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In this paper we generalize the hard clustering paradigm. While in this paradigm a data set
is subdivided in disjoint clusters, we allow different clusters to have a nonempty intersection.
The concept of hard clustering is then analyzed in this general setting, and we show which
specific properties hard clusterings possess in comparison to more general clusterings. We
also introduce the concept of equivalent clusterings and show that in case of hard cluster-
ings equivalence and equality coincide. However, if more general clusterings are considered,
these two concepts differ and this implies the undesired fact that equivalent clusterings can
have different representations in the traditional view on clustering. We show how a matrix
representation can solve this representation problem.

Keywords: hard clustering; matrix representation; transitivity; (m, n)−set; equivalent
clusterings

AMS Subject Classification: CR Category: I.5.3

1. Introduction

Cluster analysis is the partitioning of a data set into subsets (clusters), such that
the data elements in each subset are similar to each other and dissimilar to the
data elements in other subsets [6, 10]. Similarity and dissimilarity are defined
in terms of a distance measure. A clustering algorithm is an algorithm that
accomplishes this partitioning [2]. The resulting set of clusters, after applying a
clustering algorithm, is called a clustering.
The contribution of this paper is to generalize hard cluster analysis by allowing
that a given data element can belong to more than one cluster, while in hard
cluster analysis a given data element belongs to one and only one cluster [6].
The most well-known hard clustering algorithm is k-means [12]. An interesting
discussion about the evolution of this still widely used algorithm is given in [7].
Furthermore, we extend hard cluster analysis in a different way than fuzzy cluster
analysis [1]. Fuzzy cluster analysis also allows that a given data element belongs
to more than one cluster, but only to a certain degree between 0 and 1. Moreover,
a typical fuzzy clustering algorithm requires that the sum of the degrees equals
1, while in the context of generalized hard cluster analysis we allow that a given
data element belongs fully, i.e. to degree 1, to several clusters, although a given
data element cannot belong to a cluster to a degree between 0 and 1.
What is the relevance of allowing that a data element can belong to several
clusters?
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2 W. De Mulder

We see both theoretical and practical advantages of this generalization. An
important theoretical advantage is that a generalized setting allows to derive
properties that are specific for hard clusterings, i.e. properties not shared by
clusterings for which overlap between clusters is allowed. One practical advantage
is that if two different hard clustering algorithms are applied to the same data set,
results are mostly different. It is considered to be very hard to find an optimal way
to combine these different clusterings [3, 5]. The basic reason for the difficulty of
combining different clustering results is the inconsistency between the clusterings,
more precisely the fact that while a data element belongs to one cluster according
to the first algorithm, it belongs to another cluster according to the second
algorithm. This inconsistency may be eliminated by allowing that the considered
data element belongs to both clusters in the final clustering. The relaxation of
the requirement that each data element belongs to a single cluster thus greatly
facilitates the integration of clusterings produced by different hard clustering
algorithms, each having its own view on the given data set. The combination
of different clusterings is the main topic of the theory of cluster ensembles [4, 9, 11].

To give a specific application of generalized hard cluster analysis, consider
the cluster analysis of gene expression data sets (the topic of the cluster analysis
of gene expression data sets is discussed in, e.g., [8]). The purpose of gene-based
cluster analysis is to group together co-expressed genes (where co-expression
is defined in terms of a similarity measure), which indicate co-function and
co-regulation. However, it was recently found that the old paradigm that one
gene makes one protein does not hold, and that through mechanisms that include
alternative splicing, one gene can direct the synthesis of many proteins [13]. This
implies that one gene can be involved in several, different processes and thus
can have several functions. Generalized hard cluster analysis offers a solution in
this case, since it allows that a gene is member of several clusters, and thus this
method recognizes that one gene can have several functions. In this application,
each cluster could correspond to a certain biological function.
Notice that generalized hard cluster analysis is even more suitable than fuzzy
cluster analysis for this application, since a typical fuzzy clustering algorithm
assigns each data element to every cluster to a certain degree, but such that the
sum of these degrees, for a given element, equals 1. This is not desired in this case,
because a gene can fulfill several functions, as discussed above, and it would be
inappropriate to say that a gene fulfills a certain function only to a certain degree.

In this work, the focus is on the theoretical side of the mentioned general-
ization, developing a rigorous framework for generalized hard clustering and
deriving specific properties for hard clusterings within this framework. At the
same time, some interesting properties that apply to generalized hard clusterings,
but not necessarily to hard clusterings, are proven. For example, in section 5 the
maximum number of clusters that is needed to arbitrarily subdivide a data set
into overlapping clusters is derived.

