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Small time reachable set of bilinear quantum systems

Nabile Boussaid
Laboratoire de mathématiques
Université de Franche—-Comté

25030 Besancon, France

Nabile.Boussaid@univ-fcomte. fr

Abstract— This note presents an example of bilinear conser-
vative system in an infinite dimensional Hilbert space for which
approximate controllability in the Hilbert unit sphere holds for
arbitrary small times. This situation is in contrast with the
finite dimensional case and is due to the unboundedness of the
drift operator.

I. INTRODUCTION
A. Control of quantum systems

The state of a quantum system evolving in a Riemannian
manifold 2 is described by its wave function, a point v in
L?(Q2, C). When the system is submitted to an electric field
(e.g., a laser), the time evolution of the wave is given, under
the dipolar approximation and neglecting decoherence, by
the Schrodinger equation:

Oy
Yot
where A is the Laplace-Beltrami operator on 2, V' and W are
real potential accounting for the properties of the free system
and the control field respectively, while the real function of
the time u accounts for the intensity of the laser.
It is standard to rewrite the dynamics as

(=A+V(2)(x, 1) + u®)W(x)(x, 1) (1)

d
S = (A+u(t)B)y @

where 1) belongs to a separable Hilbert space H and (A, B)
satisfies Assumption 1.

Assumption 1: A and B are linear operators with domain
D(A) and D(B) such that

1) A is essentially skew-adjoint (possibly unbounded)
with domain D(A);
2) there exists an Hilbert basis (¢)zen of H made of
eigenvectors of A. For every k, Apr = iAgdr;
3) for every k in N, ¢, belongs to the domain D(B) of
B;
4) for every u in R, A 4+ uB is essentially skew-adjoint
on D(A) N D(B);
5) B is essentially skew-adjoint.
From Assumption 1, for every u,t in R, et(A+uB) ig a uni-
tary operator. By concatenation, for every piecewise constant
function u, one can define the solution ¢ — Y1) of (2) with
initial condition 1 (0) = 1o. With extra regularity hypotheses
(for instance: B bounded), it is possible to define Y* for
controls u not necessarily piecewise constant.
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A natural question, with many practical implications, is
to determine the set of wave functions Y#1)y that can be
reached from a given initial condition 1)y at a given time
T when the control law w varies in the set ¢/ of admissible
controls (here, U is the set of piecewise constant functions).
This set { Y%, u € U} is called the reachable set from
at time 7' and is denoted Ry (¢g). For T' € (0,+400), the
reachable set from 1)y at time smaller than 7" is R« (¢g) =
Ut<T Ryt (wo) and R« (wo) = UrsoRr (wo) At this time,
no definitive description of the reachable sets is known, with
the exception of R« 4 () for a few simple examples ([1],
[2]) where U = L?([0, +00), R) and € is a bounded interval
of R.. Notice that even in this 1-D framework, the results are
far from obvious.

Instead of looking at the complicated structure of Ry (o),
one may consider its topological closure for a given norm.
Many results of approximate controllability have been given
in the last few years. We refer to [3], [4], [5], [6], [2], [7]
and references therein for a description of the known theo-
retical results concerning the existence of controls steering
a given source to a given target. As proved in [4], [8], [9],
approximate controllability is a generic property for systems
of the type of (2).

B. Temporal diameter

Let a couple (A, B) of linear operators associated with an
Hilbert basis (¢x)ren of H made of eigenvectors of A be
given. If R« (¢1) is everywhere dense in the Hilbert unit
sphere Sy of H, we define the temporal diameter of H for
the control system (2) as

p:inf{Tz()’m:SH}.

The aim of this note is to give a positive answer (Theorem
11) to the following question: “Does it exists a couple (A, B)
satisfying Assumption 1 such that p = 0?”

The importance of this question goes beyond its purely
mathematical aspect. A positive answer is a strong justifica-
tion of the fact that we can neglect decoherence in (2), since
decoherence has little effect in small times.

C. Content of the paper

The first part of this paper (Section II) is a short summary
of the finite dimensional case. It includes finite dimensional
estimates (Section II-B) that are instrumental in our study.



The second part (Section III) presents basic infinite dimen-
sional material. The third part presents an example (Section
IV-A) with zero temporal diameter. The technical computa-
tion of this diameter (Sections IV-B and IV-C) combines the
results of Sections II-B and III-D.

