the characteristic of the class of models we are interested in, here we choose a constant forcing sequence with ηk = η0 for any k.

The preconditioner

Effective preconditioning of the Newton systems is the most crucial ingredient for obtaining good performance of Newton-Krylov methods. The term preconditioning refers to transforming the Newton system into another system with more favoureable properties for the iterative solver (GMRES in our implementation). A preconditioner for the k-th Newton system is a matrix P k such that the preconditioned system takes the following form:

(P k ) -1 F (y k )s = -(P k ) -1 F (y k ).
Generally speaking, if P k is a good preconditioner for F (y k ), we expect that the iterative solver converges faster on the preconditioned system than on the original one. When GMRES, or any iterative solver, is applied to the preconditioned system it is not necessary to form the preconditioned matrix (P k ) -1 F (y k ) explicitely; the action of the preconditioned matrix on a vector v is accomplished approximating the vector w = F (y k )v by finite-differences and computing z = (P k ) -1 w solving a linear system of the form P k z = w ( (P k ) -1 is not explicitely known). Algebraic preconditioner gives the preconditioner in a factorized and sparse form so that the solution of such linear systems is not an expensive task [START_REF] Benzi | Preconditioning Techniques for Large Linear Systems: A Survey[END_REF].

In our implementation of the Newton-GMRES method for forward-looking models, we provide two different preconditioners. Our choice of the preconditioners is strictly connected to the choice of the forcing terms: as we solve the linear systems only to a modest accuracy we can rely on unexpensive preconditioners, which are good enough to provide a step sk satisfying [START_REF] Boucekkine | An Alternative Methodology for Solving Nonlinear Forward-Looking Models[END_REF] within a reasonable number of GMRES iterations, despite are not able to really capture the ill-conditioning of the Jacobian matrix. A quite common preconditioner for block-banded matrix as (6) evaluated at y k , is the so called Jacoby preconditioner, i.e.

P k =      D 1 (y k ) D 2 (y k ) . . . D T (y k )      . ( 10 
)
Anyway, as observed in [START_REF] Pauletto | Computational solution of large-scale macroeconometric models[END_REF], blocks D j (y k ) for j = 1, . . . , T share the same structure. In fact, at the k-th nonlinear iteration, D j (y k ) = ∂Fj (y k ) ∂yj with F j given in (4) and the only difference among the F j is the period they are referred to. Therefore, in [START_REF] Gilli | Krylov Methods for Solving Models with Forward-Looking Variables[END_REF], at each Newton-GMRES iteration, the block diagonal preconditioner P k = diag(D 1 (y k ), . . . , D 1 (y k )) is used, with D 1 (y k ) given by the (1,1) block diagonal of F (y k ). Then, following this strategy, at iteration k of the Newton-GMRES method only the (1,1) block diagonal of F (y k ) needs to be evaluated. Further, its LU decomposition has to be computed, since at each GMRES iteration a linear system with coefficient matrix P k has to be solved. Gilli and Pauletto provided interesting numerical results adopting this approach.

However, due to the low level of nonlinearity of these models it is not necessary to recompute the preconditioner at each nonlinear iteration. In our approach, we compute the preconditioner only at the first Newton-GMRES iteration and then we freeze it, that is we use the same preconditioner throughout the whole iterative process. This way, we need only to compute the (1,1) block diagonal of F (y 0 ) and its LU decomposition. Summarizing, at each Newton-GMRES iteration, we use the preconditioner

P k ≡ P D = diag(D 1 (y 0 ), . . . , D 1 (y 0 )) k ≥ 0 ( 11 
)
where D 1 (y 0 ) is given by the (1,1) block diagonal of F (y 0 ). In the sequel we will refer to this preconditioner with the name P D (Block-Diagonal Preconditioner). However, when T becomes large, this preconditioner may become less effective. Then, we rely on the following more expensive preconditioner and at each nonlinear iteration we employ