2. (m, n) − sets

In this section we introduce the concept of (m,n)−sets that will be used to represent
a generalized hard clustering.
Throughout the paper, in particular for the definitions and theorems, it is assumed
that a data set is given. The term data set is considered in the most general
sense, i.e. a data set is just a finite set D = {d1, . . . , dn} containing elements of an
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Generalized hard cluster analysis 3

arbitrary nature. Since cluster analysis is about grouping objects, it is supposed
that n ≥ 2.

Definition 2.1 Given m,n ∈ N an (m,n)-set is a set Φ = (Φ1, . . . ,Φm) such

that Φi ∈ {(a1, . . . , an) | aj ∈ {0, 1}, ∀ 1 ≤ j ≤ n}. Given Φi ∈ Φ we denote by Φj
i

the jth element of Φi, i.e. Φi = (Φ1
i , . . . ,Φ

j
i , . . . ,Φ

n
i ). The set of all (m,n)-sets is

denoted as Mm,n.

Example 1. Given m = 2, n = 3, the set Φ = {(1, 0, 0), (0, 0, 1)} is an element
of M2,3.
Our purpose is to use an (m,n)−set Φ to represent a generalized hard clustering,
where elements of Φ, namely Φi, correspond to clusters. Thus in the above example
the element (1, 0, 0) would represent a cluster consisting of d1, while the element
(0, 0, 1) corresponds to a cluster containing d3. However, since we require that each
element belongs to at least one cluster, the above definition is too general to be
used directly as representation for generalized hard clusterings. Consequently, we
define the following subset of Mm,n.

Definition 2.2

Cm,n =
{

Φ = (Φ1, . . . ,Φm) ∈ Mm,n

}

such that

1.
m

∑

i=1

Φj
i ≥ 1, ∀ 1 ≤ j ≤ n

2. Φi 6= (0, . . . , 0),∀ 1 ≤ i ≤ N

Definition 2.3 A clustering is an element of CN,n with N = n(n− 1)/2 if n ≥ 3
and N = 2 if n = 2.

Remark 1 It is implicitly understood that the term clustering in this work refers
to a generalized hard clustering.

Remark 2 As will become clear below, the first requirement ensures that each data
element belongs to at least one cluster.

Remark 3 As will become clear below, the second requirement excludes empty
clusters. Empty clusters are not interesting to consider, and excluding them avoids
the need to give attention to special cases that are related to the presence of empty
clusters.

Remark 4 The motivation for the definition and use of N will be given in section
5.

Remark 5 Notice the abstractness of the definition: no reference is made to, e.g.,
a distance measure.

Definition 2.4

Hm,n =
{

Φ = (Φ1, . . . ,Φm) ∈ Cm,n

}

such that

1.

m
∑

i=1

Φj
i = 1, ∀ 1 ≤ j ≤ n

2. Φi 6= (0, . . . , 0),∀ 1 ≤ i ≤ N

Remark 6 The set Hm,n thus contains all (m,n)-sets for which for a given j there
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4 W. De Mulder

exists one and only one i such that Φj
i = 1, and such that no Φi equals (0, . . . , 0).

Definition 2.5 A hard clustering is an element of HN,n.

If no confusion can arise, the shorter notations C and H are used instead of CN,n

resp. HN,n.

Definition 2.6 Given Φ = (Φ1, . . . ,ΦN ) ∈ C we define

F(Φi) = {dj ∈ D |Φj
i = 1}

for i = 1, . . . ,N . The sets F(Φi) are called the clusters of Φ.

Remark 7 The function F thus links an element of a clustering Φ ∈ C to a subset
of the data set.

Example 2. Given D = {d1, d2, d3} the following is a clustering: Φ =
((1, 1, 0), (0, 1, 1), (0, 0, 1)) and {{d1, d2}, {d2, d3}, {d3}} is the corresponding set of
clusters. Notice that Φ ∈ CN,n with n = 3, but Φ 6∈ HN,n, since

∑3
i=1 Φ2

i = 2 6= 1
which contradicts definition 2.4.
From definition 2.6 and example 2 it is seen that each element Φi ∈ Φ corresponds
to a cluster. This means that the representation of clusterings by (m,n)-sets is
equivalent to the classical representation of a clustering where a clustering con-
sists of groups of data elements. Below it will be shown that this representation is
suitable for hard clusterings, but inappropriate to represent generalized hard clus-
terings. In section 5 an alternative representation will be presented that is more
convenient for generalized hard clusterings.

Definition 2.7 Given Λ ⊆ {1, . . . , n} and Φ ∈ CN,n we define ΦΛ
i = 1 if and only

if Φj
i = 1, ∀j ∈ Λ and ΦΛ

i = 0 if and only if Φj
i = 0, ∀j ∈ Λ.

Definition 2.8 Given Λ ⊆ {1, . . . , n} and Φ ∈ CN,n we define ΦΛ = {Φi ∈
Φ |ΦΛ

i = 1}.

