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We show that the domain of formal balls of a complete partial metric space (X, p) can be
endowed with a complete partial metric that extends p and induces the Scott topology. This
result, that generalizes well-known constructions of Edalat and Heckmann (Theoret. Comput.
Sci. 1998) and Heckmann (Appl. Cat. Struct. 1998) for metric spaces and improves a recent
result of Romaguera and Valero (Math. Struct. Comput. Sci. 2009), motivates a notion of a
partially metrizable computational model which allows us to characterize those topological
spaces that admit a compatible complete partial metric via this model.

Keywords: computational model, complete partial metric, domain, formal ball, the Scott
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1. Introduction

Motivated by the fact that metric spaces and domain theory constitute fundamen-
tal mathematical tools in computer science, several authors have investigated the
problem of obtaining links between them and constructing, with this approach,
suitable models in the theory of computation [2, 3, 5, 7, 8, 11–13, 15, 19, 23, etc].
In particular, Edalat and Heckmann [2] presented a very nice and explicit construc-
tion of a computational model for (complete) metric spaces by means of the notion
of a formal ball. They proved, among other results, that the poset of formal balls
of a metric space (X, d) is a domain if and only if (X, d) is complete and that this
poset is an ω-domain if and only if (X, d) is complete and separable (previously,
Lawson characterized in [11] separable completely metrizable spaces in terms of
ω-domains). Later on, Heckmann [7] constructed a partial metric on the (contin-
uous) poset of formal balls of a metric space (X, d) which extends the metric d
and induces the Scott topology (similar results were obtained by Rutten [19] with
a different approach). Heckmann’s construction is very interesting because the use
of a distance function on the formal balls provides a “quantitative” computational
model, which suggested, by one hand, the study of computational models from a
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quantitative point of view and, on the other hand, the study of partial metrics and
related structures by means of domain theory (see [1, 9, 14, 16–18, 20–23, etc] for
recent contributions in these directions).

Here, and improving a recent construction by Romaguera and Valero [17], we
shall prove that the domain of formal balls of a complete partial metric space
(X, p) can be endowed with a complete partial metric that, among other things,
extends the partial metric p and induces the Scott topology. Motivated by this
result we shall define the notion of a partially metrizable computational model
and then we shall show that the topological spaces having a partially metrizable
computational model are exactly those admitting a compatible complete partial
metric.

2. Background

The letters N, R and R
+ will denote the set of positive integer numbers, the set of

real numbers and the set of non-negative real numbers, respectively.
Our basic reference for domain theory is [6], for general topology is [4] and for

quasi-metric spaces it is [10].
Let us recall that a partially ordered set, or poset for short, is a set L equipped

with a partial order v; it will be denoted by (L,v) or simply by L if no confusion
arises.

A subset D of a poset L is directed provided that it is nonempty and any pair
of elements of D has an upper bound in D. The least upper bound of a subset D
of L is denoted by

⊔
D if it exists.

A poset L is said to be directed complete, and is called a dcpo, if every directed
subset of L has a least upper bound.

An element x of L is said to be maximal if the condition x v y implies x = y.
The set of all maximal points of L will be denoted by Max((L,v)) or simply by
Max(L) if no confusion arises.

Let L be a poset and x, y ∈ L; we say that x is way below y, in symbols x � y, if
for each directed subset D of L for which

⊔
D exists, the relation y v

⊔
D implies

the existence of some z ∈ D with x v z.
A poset L is called continuous if for each x ∈ L, the set ⇓ x = {u ∈ L : u � x}

is directed and x =
⊔

(⇓ x).
A continuous poset which is also a dcpo is called a continuous domain or, simply,

a domain.
A subset B of a poset L is a basis for L if for each x ∈ L, the set ⇓ xB = {u ∈

B : u � x} is directed and x =
⊔

(⇓ xB).
Recall that a poset has a basis if and only if it is continuous. Therefore, a dcpo

has a basis if and only if it is a domain.
A dcpo having a countable basis is said to be an ω-continuous domain, or simply

an ω-domain if no confusion arises.