P k ≡ P B =              D 1 (y 0 ) A 1,1 (y 0 ) • • • A 1, k(y 0 ) E 2,1 (y 0 ) D 2 (y 0 ) A 2,1 (y 0 ) • • • A 2, k(y 0 ) E 3,2 (y 0 ) E 3,1 (y 0 ) D 3 (y 0 ) • • • A 3, k-1 (y 0 ) . . . . . . . . . E T,r (y 0 ) • • • D T (y 0 )              (12) 
with k ≤ k and r ≤ r. In the sequel P B (Block-Banded Preconditioner) will indicate preconditioner [START_REF] Dennis | Numerical methods for uncostrained optimization and nonlinear equations[END_REF]. Clearly, when k = k and r = r we have P B = F (y 0 ), while when k = 0 and r = 0, P B reduces to:

P B = diag(D 1 (y 0 ), . . . , D T (y 0 )). (13) 
In any case, we remark that we always freeze the preconditioner, that is the factorization of the preconditioner is computed only at the first nonlinear iteration. The blocks of F (y 0 ) required by the preconditioner are approximated by finite differences.

The globalization strategy

In the approach detailed above the linear systems are solved only to a modest accuracy and as a consequence we rely on a very rough approximation of the Newton step. Then we may need to merge our Inexact-Newton method into a globalization strategy. This allows us to monitor the progress of the method toward a solution of the nonlinear system and to reduce the value of the merit function F 2 even if we do not have at disposal a good step to update the current iterate. Moreover, in some situation, for example when severe shocks are used or when we simulate the model for forecasting, the initial guess provided by the hystorical data is not good enough and Newton-like methods fail. In these cases, a globalization strategy is fundamental to enlarge the convergence basin of a Newton-like method and to enhance its robustness.

There are two major categories of globalizations: linesearch methods in which step lenghts are adjusted (usually shortened) to obtain a satisfactory step and trust region methods in which a step is ideally chosen minimizing a local model of F 2 within a specified trust-region (see [START_REF] Kelley | Iterative Methods for Linear and Nonlinear Equations[END_REF][START_REF] Dennis | Numerical methods for uncostrained optimization and nonlinear equations[END_REF][START_REF] Nocedal | Numerical Optimization[END_REF] for details). A further possibility is to employ homotopy methods. In this approach an easy problem with well known solution is gradually transformed into the original problem F (y) = 0, building an homotopy map or varying the parameter values in case of parameter dependent nonlinear systems. Homotopy methods are known to be more robust than Newton-like methods embedded into a linesearch or a trust-region strategy, but they are generally more expensive and become complicated near a bifurcation point, requiring sophisticated approaches [START_REF] Nocedal | Numerical Optimization[END_REF]. Moreover, we are not aware of implementations of homotopy methods in a matrix-free setting as the Jacobian is generally required to devise efficient and theoretical supported implementations of these strategies. Regarding trustregion methods, dogleg strategy in conjunction with Inexact-Newton methods can be devised [START_REF] Pawlowski | Inexact Newton dogleg methods[END_REF], but at least an approximation of the Jacobian is required. Then, in our opinion, in this context the linesearch strategy is the best option for the following reasons: easy to implement, matrix-free compatible, strong theoretically supported in conjunction with Inexact Newton methods.

Inexact Newton methods embedded into a linesearch strategy result in the following scheme. At iteration k, the Inexact Newton step sk is computed and the new iterate has the form y k+1 = y k + λs k where 0 < λ ≤ 1 is such that with α ∈ (0, 1). It is quite important to note, at this stage, that an Inexact Newton step satisfying (7) with η k < 1 is ensured to be a descent direction for F (y) 2 at y k , i.e. (∇ F (y k ) 2 ) T sk < 0, see [START_REF] Brown | Convergence theory of nonlinear Newton-Krylov algorithms[END_REF]. Therefore, the existence of λ satisfying ( 14) is guaranteed. Moreover, our numerical experience enlighted that a nonmonotone strategy is enough to enhance robustness of Newton-GMRES methods when applied to forward-looking models. In other words, it is not necessary to impose a monotone decrease of the merit function F 2 , but it is enough to obtain a reduction within q ≥ 1 iterations. Then, the acceptance criterion ( 14) is relaxed and the nonlinear residual at y k+1 is required to satisfy the following condition:

||F (y k+1 ) 2 < (1 -αλ) F (y k ) 2 (14 
||F (y k+1 ) 2 < (1 -αλ)M k (15) 
where

M k = max{ F (y k ) 2 , F (y k-1 ) 2 , . . . , F (y k-q ) 2 }, (16) 
q ≥ 0 is a given integer and the superscript k indicates the iteration number.