II. FINITE DIMENSIONAL CASE

In this Section, we concentrate on the case where H is
finite dimensional. This case has been extensively studied
([10], [11]). In this case, a classical choice for the set of
admissible controls is the set L}, ([0, +00), R) of locally
integrable functions in R.Other choices could be to restrict
to the set of piecewise constant functions or to extend to the
set of Radon measures. By continuity of the input-output
mapping, and since we are only concerned with the closure

of the reachable sets, all this choice are equivalent.

A. Bilinear systems in semi-simple Lie Groups

The operators A and B can be seen as skew-hermitian
matrices. Changing A into A — Trace(A)/dim(H) and
B into B — Trace(B)/dim(H) just induces a physically
irrelevant phase shifts.

Considering the resolvent, the original system in H = CV
can be lift to SU(N), the group of unitary matrices of order
N with determinant 1. Denoting with z the matrix of the
linear operator ¢ — Y1), (2) turns into

%x — (A +uB)z = dRy(A + uB) 3)

with initial condition x(0) = Iy where R is the right
translation in SU(N): R, : y — yz.

The lift of (2) from C¥ to SU(n) as the right invariant
controlled system (3) allows us to use the rich structure
of semi-simple compact Lie groups. In particular, the Lie
algebra su(N) = Ty, SU(N) turns into an Euclidean space
when endowed with the(opposite) of the bi-invariant negative
definite Killing form K (x,y) = (N £ 1)Trace(zy).

The major drawback is that we have now to consider the
whole propagator x (that is, equation (2) with all possible
initial conditions).

A classical result states that the temporal diameter of
SU(N) for the dynamic of (3) is finite for generic pairs
(A, B).

Proposition 1: If Lie(A, B) = su(N), then there exists
T > 0 such that R (¢)) = Sy for every ¥ in Sg. In other
words, p < +00.

Proof: We refer for instance to [12]. |

For every admissible control u, define v : t — fo 7)dr
and y : t — exp (—v(t)B) x. The dynamics of y is given by

d

dt
The adjoint mapping Ad is an isometry for the Killing norm.
In other words, the derivative of y has a constant Killing
norm (equal to the Killing norm of A). As a consequence, the
temporal diameter is positive as soon as the torus {XB|K €
R does not fill SU(n).

Proposition 2: When H is finite dimensional with dimen-
sion larger than or equal to 2, p > 0.

—y=e "OPAOBy —dRyg  ,ay @)

B. Some time estimates

In this Section, we give an estimate of the time needed
to steer an eigenstate of A to another. The proof relies on
averaging techniques (see [13] for details).

Definition 1: Let H = C~ and (A®), BMV)) satisfy
Assumption 1. A couple (4, k) is a non-degenerate transition
of (AN BN if i) (¢;, BM¢y) # 0 and i) \j — \p =
Al — A, implies that {j,k} = {l,m} or {{,m}N{j,k} =0
or (¢, BN g,,) = 0.

Proposition 3: Let (AN) B(N)) be a couple of skew-
Hermitian matrices of order N. Assume that A®Y) is di-
agonal and that (1,2) is a non degenerate transition of
(AN B(V)) We denote with X ELN) the propagator of 2’ =
(AN) 14BNz, Define T = \A 7 oand ut ot
[A2 — A1] cos((A2 — A1)t + ¢). Then, for every n in N, for
every ¢

u*/n (N) Vel
HX / (t,0) — tAN) KM [ § 1+2KHB(N)||

CTOB™ = o«

with T = fo lu*(T)dT = 4, K = L fo |u*(t)|dt, MT the
skew-Hermitian matrlx of order NV Wthh entries are all zero
but the ones of index (1,2) and (2,1) equal to 7hye'?/4
and 7ba1e 1% /4 respectively and

fo Yela =M 7

sin (ﬂ-_‘uz:/)\ﬂ) 5
where A is the set of all pairs (j, k) in {1,..., N}? such that
bjr # 0 and {j, k}ﬂ{l,Q} # () and |)\J _)‘kl ¢ Zl)\g —)\1|.

Proof: This is a particular case (for u* : t — |Ag —
A1|cos((A2 — A1)t + @) of the inequality (13) in [13]. M

C:

sup
(4. k)N

C. A technical computation

In order to apply Proposition 3, we will have to find K
and ¢ such that &M " sends a given vector to another one.

