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In recent years, high-order methods have shown to be very useful in many practical applica-
tions, in which nonlinear systems arise. In this case, a classical method of positional astronomy
have been modified in order to hold a nonlinear system in its establishments (that in the clas-
sical method is reduced to a single equation). At this point, high-order methods have been
introduced in order to estimate the solutions of this system and, then, determine the orbit of
the celestial body. We also have implemented a user friendly application, which will allow us
to make a numerical and graphical comparison of the different methods with reference orbits,
or user defined orbits.

Keywords: orbit determination, Gauss method, nonlinear systems, Newton’s method,
order of convergence, efficiency index

AMS Subject Classification: 65H10; 65L20

1. Introduction

Orbit determination is an old problem with new applications: at the early XIX
century, Gauss designed a method to predict the future positions of asteroids, as
Ceres, or other celestial bodies of our solar system with elliptical orbits. Nowadays,
orbit determination methods are an essential tool in order to, by example, correct
the position of artificial satellites in their orbits. The first step in kind of methods
is to determine preliminary orbits, as the motion analyzed is under the premises
of the two bodies problem, not taking into account any other force than mutual
gravitational attraction between both bodies. Thereafter, perturbations and other
variables must be taken into account in order to refine the preliminary orbit.

Recently, several authors have focused this problem from other points of view: in
[3], Danchick improves the original work of Gauss introducing Newton-Raphson’s
method (instead of fixed-point method in the original scheme) and modifying the
iterative process in order to widen the region of convergence. Moreover, Gronchi in
[5] introduces a generalization of the geometric interpretation that provides Char-
lier’s theory on Laplace’s method of preliminary orbit determination from three
observations. This generalization can to take into account topocentric observations
and is useful to understand when there are multiple solutions and where they are
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located. This new theory works for both Laplace’s and Gauss’s methods. From
another point of view, Gronchi et al. in [6] investigate a method to compute a
finite set of preliminary orbits for solar system bodies using the first integral of the
Kepler’s problem, which is useful for the modern sets of astrometric observation.

The inertial system which the orbit is placed in is a geocentric system whose fun-
damental plane is the projection of the terrestrial equator to the celestial sphere,
the perpendicular axis points to Celestial North and South Poles, and the funda-
mental direction point to the Vernal point γ, in Aries constellation.

If we focus on the orbital plane, it is possible to set a two-dimensional coordinate
system, where the fundamental direction points to the perigee of the orbit, the
closest point of the elliptical orbit to the focus and center of the system, the Earth.
In order to place this orbit in the celestial sphere and determine completely the
position of a body in the orbit, some elements (called orbital or keplerian elements)
must be determined.

Then, the orbital elements are:

• Ω, (right ascension of the ascending node): defined as the equatorial angle be-
tween the Vernal point γ and the ascending node N ; it orients the orbit in the
equatorial plane.

• ω, (argument of the perigee): defined as the angle of the orbital plane, centered at
the focus, between the ascending node N and the perigee of the orbit; it orients
the orbit in its plane.

• i, (inclination): Dihedral angle between the equatorial and the orbital planes.
• a, (semi-major axis): Which sets the size of the orbit.
• e, (eccentricity): Which gives the shape of the ellipse.
• T0, (perigee epoch): Time for the passing of the object over the perigee, to

determine a reference origin in time. It can be denoted by a exact date, in Julian
Days, or by the amount of time ago the object was over the perigee.

Different methods have been developed for this purpose (see [2, 4, 9]), consti-
tuting a fundamental element in navigation control, tracking and supervision of
artificial satellites. By using these methods, from position and velocity coordinates
for a given time, it is possible to determine those orbital elements for the prelim-
inary orbit, which should be refined with later observations from ground stations,
whose geographic coordinates are already known. In order to get this aim, some
angles (or anomalies) must be determined on the planar orbit. Firstly, the object
position in the ellipse can be determined by an angle, the true anomaly (ν), with
center on the focus of the ellipse, which is the covered angle by a position vector,
from its last perigee epoch (ν = 0), to the observation instant. Another related
angle with the previous one is the eccentric anomaly (E), whose center is on the
center of the ellipse. This is the covered angle by a line from this center to the point
where a circumference of radius a, the semi-major axis, is cut by a perpendicular
line to X axis passing by the coordinates of the position vector, from its last Perigee
epoch (E = 0) to the observation moment.