The choices q > 0 and q = 0 correspond to a nonmonotone and to a monotone strategy, respectively.

The algorithm and the Matlab code

Now, we sketch the algorithm that is the core of our code.

NGMS Method

Let y 0 , η ∈ (0, 1), α ∈ (0, 1), 0 < θ m < θ max < 1, q ≥ 1, P, r, k, G, M nt, tol nt be given. The previous algorithm is the core of the Matlab code NGMS. We have striven to make NGMS as simple to use as possible. The use of NGMS requires only a minimal description of the problem to be solved: the size of the problem, the initial approximate solution, the stopping tolerances tol nt, the number of allowed nonlinear iteration M nt and a user-supplied function for evaluating the non linear function [START_REF] Bellavia | STRSCNE: A scaled trust-region solver for constrained nonlinear equations[END_REF]. At this regard, it should be underlined that in many macroeconometrics models the variables can be reordered so that the nonlinear systems exhibits a large block of interdependent equations, which is preceeded and followed by recursive equations. This way, only the block of interdependent equations is needed to be solved by the NGMS method. Our Matlab code is structured in order to exploit this decomposition whenever it is available.

F (y k ) + F (y k )s k ≤ η F (y k ) . 2 
Finally, the user is required to specify the value of the forcing term (that is taken constant throughout all the iterative process), the choice of the preconditioner and if the globalization strategy is desidered.

The parameters P, r and k, in input govern the choice of preconditioner. If P is set to one the preconditioner P D given in ( 11) is used. Its factors L and U are computed at the beginning of the iterative process and are then used at each iteration of GMRES to solve the linear systems with coefficient matrix given by the preconditioner P D . With the choice P=2, k = 0 and r = 0, the preconditioner P B given by ( 13) is used. In this case, as well as in the more expensive case, k > 0 and/or r > 0 the LU factorization of the whole preconditioner is computed. The LU factorizations needed to factorize the preconditioner are computed with the built-in Matlab function lu with syntax that allows to apply LU factorization of sparse matrices developed in UMFPACK package [START_REF] Davis | Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal method[END_REF]. In this case preordering and symbolic analysis that limit fill-in in the LU factorization are carried out.

In Step, 2.1, we use GMRES(m) (GMRES with restart) with m = 150, a maximum of 10 restarts and with null initial guess. If GMRES is not able to provide a step sk satisfing [START_REF] Boucekkine | An Alternative Methodology for Solving Nonlinear Forward-Looking Models[END_REF] within the maximum number of allowed iterations, if

||F (y k ) + F (y k )s k || ||F (y k )|| < 1 (17) 
we go on with the last step computed by GMRES, otherwise the NGMS Matlab code stops with a failure. This choice is motivated by the fact that if [START_REF] Gilli | Krylov Methods for Solving Models with Forward-Looking Variables[END_REF] is satisfied, then sk is a descent direction for F 2 at y k . Therefore, if the globalization strategy is activated, sk may be good enough to produce progress towards the solution, even if it does not solve the Newton equation to the prescribed accuracy. Products of F (y k ) with vectors that are required by GMRES are approximated using the finite-difference formula given in (9) with = √ m y k / v , where m is the machine precision. In Step 2.3.1-2.3.2 the nonmonotone linesearch strategy is performed, if it is required by the user. That is, if the parameter G that governs this choice is set to 1. In the linesearch strategy, moving along the direction of the initial Inexact step sk , successively shorter steps of the form s k = λs k are selected until the sufficient decrease condition [START_REF] Freund | A transpose-free quasi-minimum residual algorithm for non-Hermitian linear systems[END_REF] is met; this process is commonly refereed to as backtracking. In our Matlab implementation, the parameter α is set to 10 -4 , q is set to 6 and the choice of the scalar θ is performed using the three-point parabolic model as described in [START_REF] Kelley | Iterative Methods for Linear and Nonlinear Equations[END_REF]. If the sufficient decrease condition [START_REF] Freund | A transpose-free quasi-minimum residual algorithm for non-Hermitian linear systems[END_REF] is not satisfied within 10 backtracks, we go on with the last computed value of λ.