Remark 8 From the above definition it follows that if Φi ∈ ΦΛ, then {dj ∈ D |j ∈
Λ} ⊆ F(Φi). Thus Φi ∈ ΦΛ corresponds to a cluster that contains, at least, all
data elements dj with j ∈ Λ.

Example 3. Given the results of example 2 we have, for example, Φ{2,3} =
{(0, 1, 1)}. These are all the clusters, in this case only one, such that both d2 and
d3 belong to them. Another example is Φ{2} = {(1, 1, 0), (0, 1, 1)}.

Theorem 2.9 CN,n = {Φ ∈ MN,n |Φ
{j} 6= ∅, ∀ 1 ≤ j ≤ n,Φi 6= (0, . . . , 0),∀ 1 ≤

i ≤ N}.

Proof Let Φ ∈ CN,n. From definition 2.1 and 2.2 it follows that Φj
i ∈ {0, 1} and

∑N
i=1 Φj

i ≥ 1, ∀ 1 ≤ j ≤ n. This is equivalent to saying that given 1 ≤ j ≤ n

there exists a 1 ≤ i ≤ N for which Φj
i = 1. By definition 2.8 this is equivalent to

Φ{j} 6= ∅,∀ 1 ≤ j ≤ n.
Conversely, if Φ ∈ MN,n and Φ{j} 6= ∅ then, by definition 2.8, there exists a

1 ≤ i ≤ N such that Φj
i = 1 and thus

∑N
i=1 Φj

i ≥ 1. Since this holds for all
1 ≤ j ≤ n it follows from definition 2.2 that Φ ∈ CN,n. �

Discussion. The above theorem states that, loosely speaking, a clustering is a
subdivision of a data set into clusters such that each data element belongs to at
least one cluster. The theorem could also be interpreted as stating that (m,n)−sets
are the right concept for representing generalized hard clusterings, where each data
element belongs to at least one cluster. However, in the next section we develop
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Generalized hard cluster analysis 5

the concept of equivalent clusterings, and in light of this concept we will conclude
that (m,n)−sets fall short in providing an adequate representation of generalized
hard clusterings.

3. Equivalent generalized hard clusterings

Since clustering is about grouping similar objects, we should describe two cluster-
ings in which the same objects are considered as similar, as being equal. However,
it is possible that two such clusterings have a different representation in terms
of (m,n)-sets, as will be shown in a moment. Thus the fact that two clusterings
represent the same grouping of objects cannot be expressed by stating that their
representation by (m,n)-sets are equal. To resolve this, we introduce the concept
of equivalent clusterings.

Definition 3.1 Φ ≡ Ψ if the following holds: Φ{i,j} = ∅ ⇔ Ψ{i,j} = ∅, ∀i, j ∈
{1, . . . , n}.

Remark 1 The interpretation of the definition is that two equivalent clusterings
represent the same grouping of objects. For example, let d1, d2 and d3 be elements
of a cluster in Φ ≡ Ψ, i.e. ∃Φi such that {d1, d2, d3} ⊆ F(Φi). By definitions

2.6 and 2.7 this implies that Φ
{1,2,3}
i = 1. In particular, Φ

{1,2}
i = 1 and thus, by

definition 2.8, Φ{1,2} 6= ∅. This implies, by the above definition, that Ψ{1,2} 6= ∅.
In the same way we find that Ψ{1,3} 6= ∅ and Ψ{2,3} 6= ∅. Thus in the clustering Ψ
it holds that d1 and d2 are grouped together, as well as d1 and d3, and d2 and d3,
although it is not required that there is one cluster in Ψ such that all these three
elements belong to it. It is however clear that adding a cluster to Ψ consisting of
d1, d2 and d3 should not alter the information contained in Ψ, and this precisely
means that equivalent clusterings should be considered as equivalent, in the sense
of representing the same subdivision of the given data set.

Example 4. Consider Φ = ((1, 1, 0), (1, 0, 1), (0, 1, 1)) and Ψ =
((1, 1, 1), (0, 0, 1), (1, 0, 0)). Then it is easily verified that Φ ≡ Ψ. It is noticed
however that Φ 6= Ψ.

Definition 3.2 RΦ = {Ψ ∈ C |Ψ ≡ Φ}.

Given a finite set A the notation |A| is used to denote its number of elements.

Theorem 3.3 Φ ∈ H ⇒ RΦ ∩ H = {Φ}.

Proof Given is Φ = (Φ1, . . . ,ΦN ) ∈ H. Since definition 3.1 assures that Φ ≡ Φ it
follows that Φ ∈ RΦ ∩ H. Now suppose that there exists a Ψ = (Ψ1, . . . ,ΨN ) ∈
H∩RΦ with Φ 6= Ψ. Thus there exists a i such that either Ψi ∈ Ψ\Φ or Φi ∈ Φ\Ψ.
Since both cases are entirely similar we consider only the case where Ψi ∈ Ψ \ Φ.