The Scott topology σ(L) of a poset (L,v) is constructed as follows: A subset U
of L is open with respect to σ(L) provided that: (i) U =↑ U, where ↑ U = {y ∈
L : x v y for some x ∈ U}; (ii) for each directed subset D of L with

⊔
D ∈ U, it

follows that D ∩ U 6= ∅.
If D is a subset of L, we denote by σ(L)|D the restriction of σ(L) to D.
If (L,v) is a continuous poset, then the sets ⇑ x, x ∈ L, form an open base for

σ(L), where ⇑ x = {y ∈ L : x � y} (see [6, Proposition II-1.10]).
The lower (or weak) topology of a poset L is the one that has as a subbase the

collection of sets of the form L\ ↑ x, x ∈ L, and is denoted by ω(L). Let us recall
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that the supremum topology of σ(L) and ω(L) is the Lawson topology of L, which
is denoted by λ(L). If D is a subset of L, we denote by λ(L)|D the restriction of
λ(L) to D.

If (X, τ) is a T0 topological space, then the binary relation ≤τ defined on X by
x ≤τ y ⇔ x ∈ cl{y}, is a partial order on X called the specialization order (see,
for instance, p. 42 of [6]).

Following the modern terminology, by a quasi-metric on a set X we mean a
function d : X × X → R

+ such that for all x, y, z ∈ X : (i) x = y ⇔ d(x, y) =
d(y, x) = 0; (ii) d(x, z) ≤ d(x, y) + d(y, z).

A quasi-metric space is a pair (X, d) such that X is a set and d is a quasi-metric
on X.

Each quasi-metric d on X induces a T0 topology τd on X which has as a base the
family of open balls {Bd(x, r) : x ∈ X, ε > 0}, where Bd(x, ε) = {y ∈ X : d(x, y) <
ε} for all x ∈ X and ε > 0.

Note that if (X, d) is a quasi-metric space, then the binary relation ≤d defined
on X by x ≤d y ⇔ d(x, y) = 0, is a partial order on X, which coincides with the
specialization order of (X, τd).

Given a quasi-metric d on X, then the function d−1 defined by d−1(x, y) = d(y, x),
is also a quasi-metric on X, called the conjugate of d, and the function ds defined
by ds(x, y) = max{d(x, y), d−1(x, y)} is a metric on X.

On the other hand, the notion of a partial metric space, and its equivalent
weightable quasi-metric space, was introduced by Matthews in [13] as a part of
the study of denotational semantics of dataflow networks.

Let us recall that a partial metric on a set X is a function p : X × X → R
+

such that for all x, y, z ∈ X : (i) x = y ⇔ p(x, x) = p(x, y) = p(y, y); (ii) p(x, x) ≤
p(x, y); (iii) p(x, y) = p(y, x); (iv) p(x, z) ≤ p(x, y) + p(y, z) − p(y, y).

If p is a partial metric on X we denote by ker p the subset of X consisting of all
points x ∈ X such that p(x, x) = 0. Obviously, every metric d on X is a partial
metric with ker d = X.

A partial metric space is a pair (X, p) such that X is a set and p is a partial
metric on X.

Each partial metric p on X induces a T0-topology τp on X which has as a base
the family of open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X :
p(x, y) < ε + p(x, x)} for all x ∈ X and ε > 0.

We say that a topological space (X, τ) admits a compatible partial metric if there
is a partial metric p on X such that τp = τ.

Matthews observed in [13] that each partial metric p on a set X induces a quasi-
metric dp on X given by dp(x, y) = p(x, y) − p(x, x) for all x, y ∈ X. Moreover
τp = τdp

.
If (X, p) is a partial metric space, then the binary relation ≤p on X given by

x ≤p y ⇔ p(x, y) = p(x, x), is a partial order on X. Hence (X,≤p) is a poset
([7, 13]). Note that in this case one has ≤p=≤dp

.
In Definition 5.3 of [13], Matthews also introduced the notion of a complete

partial metric and stated, with a slight different terminology, that a partial metric
p on a set X is complete if and only if the metric (dp)

s is complete on X.
We will say that a partial metric space (X, p) is complete if p is a complete partial

metric on X.
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3. Partially metrizable computational models

Recall [2] that if (X, d) is a metric space, then BX = X ×R
+ is said to be the set

of formal balls of (X, d), and the relation vd defined on BX by (x, r) vd (y, s) ⇔
d(x, y) ≤ r − s, is a partial order on X. The pair (BX,vd) is called the poset of
formal balls of (X, d).