In Step 2.5 the tolerance tol nt is used to control the level of accuracy and the algorithm is stopped as soon as the stopping criterion F (y k+1 ) < tol nt [START_REF] Golub | Matrix Computation[END_REF] is met. If the above stopping criterion is not satisfied within M nt iterations the algorithm stops with a failure. In the NGMS Matlab code the process is terminate with an error condition in this case. As a final remark, we would like to stress that, if the globalization strategy is adopted (G = 1), the Inexact-Newton method that is the basement of our approach is globally convergent provided that the nonlinear function F is continuosly differentiable in an open set containing the generated sequence. Then, if this condition is satisfied, the convergence does not depend in a critical way on the closeness of the initial guess to the solution. Moreover, eventually the Inexact Newton step sk is taken. In other words, the decrease condition ( 15) is satisfied with λ = 1.

Numerical results

In this section we report on our numerical experience with the code NGMS.

The tests were conducted on a Intel Xeon (TM) 3.4 Ghz, 1GB RAM using MATLAB 7.0. The machine precision is m 2.10 -16 .

The initial guess y 0 was those provided by the hystorical data, M nt was set to 100 and tol nt = 10 -6 .

Results are reported in tables where the following data are shown: the preconditioner used in the column P, the number it new of performed nonlinear iterations, the average number A gmit of performed GMRES iterations, the norm of the function F at the final iterate in column F , the execution time in seconds in column time, the time (in seconds) spent to build the preconditioner and its LU factorization in column time prec, the number N bt of performed backtracks in the linesearch strategy. Failures of the method due to a breakdown in the linear algebra phase (GMRES is not able to provide an Inexact Newton step that satisfies [START_REF] Gilli | Krylov Methods for Solving Models with Forward-Looking Variables[END_REF]) are indicated in the tables by the symbol "-". 

Multimod model

In the first sets of experiments we apply NGMS to the MULTIMOD (MULTIregion econometric MODel) model, version Mark III, developed by the International Monetary Fund [START_REF] Masson | MULTIMOD: A Multi-Region Econometric Model[END_REF][START_REF] Masson | MULTIMOD Mark II: A Revised and Extended Model[END_REF][START_REF] Laxton | MULTI-MOD Mark III: The Core Dynamic and Steady-State Models[END_REF]. This is a forward-looking model with 601 equations, a maximum lag of 3 periods, and a maximum lead of 10 periods. To our knowledge the analytic jacobian of the model is not available. In order to analyze the computational performance of NGMS, we conducted experiments with different choices of the forcing term η. We used constant forcing terms and we compare the behaviour of our code solving the linear systems to a modest accuracy (η = 0.5 and η = 0.1) and to a tight accuracy (η = 10 -4 ). Moreover, our runs were performed varying the value of T . More precisely, we considered nonlinear systems arising by stacking T periods, with T = 5, 10, 20, 30, 50, 60, 80, 100. As a result, the dimension of the problems solved varies from 3005 to 60100. We always activate the globalization strategy if necessary, and employ preconditioner P D . Moreover, in order to compare the behaviour of the preconditioners, problems corresponding to T ≥ 50 have been solved using both preconditioners P D and P B given by [START_REF] Eisenstat | Choosing the forcing terms in an inexact Newton method[END_REF], that is P B with k = r = 0.

In tables 1-3 we report the results obtained with different values of η and different values of T . We started the simulation at t 1 = 2001 and shocked the variable of Canada's government expeditures by the 1% of Canadian GDP for the first year of simulation. In these simulations the linesearch strategy is never activated.

As we can see from these tables and we can expect from the theory, the number of outer iterations required by the Newton-GMRES method grows as the accuracy in the solution of the nonlinear systems decreases.