Let A1 = {j ∈ {1, . . . , n} |Ψj
i = 1} and A0 = {1, . . . , n} \ A1. Since Ψi 6∈ Φ we

either have that ΦA1

i 6= 1, ∀ 1 ≤ i ≤ N or ΦA0

i 6= 0,∀ 1 ≤ i ≤ N .

Case 1: ΦA1

i 6= 1, ∀ 1 ≤ i ≤ N .
This implies that |A1| ≥ 1, since otherwise we would have that (0, . . . , 0) ∈ Ψ.
This is contradictory to Ψ ∈ H, by definition 2.4.
Thus |A1| ≥ 1, let us say A1 = {k1, . . . , ks}. Since Φ ∈ H it follows from definition

2.4 that
∑N

m=1 Φk1

m = 1 and thus there exists exactly one j for which Φk1

j = 1.

Now since Φ ≡ Ψ and ΨA1

i = 1 it follows that Φ{k1,k2} 6= ∅, thus there exists a j2

such that Φ
{k1,k2}
j2

= 1. Again applying the condition
∑N

m=1 Φk1

m = 1 results in the
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6 W. De Mulder

fact that j = j2, thus Φ
{k1,k2}
j = 1. This can now be repeated for k3, . . . , ks from

which it is found that ΦA1

j = 1, which is contradictory to ΦA1

i 6= 1, ∀ 1 ≤ i ≤ N .

Case 2: the case ΦA0

i 6= 0,∀ 1 ≤ i ≤ N is handled entirely analogous as above. �

Discussion. The above theorem says that when attention is restricted to hard
clustering the concepts of equivalence and equality are the same. Thus in case of
hard clustering an (m,n)-set provides a unique representation for a given set of
equivalent clusterings. Since equivalent clusterings represent the same subdivision
of a given data set, the representation by (m,n)-sets is thus well-suited for the
special case of hard clustering.
However, extending hard clusterings to generalized hard clusterings it is no longer
true that equivalence and equality in terms of (m,n)-sets are the same concepts,
as example 4 illustrates. In the section 5 we show how generalized hard clusterings
can be represented in matrix form and that in terms of this matrix representation
equivalence and equality are the same concept.
In the next section we define the concept reflective transitivity and show that this
property is characteristic for hard clusterings.

4. Transitivity

Definition 4.1 Φ ∈ C is transitive if the following holds: {di1 , di2} ⊆
F(Φi), {di2 , di3} ⊆ F(Φj) ⇒ ∃Ψ ∈ RΦ,∃k ∈ {1, . . . ,N} : {di1 , di2 , di3} ⊆ F(Ψk).

Remark 1 The above definition states that, given any three data elements
di1 , di2 , di3 , a clustering is transitive if it holds that di1 and di2 belong to the same
cluster and the same is true for di2 and di3 , then all three elements belong to the
same cluster in a equivalent clustering. Thus the definition does not require that
the cluster, or clusters, to which these three elements belong, is an element of the
given clustering, but only that it is an element of an equivalent clustering.

The next theorem states the above definition in another form, without making
reference to F .

Theorem 4.2 Φ ∈ C is transitive if and only if the following holds: Φ{i1,i2} 6=
∅,Φ{i2,i3} 6= ∅ ⇒ ∃Ψ ∈ RΦ : Ψ{i1,i2,i3} 6= ∅.

Proof Suppose that Φ ∈ C is transitive and Φ{i1,i2} 6= ∅,Φ{i2,i3} 6= ∅. Then by

definition 2.8 there exist a i and j such that Φ
{i1,i2}
i = 1,Φ

{i2,i3}
j = 1 and by

definition 2.6 we can write that {di1 , di2} ⊆ F(Φi), {di2 , di3} ⊆ F(Φj). By definition
4.1 there exists a Ψ ∈ RΦ,∃k ∈ {1, . . . ,N} such that {di1 , di2 , di3} ⊆ F(Ψk).
Applying definition 2.6 again this means that Ψi1

k = Ψi2
k = Ψi3

k = 1 and thus

Ψ{i1,i2,i3} 6= ∅.
Conversely, suppose that Φ{i1,i2} 6= ∅,Φ{i2,i3} 6= ∅ ⇒ ∃Ψ ∈ RΦ : Ψ{i1,i2,i3} 6= ∅.
Suppose that {di1 , di2} ⊆ F(Φi), {di2 , di3} ⊆ F(Φj). By definitions 2.6 and 2.8,

this is equivalent to saying that Φ{i1,i2} 6= ∅,Φ{i2,i3} 6= ∅. By assumption it then
follows that there exists a Ψ ∈ RΦ for which Ψ{i1,i2,i3} 6= ∅ and definition 2.8 then

guarantees that there exists a k ∈ {1, . . . ,N} such that Ψ
{i1,i2,i3}
k = 1 or in other

words: {di1 , di2 , di3} ⊆ F(Ψk) from which we conclude that Φ is transitive. �

Definition 4.3 A clustering Φ ∈ C is reflective transitive if the following holds:

{di1 , di2} ⊆ F(Φi), {di2 , di3} ⊆ F(Φj) ⇒ ∃k ∈ {1, . . . ,N} : {di1 , di2 , di3} ⊆ F(Φk).