Then, Edalat and Heckmann proved that for any metric space (X, d), the poset
of formal balls is continuous, and the mapping i : X → BX, given by i(x) =
(x, 0), is a homeomorphism between (X, τd) and (Max(BX), σ(BX)|Max(BX)), and
σ(BX)|Max(BX) = λ(BX)|Max(BX).

As we mentioned above, Heckmann constructed in [7] a partial metric on the set
BX of formal balls of a metric space (X, d), that extends the metric d and such
that both the partial order vd and the Scott topology are induced by it.

The partial metric P on BX, given below, is a slight modification of Heckmann’s
original construction (see Section 4 of [17]):

P ((x, r), (y, s)) = max {d(x, y), |r − s|} + r + s,

for all (x, r), (y, s) ∈ BX.
In Theorem 1 below we extend Heckmann’s construction to (complete) partial

metric spaces which also provides an improvement of Theorem 4.1 of [17].
To this end, we first recall some pertinent concepts and facts.
The poset of formal balls of a quasi-metric space (X, d) is the poset (BX,vd),

where both BX and the partial order vd are defined exactly as in the metric case
(see [1, 17], where quasi-metric and partial metric versions of several results of
Edalat and Heckmann were obtained. In particular, it was proved in Theorem 3.1
of [17] that a partial metric space (X, p) is complete if and only if (BX,v dp) is a
domain ).

According to Waszkiewicz [22], a weak partial metric on a set X is a function p :
X ×X → R

+ such that for all x, y, z ∈ X : (i) x = y ⇔ p(x, x) = p(x, y) = p(y, y);
(ii) p(x, y) = p(y, x); (iii) p(x, z) ≤ p(x, y) + p(y, z) − p(y, y).

Heckmann [7] showed that every weak partial metric p on a set X induces a
partial metric p′ on X given by p′(x, y) = max{p(x, y), p(x, x), p(y, y)} for all x, y ∈
X.

Now let (X, p) be a partial metric space. Construct a function P : BX ×BX →
R

+ by

P ((x, r), (y, s)) = p(x, y) + r + s,

for all (x, r), (y, s) ∈ BX.
The proof of the following result is straightforward (compare with the first

paragraph of 3.2 in [7]).

Proposition 1. For each partial metric space (X, p), the function P constructed

above is a weak partial metric on BX.

Therefore, the function P ′ : BX × BX → R
+ defined by

P ′((x, r), (y, s)) = max {P ((x, r), (y, s)), P ((x, r), (x, r)), P ((y, s), (y, s))} ,

for all (x, r), (y, s) ∈ BX, is a partial metric on BX.
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Note that, in fact,

P ′((x, r), (y, s)) = max{p(x, y) + r + s, p(x, x) + 2r, p(y, y) + 2s},

for all (x, r), (y, s) ∈ BX.
Now we are in position of establishing our main result.

Theorem 1. Let (X, p) be partial metric space and let P ′ be the partial metric

on BX defined above. Then

(a) The mapping i : X → BX, given by i(x) = (x, 0), is an isometry between

(X, p) and a τ(dP ′)−1-closed subspace of (BX,P ′).

(b) ≤P ′=vdp
, and i(Max(X,≤p)) = Max(BX).

(c) If (X, p) is complete, then τP ′ = σ(BX).

(d) If (X, p) is complete and ker p = Max(X,≤p), then σ(BX)|Max(BX) =
λ(BX)|Max(BX).

(e) (BX,P ′) is complete if and only if (X, p) is complete.

Proof. (a) Let x, y ∈ X. Then

P ′(i(x), i(y)) = P ′((x, 0), (y, 0)) = max{p(x, y), p(x, x), p(y, y)} = p(x, y).

So i is an isometry from (X, p) into (BX,P ′).
In order to show that i(X) is τ(dP ′ )−1-closed in (BX,P ′), let (y, s) ∈ BX such

that there is a sequence (xn)n∈N in X with dP ′((xn, 0), (y, s)) < 1/n for all n ∈ N.
It follows that p(xn, y)+s−p(xn, xn) < 1/n, so s < p(xn, xn)−p(xn, y)+1/n ≤ 1/n
for all n ∈ N, and hence s = 0. We conclude that (y, s) ∈ i(X) and consequently
i(X) is τ(dP ′)−1-closed in (BX,P ′).