On the other hand, the average number of GMRES iterations obviously 
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	T	P	it new A gmit	F	time
	5	P D	21	3	7.d-7	3.3
	10	P D	27	7	4.d-7	6.1
	20	P D	25	15	5.d-7 11.6
	30	P D	24	22	9.d-7 19.6
	50 50 60 60 80 r F o 80	P D P B P D P B P D P B	24 24 24 24 -23	47 25 70 30 -52	8.d-7 57.9 5.d-7 83.2 9.d-7 107.1 5.d-7 107.3 --9.d-7 192.7
	P 100 P B	-	-	-	-
	e e r			
			R e v i e w
						O n
						l y

Table 1 :

 1 Temporary shock: CA G is increased by 1 per cent of CA GDP in t1 = 2001, η = 0.5.
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	T	P	it new A gmit	F	time time prec
	5	P D	8	8	3.d-7	3	0.9
	10 20 30 50 o F 50 r P D P D P D P D P B 60 P D	8 8 8 8 8 8	20 41 64 130 70 203	5.d-7 2.d-7 1.d-7 17.3 4 9 1.d-7 53.9 1.d-7 76.4 1.d-7 95.4	0.9 0.9 0.9 0.9 47.3 0.9
	60 80 P P B P D e 8 -r 82 -80 P B 8 134 e 100 P B --	1.d-7 96.1 --4.d-7 171.8 --	55.2 -77.3 -
				R e v i e w	
						O n
							l y
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Table 2 :

 2 Temporary shock: CA G is increased by 1 per cent of CA GDP in t1 = 2001, η = 0.1.

	T	P	it new A gmit	F	time
	5	P D	3	31	1.d-7	2.5
	10	P D	3	73	1.d-7	4.5
	20	P D	3	162	1.d-7 12.3
	30	P D	3	234	2.d-7 22.6
	50	P D	3	521	7.d-7 78.5
	50	P B	3	276	6.d-7 93.7
	60	P D	4	719	3.d-9 132.3
	60	P B	4	324	3.d-9 121.3
	80	P D	-	-	-	-
	80	P B	4	753	3.d-9 369.5
	100 P B	-	-	-	-

Table 3 :

 3 Temporary shock: CA G is increased by 1 per cent of CA GDP in t1 = 2001, η = 10 -4 .
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				η = 0.1		η = 10 -4	
	T	P	it new A gmit time it new A gmit time
	5	P D	8	8	10..7	3	31	4.6
	10 P D	8	20	11	3	73	6.6
	20 P D	8	41	15.6	8	163	14.3
	30 P D 50 P D F 50 P B 60 P D o 60 P B r 80 P D	8 8 8 8 8 -	63 127 70 195 81 -	23 59.8 411.5 115.4 500.3 -	3 3 3 4 4 -	233 520 276 720 323 -	24.8 81.2 187.5 136.5 226.4 -
	80 P B P 8 100 P B -	134 -	718.9	4 -	720 -	585.3
		e e r				
				R e v i e w		
						O n
								l y

Table 4 :

 4 

Temporary shock: CA G is increased by 1 per cent of CA GDP in t1 = 2001, recomputed preconditioner gets stuck.

Table 5 :

 5 Permanent shock: permanent 10 per cent and 20 per cent increase in CA MT starting in t1 = 2001, η = 0.1.

	T	P		shock 10%			shock 20%	
			it new A gmit N bt it new A gmit N bt
	5	P D	10	10	1	11	10	1
	10	P D	10	23	1	11	22	1
	20	P D	9	44	0	10	47	1
	30	P D	9	67	0	10	70	1
	50	P D	10	157	1	10	142	1
	60	P B	10	100	1	12	122	5
	80	P B	18	220	22	22	240	34
	100 P B	53	457	173	86	510	341
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Table 6 :