Remark 2 Notice that unlike definition 4.1, the above definition requires that the
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Generalized hard cluster analysis 7

elements di1 , di2 and di3 belong to a cluster of the given clustering, and not just to
a cluster of an equivalent clustering.

Theorem 4.4 Φ ∈ C is reflective transitive if and only if the following holds:

Φ{i1,i2} 6= ∅,Φ{i2,i3} 6= ∅ ⇒ Φ{i1,i2,i3} 6= ∅.

Proof The proof is entirely analogous to the proof of theorem 4.2. �

Theorem 4.5 If Φ ∈ H then Φ is reflective transitive.

Proof Suppose that Φ{i1,i2} 6= ∅,Φ{i2,i3} 6= ∅. By definition 2.8 there exists a i, j

such that Φ
{i1,i2}
i = Φ

{i2,i3}
j = 1. Since Φ ∈ H the condition

∑N
m=1 Φi2

m = 1 holds,

which is only possible if i = j. Thus Φ
{i1,i2,i3}
i = 1 which proves the proposition. �

Remark 3 The above theorem and the corresponding proof ensure that, in case of
hard clustering, if d1 and d2 belong to the same cluster and the same is true for d2

and d3, then d1, d2 and d3 belong to the same cluster. It is interesting to notice that
this transitive property does not necessarily hold for a generalized hard clustering.
This is seen in example 2 where Φ{1,2} 6= ∅,Φ{2,3} 6= ∅, but Φ{1,2,3} = ∅.

Definition 4.6 Given Φ ∈ C we define: F(Φ) = {F(Φ1), . . . ,F(ΦN )}.

Definition 4.7 FC = {F(Φ) |Φ ∈ C}.

Remark 4 It is easily seen that F : C ⇒ FC is invertible.

Definition 4.8 Given A ⊆ D we define its index set, denoted IA, as IA = {1 ≤
i ≤ n | di ∈ A}.

In fact, definition 4.7 defines the set of all possible subdivisions of a given data
set. This is now proved.

Theorem 4.9 FC =
{

{F1, . . . , FN} |Fi ⊆ D, ∪N
i=1IFi

= {1, . . . , n}
}

.

Proof Consider any Φ = (Φ1, . . . ,ΦN ) ∈ C and 1 ≤ j ≤ n. From definition 2.6

we can already conclude that F(Φi) ⊆ D. Since Φ ∈ C we know that
∑N

i=1 Φj
i ≥

1. Thus there exists at least one i such that Φj
i = 1 and thus dj ∈ F(Φi) by

definition 2.6, which implies that j ∈ IF(Φi). This allows to write that {1, . . . , n} ⊆

∪N
i=1IF(Φi). Furthermore, since F(Φi) ⊆ D it follows that IF(Φi) ⊆ {1, . . . , n}

and thus ∪N
i=1IF(Φi) ⊆ {1, . . . , n}. It then that ∪N

i=1IF(Φi) = {1, . . . , n} and thus
F(Φ) ∈ FC.
Conversely, given {F1, . . . , FN} for which Fi ⊆ D and ∪N

i=1IFi
= {1, . . . , n} define

Φ = (Φ1, . . . ,ΦN ) with Φj
i = 1 if dj ∈ Fi and Φj

i = 0 otherwise, for j = 1, . . . , n.
It is then easily seen that F(Φ) = {F1, . . . , FN}. Furthermore given any m ∈
{1, . . . , n} = ∪N

i=1IFi
there exists a i such that m ∈ IFi

or equivalently dm ∈ Fi,
and by construction of Φ we thus have that Φm

i = 1. From this it follows that
∑N

i=1 Φm
i ≥ 1 and consequently Φ ∈ C. Thus F(Φ) = {F1, . . . , FN} ∈ FC by

definition 4.7. �

Definition 4.10 FH = {F(Φ) |Φ ∈ H}.

The above definition represents all possible subdivisions of a given data set in
disjoint classes (clusters), as ensured by the following theorem.