Using the Earth as the center of the coordinates system, it is useful to establish
related units: the distance unit is the Earth radius (e.r.), approximately 6370 Km,
and time unit is the minute, although some dates are described in Julian days (JD).

Some fundamental constants are the Earth gravitational constant, k =
0.07436574(e.r.)

3
2 /min (see [4]), G, and the gravitational parameter µ =

1
mEarth

(mEarth + mObject) ≈ 1. Then, modified time variable is introduced as
τ = k(t2 − t1), where t1 is an initial arbitrary time and t2 is the observation
time. So, τ is considered here as a measure of time difference, which will simplify
calculations.
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To estimate the velocity we can make use of the closed forms of the f and g series
(see [4, 9]), f = 1− a

|~r1| [1−cos (E2 − E1)] and g = τ−
√

a3

µ [(E2−E1)−sin (E2 − E1)],
so we can express the rate respect two positions vectors and time as

~̇r1 =
~r2 − f · ~r1

g
. (1)

So, it is clear that, known two position vectors and its corresponding observational
instants, the main objective of the different methods that determine preliminary
orbits is the calculation of the semi-major axis, a, and the eccentric anomalies
difference, E2−E1. When they have been calculated, it is possible to obtain by (1)
the velocity vector corresponding to one of the known position vectors and, then,
obtain the orbital elements.

Most of these methods have something in common: the need for finding the
solution of a nonlinear equation or system, as in Gauss method. Usually, fixed
point or secant methods are employed.

From the available input data, two position vectors and times for the obser-
vations, τ can be immediately deduced and other intermediate results as the
difference in true anomalies, (ν2 − ν1), deduced by cos (ν2 − ν1) = ~r1·~r2

|~r1|·|~r2| and

sin (ν2 − ν1) = ± x1y2−x2y1

|x1y2−x2y1|
√

1− cos2 (ν2 − ν1), with positive sign for direct orbits,
and negative for retrograde orbits.

Once the difference of true anomalies is obtained from the position vectors and
times, the specific orbit determination method is used. In our particular case, we
will introduce in the following section the classical Gauss method and, thereafter,
we will modify it in order to estimate the value of the semi-major axis and eccentric
anomalies by means of high-order iterative methods.

Let us also note that the inverse problem, it is the calculation of ephemeris
(position an velocity in a given time) knowing the orbital elements, can be done
easily, with direct operations that can be found in related bibliography (see [2, 4, 9]).

2. Gauss method of orbit determination

This method calculate a preliminary orbit of a celestial body by means of only
two observations (position vectors). It is based on the relation between the areas

Figure 1. Ratio sector to triangle, in Gauss method.

of the sector ABC and the triangle ABC, as Figure 1 illustrates, delimited by both
position vectors, ~r1 y ~r2. The ratio sector- triangle can be expressed as:

y =
√

µp · τ
r2r1 sin (ν2 − ν1)

=
√

µ · τ
2
√

a
√

r2r1 sin (E2−E1
2 ) cos (ν2−ν1

2 )
, (2)
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(with (ν2 − ν1) 6= π), and on the first

y2 =
m

l + x
(3)

and second

y2(y − 1) = mX. (4)

Gauss equations, where the constants of the problem (based on the data and the
previously made calculations are

l =
r2 + r1

4
√

r2r1 cos (ν2−ν1
2 )

− 1
2

and m =
µτ2

[2
√

r2r1 cos (ν2−ν1
2 )]2

. (5)

Moreover, also must be determined in the process the value of:

x =
1
2

[
1− cos

(
E2 −E1

2

)]
= sin2

(
E2 − E1

4

)
and X =

E2 − E1 − sin (E2 −E1)
sin3 (E2−E1

2 )
.

(6)
With these equations we present two different schemes to solve the problem:

the classical method, which reduces first and second Gauss equations to a unique
nonlinear equation, solved by fixed point method, and the modified Gauss scheme,
which solve directly the nonlinear system formed by both Gauss equations.

2.1 Classical Gauss method scheme

In the classical method, an only nonlinear equation is obtained by, substituting
second Gauss equation (3) into first equation (4):

y = 1 + X(l + x). (7)

Then a fixed-point scheme is used to estimate the solution of (7), making a first
estimation of the ratio , y0 = 1, and by using the first Gauss equation to get
x0 = m

y2
0
− l.