 6 Different kind of permanent shock with T = 50, η = 0.1 e P = P D .
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  1 (the level of technology at steady state is zero). Then,

	shock P	it new A gmit N bt	F	time
	0.1	P D	6	335	0	4.d-7 140.8
	0.1	P B	4	1.2	0	3.d-7	7.7
	0.3	P D	7	353	0	4.d-7 169.7
	0.3	P B	5	1.8	0	3.d-7	8.8
	0.5 0.5 0.8 0.8 o F r 1.0	P D P B P D P B P B	7 5 -7 9	352 1.8 -3.6 6.3	0 0 -2 5	3.d-7 164.4 2.d-7 8.3 --3.d-7 11.2 8.d-7 13.2
	P					
	e e r				
			R e v i e w	
						O n
							l y

Table 7 :

 7 

Temporary (nine periods) shock to the level of technology; η = 0.1, preconditioners P D and P B with k = r = 1 .
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			EN G			EN	
	shock it new N bt	F	time it new	F	time
	0.1	3	0	1.d-10 18.9	3	1.d-10 18.9
	0.3	4	0	6.d-12 25.0	4	6.d-12 25.0
	0.5	4	1	1.d-9	25.1	4	3.d-7	24.9
	o 0.8 F 1.0	5 5	2 4	2.d-10 32.3 1.d-9 32.3	8 -	3.d-7 -	49.3 -
	r							
	P						
	e e r				
			R e v i e w		
						O n
								l y

Table 8 :

 8 Temporary (nine periods) shock to the level of technology; η = 0.1.
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	shock P	it new A gmit N bt	F	time
	0.1	P B	6	2.5	0	1.d-7	9.1
	0.2	P B	7	3.7	1	2.d-7 10.2
	0.3	P B	7	4.5	4	1.d-7 10.9
	F o						
	r						
	P					
	e e r				
			R e v i e w	
						O n
							l y

Table 9 :

 9 Permanent shock to the level of technology; η = 0.1, preconditioner P B .
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  Set y k+1 = y k + λs k . 2.5 If F (y k+1 ) < tol nt then EXIT
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Table 1 :

 1 Temporary shock: CA G is increased by 1 per cent of CA GDP in t1 = 2001, η = 0.5.

	T	P	it new A gmit	F	time
	5	P D	21	3	7.d-7	3.3
	10	P D	27	7	4.d-7	6.1
	20	P D	25	15	5.d-7 11.6
	30	P D	24	22	9.d-7 19.6
	50	P D	24	47	8.d-7 57.9
	50	P B	24	25	5.d-7 83.2
	60	P D	24	70	9.d-7 107.1
	60	P B	24	30	5.d-7 107.3
	80	P D	-	-	-	-
	80	P B	23	52	9.d-7 192.7
	100 P B	-	-	-	-
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		T	P	it new A gmit	F	time time prec
		5	P D	8	8	3.d-7	3	0.9
		10	P D	8	20	5.d-7	4	0.9
	F o	20 30 50 50 60	P D P D P D P B P D	8 8 8 8 8	41 64 130 70 203	2.d-7 1.d-7 17.3 9 1.d-7 53.9 1.d-7 76.4 1.d-7 95.4	0.9 0.9 0.9 47.3 0.9
	60 r 80	P B P D	8 -	82 -	1.d-7 96.1 --	55.2 -
	80 P P B 100 P B	8 -	134 -	4.d-7 171.8 --	77.3 -
		e e r			
				R e v i e w
							O n
								l y
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Table 2 :

 2 Temporary shock: CA G is increased by 1 per cent of CA GDP in t1 = 2001, η = 0.1.

	T	P	it new A gmit	F	time
	5	P D	3	31	1.d-7	2.5
	10	P D	3	73	1.d-7	4.5
	20	P D	3	162	1.d-7 12.3
	30	P D	3	234	2.d-7 22.6
	50	P D	3	521	7.d-7 78.5
	50	P B	3	276	6.d-7 93.7
	60	P D	4	719	3.d-9 132.3
	60	P B	4	324	3.d-9 121.3
	80	P D	-	-	-	-
	80	P B	4	753	3.d-9 369.5
	100 P B	-	-	-	-

Table 3 :

 3 Temporary shock: CA G is increased by 1 per cent of CA GDP in t1 = 2001, η = 10 -4 .
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