Theorem 4.11 FH =
{

{F1, . . . , FN} |Fi ⊆ D, ∪N
i=1IFi

= {1, . . . , n}, Fi ∩ Fj =

∅ if i 6= j
}

.
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8 W. De Mulder

Proof Consider any Φ = (Φ1, . . . ,ΦN ) ∈ H. By the previous theorem it remains
only to proof that F(Φi) ∩ F(Φj) = ∅ if i 6= j. Suppose that dk ∈ F(Φi) ∩
F(Φj), i 6= j. Then Φk

i = Φk
j = 1 by definition 2.6. This is only compatible with

the properties that
∑N

p=1 Φk
p = 1 and Φk

p = 0 or 1, if i = j which is a contradiction.

Thus F(Φi) ∩ F(Φj) = ∅ if i 6= j. Conversely, given {F1, . . . , FN} for which Fi ⊆
D,∪N

i=1IFi
= {1, . . . , n} and Fi ∩ Fj = ∅ if i 6= j define: Φ = (Φ1, . . . ,ΦN ) with

Φj
i = 1 if dj ∈ Fi and Φj

i = 0 otherwise, for j = 1, . . . , n. It is easy to check that
F(Φ) = {F1, . . . , FN}.
It remains to check that Φ ∈ H. Consider any m ∈ {1, . . . , n} = ∪N

i=1IFi
. Then

there exists a i such that m ∈ IFi
which implies that Φm

i = 1. Suppose that there
is a i2 for which Φm

i2
= 1. This implies that dm ∈ Fi ∩ Fi2 which is only possible if

i = i2. Thus
∑N

i=1 Φm
i = 1 implying that Φ ∈ H. �

Discussion. We conclude from theorems 4.9 and 4.11 that a generalized hard
clustering can represent any subdivision of a given data set, allowing overlap, while
a hard clustering can only subdivide a given data set in disjoint clusters. Thus our
abstract definition 2.4 of a hard clustering conforms the common notion that hard
clusters do not overlap.

5. Matrix representation of a clustering

Given A ∈ R
n×n and ∅ ⊂ Λ,Γ ⊆ {1, . . . , n} we use the notation A(Λ,Γ) to denote

the submatrix of A containing the elements A(i, j) for which i ∈ Λ, j ∈ Γ. The
notation A(i, j) will be used as shorthand for A({i}, {j}).

Definition 5.1 Given Φ ∈ C we define its matrix representation, denoted as

M(Φ), as

M(Φ)(i, j) = 1 ⇔ Φ{i,j} 6= ∅

= 0 otherwise

Remark 1 Thus if for a given clustering Φ we have that M(Φ)(i, j) = 1, then it
holds that there exists a cluster in this clustering to which both di and dj belong.

Theorem 5.2 Φ ≡ Ψ ⇒ M(Φ) = M(Ψ).

Proof By definition 4.1: Φ ≡ Ψ if Φ{i,j} = ∅ ⇔ Ψ{i,j} = ∅ for all i, j ∈ {1, . . . , n}.
From this it is easily seen that M(Φ) = M(Ψ). �

Theorem 5.3 Φ 6≡ Ψ ⇒ M(Φ) 6= M(Ψ).

Proof Given is that Φ 6≡ Ψ. Thus there exists a i and j such that Φ{i,j} = ∅ and
Ψ{i,j} 6= ∅ or Φ{i,j} 6= ∅ and Ψ{i,j} = ∅. Without loss of generality we suppose
that Φ{i,j} = ∅ and Ψ{i,j} 6= ∅. Then M(Φ)(i, j) = 0 and M(Ψ)(i, j) = 1, and thus
M(Φ) 6= M(Ψ). �

Theorems 5.2 and 5.3 taken together give: M(Φ) = M(Ψ) ⇔ Φ ≡ Ψ. Thus while
an (m,n)-set gives a unique representation for a set of equal clusterings, a matrix
representation gives a unique representation for a set of equivalent clusterings. Since
equivalent clusterings represent the same subdivision of a data set, the matrix
representation should be preferred over the representation by (m,n)-sets when
dealing with generalized hard clusterings.

Definition 5.4 Mn×n
C = {A ∈ R

n×n |A(i, j) ∈ {0, 1}, A(i, j) = A(j, i), A(i, i) =
1, 1 ≤ i, j ≤ n}
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Notice that from definition 5.1 it easily follows that M(C) ⊆ M n×n
C (we remind

the reader that C is used as shorthand for CN,n). More is true.

Theorem 5.5 The mapping M : C → Mn×n
C is surjective.