From the definition of x in equation (6), it is possible to calculate cosine and sine
of the half difference of eccentric anomalies, which is known to be between 0 an π
radians, determining uniquely the difference of eccentric anomalies:

cos
(

E2 − E1

2

)
= 1− 2x0 and sin

(
E2 − E1

2

)
= +

√
4x0(1− x0). (8)

Then, with equation (6), an estimation of X, X0, can be calculated and used in
the reduced nonlinear equation (7) in order to get a better estimation of the ratio
y1 = 1 + X0(l + x0).

This iterative process gets new estimations of the ratio, until a given tolerance
condition is satisfied. If there is convergence, the semi-major axis a, can be calcu-
lated by means of equation (2), from the last estimations of ratio and difference of
eccentric anomalies, and the last phase of the process is then initiated, to determine
velocity and orbital elements.

The Gauss method has some limitations, as the critical observation angles spread,
in ν2−ν1 = π, where the denominator of equation (2) vanish. Moreover, it is known
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that this method is only convergent to a coherent solution if the observation angles
spread is less than 70o, where this method has order of convergence 1. The ratio y
grows with spread, leading to an invalid solution, if it converges. So this method is
suitable for small spreads in observations, that is, observations which are close to
each other.

2.2 Modified Gauss schemes

It is possible to make a different approach to the problem, solving the nonlin-
ear system formed by both Gauss equations with different higher order iterative
methods, instead of solving a unique nonlinear equation, which have the ratio y as
unknown.

Firstly, it is necessary to establish the nonlinear system to be solved. In this case
we can use the ratio u = y and the difference of eccentric anomalies, v = E2 −E1,
as our unknowns, and substitute (6) in first an second Gauss equations, (3) and
(4), so the system F (u, v) = 0 becomes:

u2 + u2

2

(
1− cos v

2

)−m = 0,
u3 + u2 −mv−sin v

sin3 v

2
= 0.

(9)

Let us note that l and m are constants, with the input data, calculated with
(5). Moreover, it is easy to check that the jacobian matrix F ′(u, v) associated
to this system is ill-conditioned, so the iterative methods used to estimate its
solutions must be robust enough. General information about iterative methods to
solve nonlinear equations and systems can be found in [10].

Firstly, we will use Newton’s method. Then, new estimations of the solution can
be deduced with the following iterative scheme:

x(k+1) = x(k) − F ′(x(k))−1F (x(k)), (10)

with convergence order up to 2. Also the well-known Jarrat’s method (see [7]) will
be employed, with forth order of convergence and iterative expression:

x(k+1) = x(k) − 1
2
(3F ′(y(k))− F ′(x(k)))−1(3F ′(y(k)) + F ′(xk))F ′(x(k)))−1F (x(k))

(11)
where y(k) = x(k) − 2

3F ′(x(k))−1F (x(k)).
Moreover, a new family of methods is introduced:

x(k+1) = y(k) −A−1BF ′(x(k))−1F (y(k)), (12)

where y(k) = x(k) − cF ′(x(k))−1F (x(k)), A = a1F
′(x(k)) + a2F

′(y(k)) and B =
b1F

′(x(k))+b2F
′(y(k)) which will be denoted by N5 methods and whose convergence

order will be proved to be five for some values of the parameters. In order to analyze
the convergence of the new method we use Taylor expansions around the solution,
whose notation was introduced in [1].

Theorem 2.1 Let F : D ⊆ Rn −→ Rn be sufficiently differentiable at each point
of an open neighborhood D of x̄ ∈ Rn, that is a solution of the system F (x) = 0.
Let us suppose that F ′(x) is continuous and nonsingular in x̄. Then the sequence
{x(k)}k≥0 obtained using the iterative expression (12) converges to x̄ with order 5
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if c = 1, a2 6= 0, a1 = −a2
5 , b1 = 3a2

5 and b2 = −a1 and satisfies the error equation

ek+1 =
(
−5C4

2 − 4C2
2C3 +

3
2
C2C3C2 − 3

2
C3C2 + 6C2C4)

)
e6
k + O(e7

k),

where ek = x(k)− x̄ and Ck = (1/k!)[F (x̄)]−1F (k)(x̄), k = 2, 3, . . ..