(b) For each (x, r), (y, s) ∈ BX we have

(x, r) ≤ P ′(y, s) ⇔ P ′((x, r), (y, s)) = P ′((x, r), (x, r))

⇔ p(x, y) + r + s ≤ p(x, x) + 2r

⇔ p(x, y) − p(x, x) ≤ r − s ⇔ (x, r) vdp
(y, s).

So ≤P ′=vdp
.

On the other hand, it is clear (compare Theorem 5.1 of [17]) that Max(BX) =
{(x, 0) : x ∈ Max(X,≤p)}. Hence i(Max(X,≤p)) = Max(BX).

(c) If (X, p) is complete, we have that (BX,v dp) is a domain by Theorem 3.1 of
[17], and hence the sets ⇑ (x, r), (x, r) ∈ BX, form a base for σ(BX). Moroever,
by Corollary 3.1 of [17], we have that (x, r) � (y, s) ⇔ dp(x, y) < r − s, for all
(x, r), (y, s) ∈ BX.

It is easy to check that for each (x, r) ∈ BX and each ε > 0, one obtains

⇑ (x, r +
ε

2
) ⊆ BP ′((x, r), ε).

Consequently τP ′ ⊆ σ(BX).
Now let (z, t) ∈ BX such that (x, r) ∈⇑ (z, t). Then, there is ε > 0 such that

dp(z, x) < t − r − ε. Then, for (y, s) ∈ BP ′((x, r), ε), we have

dp(z, y) ≤ dp(z, x) + dp(x, y) < (t − r − ε) + (r − s + ε) = t − s,
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and thus (y, s) ∈⇑ (z, t). Therefore σ(BX) ⊆ τP ′ .

(d) It suffices to show that ω(BX)|Max(BX) ⊆ σ(BX)|Max(BX). Let (x, r) ∈
Max(BX) and (z, t) ∈ BX such that (x, r) ∈ BX\ ↑ (z, t). By (b), x ∈ Max(X,≤p)
and r = 0. Then p(x, x) = 0 by our hypothesis. Since dp(z, x) > t there exists
ε > 0 such that dp(z, x) > t + ε, so, BP ′((x, 0), ε) ∈ σ(BX) by (c). Then, for each
(y, 0) ∈ BP ′((x, 0), ε) ∩ Max(BX), we have p(y, y) = 0 and thus

t + ε < dp(z, x) ≤ dp(z, y) + dp(y, x) = dp(z, y) + dp(x, y) < dp(z, y) + ε.

Hence dp(z, y) > t, i.e., (y, 0) ∈ BX\ ↑ (z, t). We conclude that
ω(BX)|Max(BX) ⊆ σ(BX)|Max(BX), so σ(BX)|Max(BX) = λ(BX)|Max(BX).

(e) The proof is similar to the one given in Theorem 4.1 (e) of [17], so we omit
some details.

Suppose that (BX,P ′) is complete and let (xn)n∈N be a Cauchy sequence in
the metric space (X, (dp)

s). Then ((xn, 0))n is a Cauchy sequence in the complete
metric space (BX, (dP ′ )s), so there is (z, t) ∈ BX such that ((xn, 0))n converges
to (z, t) in (BX, (dP ′ )s). So, in particular, we obtain that for each ε > 0, p(z, z) +
2r− p(z, z) < ε, and thus r = 0. Then, it immediately follows that (xn)n converges
to z in (X, (dp)

s). We conclude that p is a complete partial metric on X.
Conversely, suppose that (X, p) is complete and let ((xn, rn))n∈N be a Cauchy

sequence in (BX, (dP ′)s). Then, for each ε > 0 there is nε ∈ N such that
p(xn, xm)−p(xn, xn)+ rm− rn < ε and p(xn, xm)−p(xm, xm)+ rn − rm < ε for all
n,m ≥ nε. Hence the sequence (rn)n∈N is bounded, so there exist a subsequence
(rnk

)k∈N of (rn)n∈Nand an r ∈ R+ such that limk rnk
= r. It immediately follows

that (xnk
)k∈N is a Cauchy sequence in (X, (dp)

s). Then, there is x ∈ X such
that (xnk

)k∈N converges to x in (X, (dp)
s). Finally, it is easy to deduce that

((xn, rn))n∈N converges to (x, r) in (BX, (dP ′)s). This concludes the proof.