Proof Given A ∈ Mn×n
C we have to proof that there exists a Φ ∈ C such that

M(Φ) = A. We prove this by induction on n.
First suppose that n = 2. Then either A(1, 2) = A(2, 1) = 1 or A(1, 2) = A(2, 1) =
0. In the first case define Φ = {(1, 1), (1, 0)} and in the second case define Φ =
{(1, 0), (0, 1)}. Then Φ ∈ C2,2 and M(Φ) = A.
Suppose that the theorem holds for n = 2, . . . , k − 1. Consider now n = k and an
arbitrary A ∈ Mk×k

C . We are in search for a Φ = (Φ1, . . . ,ΦK) ∈ CK,k such that

M(Φ) = A, where K = k(k−1)/2. By induction there exists a Φ̂ = (Φ̂1, . . . , Φ̂K ′) ∈

CK ′,k−1 with K ′ = (k−1)(k−2)/2 for which M(Φ̂) = A({1, . . . , k−1}, {1, . . . , k−

1}). Denote Φ̂i = (Φ̂1
i , . . . , Φ̂

k−1
i ), i = 1, . . . ,K ′.

Case 1: A(i, k) = A(k, i) = 0 ∀ 1 ≤ i ≤ k − 1. Define Φi = (Φ̂1
i , . . . , Φ̂

k−1
i , 0) for

1 ≤ i ≤ K ′,ΦK ′+1 = (0, . . . , 0, 1) and Φi = (1, 0, . . . , 0) if K ′ + 1 < i ≤ K. Then it
is easily checked that Φ ∈ CK,k and M(Φ) = A.

Case 2: ∃ 1 ≤ i ≤ k− 1 for which A(i, k) = A(k, i) = 1. Let I = {i ∈ {1, . . . , k−

1} |A(k, i) = 1}. Then we define Φi = (Φ̂1
i , . . . , Φ̂

k−1
i , 0) if 1 ≤ i ≤ K ′ and ΦK ′+i =

0 for i ∈ {1, . . . , k − 1} \ I; finally we define for i ∈ I: Φi
K ′+i = Φk

K ′+i = 1 and

Φj
K ′+i = 0 if j 6∈ {i, k}. Notice that K ′+i ≤ K ′+(k−1) = (k−1)(k−2)/2+k−1 =

k(k − 1)/2 = K, which is a first requirement to have that Φ ∈ CK,k. The other
requirements are easily checked and we conclude that Φ ∈ CK,k. We now prove that

M(Φ) = A which amounts to show that A(i, j) = 1 ⇔ Φ{i,j} 6= ∅ and A(i, j) = 0
otherwise. If {i, j} ⊆ {1, . . . , k − 1} this is already true by induction and by the

construction of Φ from Φ̂. So suppose that i = k and that Φ{k,j} 6= ∅ which implies
the existence of a 1 ≤ m ≤ K such that Φj

m = Φk
m = 1. By construction of Φ it

has to be that Φj
m is of the form Φj

K ′+j with j ∈ I. From the definition of I it then

follows that A(k, j) = 1. If j = k then by definition 5.4 we have that A(k, k) = 1.
Finally, if Φ{k,j} = ∅ it follows from the construction of Φ that j 6∈ I which implies
that A(k, j) = 0. �

Remark 2 The proof of the above theorem shows why we have chosen N = n(n −
1)/2 if n ≥ 3: this ensures that the mapping M : C → M n×n

C is surjective. The
case where n = 2 is rather a basic case and the proof also shows why in this case
N = 2 is chosen.
In other words: since clusterings from C represent any subdivision of a given data
set (see theorem 4.9) and since the above mapping M : CN,n → Mn×n

C is surjective
if N = n(n − 1)/2 for n ≥ 3 and N = 2 i n = 2, this ensures that one needs never
more than N clusters to arbitrary subdivide a given data set.

Definition 5.6 Mn×n
H = {A ∈ Mn×n

C |A(i, j) = 1, A(j, k) = 1 ⇒ A(i, k) = 1}

Theorem 5.7 The mapping M : H → Mn×n
H is injective.

Proof Given Φ,Ψ ∈ H with Φ 6= Ψ we have to proof that M(Φ) 6= M(Ψ). Since
Φ,Ψ ∈ H and Φ 6= Ψ it follows from theorem 3.3 that Ψ 6∈ RΦ, thus Φ 6≡ Ψ.
Thus there exist i, j with i 6= j such that Φ{i,j} 6= ∅,Ψ{i,j} = ∅ (or vice versa). By
definition of the mapping M it then follows that M(Φ)(i, j) = 1,M(Ψ)(i, j) = 0
and thus in particular: M(Φ) 6= M(Ψ). �

Theorem 5.8 The mapping M : H → Mn×n
H is surjective.

Proof We prove this again by induction on n. The case n = 2 is the same as
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in theorem 5.5, so suppose the theorem holds up to k − 1, k ≥ 2. Consider now
n = k and an arbitrary A ∈ M k×k

H . It is asked to give a Φ = (Φ1, . . . ,ΦK) ∈ HK,k

such that M(Φ) = A. Define K ′ = (k − 1)(k − 2)/2. By induction there exists a

Φ̂ = (Φ̂1, . . . , Φ̂K ′) ∈ HK ′,k−1 for which M(Φ̂) = A({1, . . . , k − 1}, {1, . . . , k − 1}).