Proof: Taylor’s expansion around x = x̄ gives

F (x(k)) = F ′(x̄)
[
ek + C2e

2
k + C3e

3
k + C4e

4
k + C5e

5
k + C6e

6
k

]
+ O(e7

k), (13)

F ′(x(k)) = F ′(x̄)
[
I + 2C2ek + 3C3e

2
k + 4C4e

3
k + 5C5e

4
k + 6C6e

5
k

]
+ O(e6

k). (14)

From (14), we have

[
F ′(x(k))

]−1
=

[
I + X2ek + X3e

2
k + X4e

3
k + X5e

4
k

]
[F ′(x̄)]−1 + O(e5

k),

with X2 = −2C2, X3 = 4C2
2 − 3C3, X4 = 6C3C2 − 8C3

2 + 6C2C3 − 4C4 and
X5 = 16C4

2 − 12C3C
2
2 − 12C2C3c2 + 8C4C2 + 9C2

3 − 12C2
2C3 + 8C2C4− 5C5. Then,

y(k) − x̄ = x(k) − x̄− c
[
F (x(k))

]−1
F (x(k)) (15)

= (1− c)ek + cC2e
2
k − cM0e

3
k − cM1e

4
k + O(e5

k),

where M0 = C3 + X2C2 + X3 and M1 = C4 + X2C3 + X3C2 + X4.
Again, by Taylor expansion:

F (y(k)) = F ′(x̄)
[
(1− c)ek + Q2e

2
k + Q3e

3
k + Q4e

4
k

]
+ O(e5

k), (16)

where Q2 = (c + (1 − c)2)C2, Q3 = −cM0 + 2c(1 − c)C2
2 + (1 − c)3C3 and Q4 =

−cM1 + c2C3
2 − 2c(1− c)C2M0 + 3c(1− c)2C3C2 + (1− c)4C4. Moreover,

F ′(y(k)) = F ′(x̄)
[
I + 2(1− c)C2ek + T2e

2
k + T3e

3
k + T4e

4
k

]
+ O(e5

k), (17)

being T2 = 2cC2
2 + 3(1− c)2C3, T3 = −2cC2M0 + 6c(1− c)C3C2 + 4(1− c)5C4 and

T4 = −2cC2M1 + 3c2C3C
2
2 − 6c(1− c)C3M0 + 12c(1− c)2C4C2 + 5(1− c)4C5.

So, the expansion of matrix A is obtained combining (14) and (17):

A = a1F
′(x(k)) + a2F

′(y(k))

= F ′(x̄)
[
(a1 + a2)I + L1ek + L2e

2
k + L3e

3
k + L4e

4
k

]
+ O(e5

k),

where L1 = 2(a1 + a2(1 − c))C2, L2 = 3a1C3 + a2T2, L3 = 4a1C4 + a2T3 and
L4 = 5a1C5 + a2T4, and the inverse of A can be expressed as:

A−1 =
[

1
a1 + a2

I + Z2ek + Z3e
2
k + Z4e

3
k + Z5e

4
k

]
[F ′(x̄)]−1 + O(e5

k),

being Z2 = − L1
(a1+a2)2

, Z3 = − L2
(a1+a2)2

− Z2L1
a1+a2

, Z4 = − L3
(a1+a2)2

− Z2L2+Z3L1
a1+a2

and

Z5 = − L4
(a1+a2)2

− Z2L3+Z3L2+Z4L1
a1+a2

.
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Now, by (14) and (17), the Taylor expansion of matrix B is:

B = b1F
′(x(k)) + b2F

′(y(k))

= F ′(x̄)
[
(b1 + b2)I + P1ek + P2e

2
k + P3e

3
k + P4e

4
k

]
+ O(e5

k),

where P1 = 2(b1 + b2(1 − c))C2, P2 = 3b1C3 + b2T2, P3 = 4b1C4 + b2T3 and
P4 = 5b1C5 + b2T4. Then,

A−1B = HI + S1ek + S2e
2
k + S3e

3
k + S4e

4
k + O[ek], (18)

being H = b1+b2
a1+a2

and S1 = P1
a1+a2

+(b1+b2)Z2, S2 = P2
a1+a2

+Z2P1+(b1+b2)Z3, S3 =
P3

a1+a2
+Z2P2+Z3P1+(b1+b2)Z4 and S4 = P4

a1+a2
+Z2P3+Z3P2+Z4P1+(b1+b2)Z5.

Now, the Taylor expansion of the remaining product of the iterative expression
(12) is:

[
F ′(x(k))

]−1
F (y(k)) = (1− c)ek + R2e

2
k + R3e

3
k + R4e

4
k + O(e5

k), (19)

where R2 = Q2 + (1− c)X2, R3 = Q3 + X2Q2 + (1− c)X3 and R4 = Q4 + X2Q3 +
X3Q2 + (1− c)X4.