Remark 1. If (X, p) is partial metric space such that τp is a T1-topology, then
Max(X,≤p) = X, so, by Theorem 1(b), i(X) = Max(BX) in this case.

The following example shows that condition “ker p = Max(X,≤p)” can not be
omitted in Theorem 1 (d).

Example 1. Let X = {0,∞} ∪ N\{1}, and let p : X × X → R
+ defined as

p(0, 0) = 0, p(0,∞) = 2, p(∞,∞) = 0, p(n, n) = 1/n, p(0, n) = 1 + 1/n, and
p(n,∞) = 1 for all n ∈ N\{1}, and p(n,m) = 1 + 1/n + 1/m for all n,m ∈ N\{1}
with n 6= m.

It is routine to check that p is a partial metric on X, and it is complete because
every Cauchy sequence in (X, (dp)

s) is eventually constant.
On the other hand, Max(X,≤p) = X, so i(X) = Max(BX) by Theorem 1 (b).

However ker p = {∞}.
We show that σ(BX)|Max(BX) 6= λ(BX)|Max(BX). Indeed, we have (0, 0) ∈

BX\ ↑ (∞, 1) because dp(∞, 0) = p(∞, 0) − p(∞,∞) = 2. Nevertheless, for each
n ∈ N we have

(n + 1, 0) ∈ BP ′((0, 0), 1/n)∩ ↑ (∞, 1),

because P ′((0, 0), (n + 1, 0)) = 1 + 1/(n + 1) < 1 + 1/n = P ′((0, 0), (0, 0)) + 1/n,
and dp(∞, n + 1) = 1 for all n ∈ N.
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Since by Theorem 1 (c), {BP ′((0, 0), 1/n) : n ∈ N} is a σ(BX)-local base at
(0, 0), we conclude that λ(BX)|Max(BX) is strictly finer than σ(BX)|Max(BX).

The computational model suggested by conditions (1)-(3) in p. 59 of [22] joint
with Definition 5.1 of [17] and Theorem 1 above, motivate the following notions.

Definition 1. A partially metrizable computational model is a triple (L,v, P )
such that (L,v) is a domain and P is a complete partial metric on L that induces
the Scott topology.

Definition 2. A topological space (X, τ) has a partially metrizable computa-
tional model if there is a partially metrizable computational model (L,v, P ) and
an homeomorphism φ between (X, τ) and a τ(dP )−1-closed subset of (L,P ) such
that φ(Max(X ,≤τ )) = Max(L).

We conclude the paper with a characterization of those topological spaces that
admit a compatible complete partial metric via the model proposed in Definition 1.

Theorem 2. A topological space has a partially metrizable computational model

if and only if it admits a compatible complete partial metric.

Proof. Suppose that the topological space (X, τ) has a partially metrizable com-
putational model (L,v, P ). Let φ an homeomorphism between (X, τ) and a τ(dP )−1-
closed subset of (L,P ) such that φ(Max(X ,≤τ )) = Max(L). For each x, y ∈ X
put p(x, y) = P (φ(x), φ(y)). Then p is a partial metric on X such that τp = τ.
Moreover p is complete: Indeed, let (xn)n∈N be a Cauchy sequence in the metric
space (X, (dp)

s). Then (φ(xn))n is a Cauchy sequence in the complete metric space
(L, (dP )s), so there is z ∈ L such that (φ(xn))n converges to z in (L, (dP )s), and
hence in (L, (dP )−1). Since φ(X) is τ(dP )−1-closed in L, it follows that z ∈ φ(X),

and consequently (xn)n converges to φ−1(z) in (X, (dp)
s). We conclude that p is a

complete partial metric on X.
Conversely, if (X, τ) admits a compatible complete partial metric p, then

(BX,vdp
) is a domain. So, by Theorem 1, (BX,vdp

, P ′) is a partially metrizable
computational model for (X, τ).
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