Case 1: A(i, k) = A(k, i) = 0, ∀ 1 ≤ i ≤ k − 1. This case can be han-

dled in the same way as in theorem 5.5, giving Φi = (Φ̂1
i , . . . , Φ̂

k−1
i , 0) for

i = 1, . . . ,K ′,ΦK ′+1 = (0, . . . , 0, 1) and Φi = (1, 0, . . . , 0) for K ′ + 1 < i ≤ K.

It is seen that
∑K

i=1 Φk
i = 1. By induction and by the construction of Φ from Φ̂:

∑K ′

i=1 Φj
i = 1, ∀1 ≤ j ≤ k − 1, and since Φj

p = 0 for p = K ′ + 1, . . . ,K this is

equivalent to
∑K

i=1 Φj
i = 1, ∀1 ≤ j ≤ k − 1 implying that Φ ∈ HK,k.

Case 2: ∃ 1 ≤ i ≤ k− 1 for which A(i, k) = A(k, i) = 1. Let I = {i ∈ {1, . . . , k−

1} |A(k, i) = 1}. Consider any α ∈ I. Since by induction
∑K ′

j=1 Φ̂α
j = 1 there exists

exactly one 1 ≤ m ≤ K ′ such that Φ̂α
m = 1. Define Φm = (Φ̂1

m, . . . , Φ̂k−1
m , 1).

Furthermore define Φj = (Φ̂1
j , . . . , Φ̂

k−1
j , 0) for 1 ≤ j 6= m ≤ K ′ and Φj = 0 if

K ′ < j ≤ K. We now prove that Φ ∈ HK,k. By induction and by the construction of

Φ from Φ̂ it follows, in the same way as in case 1, that
∑K

j=1 Φi
j = 1 if 1 ≤ i ≤ k−1.

The fact that Φk
j = 1 if and only if j = m implies that

∑K
j=1 Φk

j = 1.

Finally we prove that M(Φ) = A. Thus consider i, j for which Φ{i,j} 6= ∅. If i, j ∈
{1, . . . , k−1} induction ensures that M(Φ)(i, j) = 1. Suppose that i = k, i.e. there

exists a t such that Φk
t = Φj

t = 1. If j = k we have that A(k, k) = 1 by definition
of MH , so suppose that j 6= k. By construction we know that Φα

m = Φk
m = 1 and

thus that Φ{α,k} 6= ∅. Since Φ{α,k} 6= ∅ and Φ{j,k} 6= ∅ theorem 4.5 implies that
Φ{α,j,k} 6= ∅. Thus Φ{j,α} 6= ∅ and since 1 ≤ j, α ≤ k − 1 it follows from induction
that A(j, α) = 1. Together with A(k, α) = 1 and the transitive property of MH it
follows that A(k, j) = 1. Finally, if Φ{k,j} = ∅ it follows from the construction of Φ
that j 6∈ I which implies that A(k, j) = 0. �

Discussion. Theorem 5.7 and 5.8, together with definition 5.6, indicate that tran-
sitivity is the distinctive property of hard clusterings compared to general cluster-
ings. Theorem 4.11 showed that the distinctive property of hard clusterings Φ is
given by F(Φi) ∩ F(Φj) = ∅ if i 6= j; informally this can also be stated as the
absence of overlap. Definition 2.4 indicates that the fact that each data element
belongs to exactly one cluster is also the distinctive property of hard clusterings.
From these three considerations it can be concluded that absence of overlap, tran-
sitivity and the property that each data element belongs to exactly one cluster, are
equivalent properties.

6. Conclusion and future work

We generalized the hard clustering paradigm by allowing that a data element can
belong to more than one cluster. It is shown that generalized hard clusterings can
be represented by (m,n)-sets, a new concept that we discussed in this paper, and
by matrices. The concept of equivalent generalized hard clusterings was defined and
it was shown that in light of this concept the representation by matrices should be
preferred.
Another new concept we introduced was that of transitive clusterings. Using the
paradigm of generalized hard clusterings, it was demonstrated that transitivity, ab-
sence of overlap between clusters and the property that each data element belongs
to exactly one cluster are synonymous characteristics of hard clusterings.
An interesting and important open question is how to deduce the minimal num-
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ber of clusters, given a generalized hard clustering. This is a relevant question,
since it is possible that redundant or useless information is present in a gen-
eralized hard clustering. For example, consider the generalized hard clustering
Φ = ((1, 1, 0), (0, 1, 0), (0, 0, 1)). This corresponds to three clusters where the first
cluster represents the information that d1 and d2 are similar to each other, the
second cluster states that d2 is similar to itself and the third cluster states that
d3 is similar to itself. It is easily seen that only the first cluster contains relevant
information, and thus the other two clusters redundant.
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