And finally, combining (15), (18) and (19), we obtain:

ek+1 = ((1− c)−H(1− c))ek + (cC2 −HR2 − (1− c)S1)e2
k

+ (−cM0 −HR3 − S1R2 − (1− c)S2)e3
k

+ (−cM1 −HR4 − S1R3 − S2R2 − (1− c)S3)e4
k + O(e5

k).

So, the solution of the following linear system will provide us the conditions of the
parameters to have convergence order five.

(1− c)−H(1− c) = 0
cC2 −HR2 − S1(1− c) = 0

cM0 + HR3 + S1R2 + S2(1− c) = 0
cM1 + HR4 + S1R3 + S2R2 + S3(1− c) = 0





From the two first equations is directly obtained that c = 1 and H = 1. Then,
from the third equation, the following condition must be satisfied in order to obtain
convergence order four: b1

a1+a2
− a1(b1+b2)

(a1+a2)
2 = 1. Finally, the last equation gives us the

condition to be satisfied for order five: 5a1+a2 = 0. So, the values of the parameters
that ensure fifth-order convergence are: a1 = −a2

5 , b1 = 3a2
5 and b2 = −a1 and the

resulting error equation is:

ek+1 =
(
−5C4

2 − 4C2
2C3 +

3
2
C2C3C2 − 3

2
C3C2 + 6C2C4)

)
e6
k + O(e7

k).

¤
In the last section, we will use a member of this family in order to compare the

precision of the calculated orbit with the other methods. In particular, we will take
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a2 = 5 and its iterative expression is:

y(k) = x(k) − F ′(x(k))−1F (x(k)) (20)

x(k+1) = y(k) −
(
−F ′(x(k)) + 5F ′(y(k))

)−1 (
3F ′(x(k)) + F ′(y(k))

)
F ′(x(k))−1F (y(k)).

Let us remark that this new uniparametric family of methods has better effi-
ciency index than the well-known Jarrat’s method and it is more efficient from the
computational point of view, as it gets higher order of convergence with the same
number of operations and only one more functional evaluation. In order to measure
the efficiency of an iterative method, the efficiency index is defined as I = p1/d (see
[8]), where p is the order of convergence and d is the total number of new func-
tional evaluations (per iteration) required by the method. In the particular case
of the modified Gauss method, the size of the nonlinear system involved is two;
then, the respective efficiency indices are INewton = 1.1225, IJarrat = 1.1487 and
IN5 = 1.1610. In spite of this, we will see in the next section that the behavior of
the new method N5 is better, because of the ill-conditioned system to be solved.

All this Newton’s variants applied to the nonlinear system appearing in Gauss
method, (9), are expected to be at least so accurate as the classical scheme, but to
drastically reduce the number of iterations needed to find a solution to the problem,
as it will be seen later.

3. Comparing Gauss method schemes

Now, tests are needed to analyze the previously described schemes. For that pur-
pose a graphical application has been developed with Matlab GUIDE (Graphical
User Interface Development Environment) to make graphical and numerical com-
parison. The schemes presented will work with 200 digits of mantissa as they use
variable precision arithmetics, so we can set more restrictive tolerances.

The reference or test orbits we will use, found on [4], are:

• Test Orbit I:

~r1 = [2.46080928705339, 2.04052290636432, 0.14381905768815] e.r.
~r1 = [1.98804155574820, 2.50333354505224, 0.31455350605251] e.r.
t1 = 0JD t2 = 0.01044412000000 JD
Ω = 30o ω = 10o i = 15o a = 4e.r. e = 0.2 T0 = 0m

• Test Orbit II:

~r1 = [−1.75981065999937, 1.68112802634201, 1.16913429510899] e.r.
~r2 = [−2.23077219993536, 0.77453561301361, 1.34602197883025] e.r.
t1 = 0 JD t2 = 0.01527809000000 JD
Ω = 80o ω = 60o i = 30o a = 3 e.r. e = 0.1 T0 = 0m

• Test Orbit III:

~r1 = [0.41136206679761,−1.66250000000000, 0.82272413359522] e.r.
~r2 = [0.97756752977209,−1.64428006097667,−0.04236299091612] e.r.
t1 = 0 JD t2 = 0.01316924000000 JD
Ω = 120o ω = 150o i = 60o a = 2 e.r. e = 0.05 T0 = 0m,

• Test Orbit IV:

Page 8 of 10

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

acordero
Now, tests are needed to analyze the previously described schemes. For that pur-pose a graphical application has been developed with Matlab GUIDE (GraphicalUser Interface Development Environment) to make graphical and numerical com-parison. The schemes presented will work with 200 digits of mantissa as they usevariable precision arithmetics, so we can set more restrictive tolerances.



For Peer Review
 O

nly

December 23, 2010 11:37 International Journal of Computer Mathematics
CMMSE2010˙OrbitDetIJCM˙R1

Artificial Satellites Orbit Determination 9

~r1 = [0.65241964490697, 3.80258035509303, 2.22750000000000] e.r.
~r2 = [−1.35626966531604, 2.95849708305651, 3.05100082701246] e.r.
t1 = 0 JD t2 = 0.04622903000563 JD
Ω = 45o ω = 45o i = 45o a = 4.5 e.r. e = 0.01 T0 = 0m

By using the first test positions vectors and times, we can first compare the
number of iterations and estimated accuracy of classical (C), Newton (N), Jarrat
(J) and new fifth-order (N5) schemes described in this paper with a2 = 5, described
in (20). As we can see in Table 1, with tolerance = 10−100, higher order methods
reduce significantly the number of iterations, getting even more accuracy than the
classical scheme.

Scheme Iterations ||x(k+1) − x(k)||
C 54 1.8364e-101
N 8 7.3258e-133
J 5 7.0e-200
N5 4 1.0658e-108

Table 1. Comparison of different Gauss method schemes for reference orbit I

Due to limitations in number of digits and format in observations data, and to
the last phase of calculations, some accuracy is lost, but it is hard to determine
differences in errors in the presented schemes. As far as results can be represented,
errors in the final results of the orbital elements, for classical Gauss method, are
shown in Table 2, where the exact orbit elements are compared with the calculated
ones by means of the classical method.

Errors C N J N5

|a′ − a| 3.3032e-070 e.r. 3.3032e-070 e.r.
|e′ − e| 6.6064e-071 6.6064e-071
|T′

0 −T0| 2.3162e-048 min 2.0726e-069 min
|i′ − i| 3.0000e-198o 4.0000e-198o

|ω′ − ω| 1.6900e-069o 1.6900e-069o

|Ω′ −Ω| 2.0000e-198o 1.0000e-198o

Table 2. Error in classical Gauss method for reference orbit I

Now we can compare the new schemes with the classical, seeing in Table 2 the
differences between the calculated orbital elements by the classical method and
each one of the modified methods. It can be observed that Jarrat’s and new fifth-
order methods obtain almost the same estimation of the solution than Newton’s
method. Nevertheless, the reduction in the number of iterations needed justifies
the use of high-order methods.

If we vary tolerance from 10−100 up to 10−498, we can compare in Table 3 how
number of iterations grows, making it clear that solving the nonlinear system,
instead of reducing it to a nonlinear equation, does not increase number of iterations
so fast as the classical scheme.

Finally, in Table 4, we can compare the number of iterations needed for different
test orbits with different spreads in observations SP = ν2 − ν1, to realize that the
limitation of spread is still present, but overall process is made faster, not increasing
iterations to find a solution in worse cases, that is, with bigger difference of true
anomalies in observation.
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Scheme tol = 10−100 tol = 10−198 tol = 10−498

C 54 106 172
N 8 9 10
J 5 5 6
N5 4 5 5

Table 3. Iterations if varying tolerances, for reference orbit I

Test Orbit I Test Orbit II Test Orbit III Test Orbit IV
Scheme SP = 12.23o SP = 22.06o SP = 31.46o SP = 30.29o

C 54 76 101 99
N 8 8 8 8
J 5 5 5 5
N5 4 4 5 5

Table 4. Iterations needed for different spreads

4. Conclusion

A new approach to the problem of orbit determination is proposed, consisting in
solving directly a nonlinear system formed by both Gauss equations, by means of
well known iterative functions as Newton’s and Jarrat’s and a new method which
have higher convergence order.

In the test of these variants of the Gauss methods, it is seen that they can reduce
significantly the number of iterations, making the process faster, so it is possible to
use more limiting tolerances to improve accuracy, without increasing much more
the number of iterations. Some limitations of the classical scheme are still present in
the alternatives introduced in this paper, such as spread limitation in observations,
that is, the difference of true anomalies of observations. As the ratio y grows with
spread, bigger spreads mean more iterations to find a solution, but in the proposed
modified schemes this increment is very limited. If the difference is greater than
70o, the process will probably lead to invalid solutions, which makes Gauss method
suitable only for observations that are close enough.
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