For a given (o, 8)T € C2, we will need 7 and ¢ in R
such that eM (a, )7 is colinear to (0,1)T with

0 re'®
M= ( re”¢ 0 > ’

For every s in R,

cos(rt)
—el? sin(rt)

exp(tM) = ( e'? sin(rt) ) .

cos(rt)

For every (o, 3)T € C2,

o) (5 ) = (oS )

In the following, we assume without lost of generality that
|a|? + |B]? = 1. There exist 6 in [0,7/2], a1, 81 in (-7, 7]
such that
cos el )
sin 0. (6)

™
\



With these notations, a cos(rt) + €'?Ssin(rt) = 0 if and
only if

cos (70‘17517‘15) cos(@—rt) = 0
sin (0‘1775174)) cos(f + rt) 0

Since we are interested in small ¢, we will chose ¢ and ¢
such that

{ cos (70‘17317‘15) =
cos(f + rt) =

III. INFINITE DIMENSIONAL TOOLS
A. Notations

a—fi—-¢ _ =
O that s, { 2 = 3(m)

Let (A, B) satisfy Assumption 1. For every N in N, we
define Ly the linear space spanned by ¢1, ¢s,...,¢n and
wn : H — H, the orthogonal projection onto £y:

TN(W) =D bk, )bk
k=1

The compressions of order NV of A and B are the finite
rank operators AN) = 7y Az, and BY) = 7yBc,.
The Galerkin approximation of (2) at order /N is the infinite
dimensional system

d
E= ANz 4 u(t)BMg, @)

Since L is invariant by (7), one may also consider (7) as
a finite-dimensional system, whose propagator is denoted by
Xy (t,5).

The operator |A| is a positive self-adjoint operator. In the
case where A is injective, we define for every k£ > 0 the
norm k-norm: [ = ||| AJF4].

B. Basic facts

Proposition 4: Assume that H has infinite dimension.
Then, for every v in Sy, {eKByy, K € R} # Sy .
Proof: By the spectral theorem, up to a unitary trans-
formation, H = L?(9), C) with Q a set of cardinality larger
than two and B is the multiplication by a purely imaginary
function. Then, the set {eXBg, K € R} is included in the
set {¢) € Hsuch that |¢(z)| = |¢o(x)|for a. e.x € Q}. The
latter set is not equal to Sp. [ ]
Proposition 5: If H has infinite dimension and A is
bounded, then p > 0.
Proof:  For every uw in U, define Y* t —
e~ Jo [uIATBYY  For every 1 in Sy, for every k in N,
the mapping ¢ — Y;“1)g satisfies

d — [t u\T T t u\T T u
&@k,ytuz/,@ = (e Jo lwMIdTB g fy lu()|d B, Yitapy ).
In particular, for every v, for every t,

d
T < .

Consider now two points @y and 7 in Sy such that
the distance § between the two sets {efBy, K € R} and
{eKBy;, K € R} is not zero (such a couple (10g, 1) exists

from Proposition 4). Then p > §/||A||, since ¥ ¢ R<itbo
for t < &/||A]|. [ |

Proposition 6: 1If H has infinite dimension and B admits
an eigenvector in the domain of A, then p > 0.

Proof: For every u in U, define as above Y" : { —
e~ Jo [u(MIATBYU [ et 4 be an eigenvector of B associated
with eigenvalue \. For every vy in Sy, the mapping t —
Y"1 satisfies

d

& <U, Ytu"/)0> = <A’U, }/tuwo>

Fix 10,1 in Sy such that |(v,¢g)| # |(v,¢1)]. Then p >
§/||Av]| since ¢ ¢ Rrthg for t < /|| Av||. [ |

Remark 1: Propositions 4, 5 and 6 are true also when H
has finite dimension larger than or equal to two.

C. The RAGE theorem

We define L p the linear space spanned by the eigenvectors
(if any) of B. We define Hp = L}

Theorem 7: Let N in N and v in Hpg. Then there exists

a sequence (k, )nen With limit +oo such that ||7xe*nBa||
tends to zero as n tends to infinity.

Proof: This is a weak-version of the celebrated RAGE-

theorem, see [14, Theorem XI.115]. |

D. Weakly-coupled quantum systems

Definition 2: Let k be a positive number and let (A, B)
satisfy Assumption 1 and such that the spectrum of 1A is
purely discrete (A;); and tends to +oo Then (4, B) is k
weakly-coupled if for every u; € R, D(|A + u1 B|*/?) =
D(|A[¥/2) and there exists a constant ¢(4 ) such that, for
every ¥ in D(IAIF), [R{A[Fp, Bi)| < i p (AP, 6)].
The notion of weakly-coupled systems is closely related to
the growth of the |A[*/2-norm (|A|*v, ). For k = 1, this
quantity is the expected value of the energy of the system.

Proposition 8: Let (A, B) be k-weakly-coupled. Then,
for every 1o € D(|A*/?), K > 0, T > 0, and u in
L([0,00)) for which |lul|;1 < K, one has 1T (o)l 2 <
e“ABE sy 1.

Proof: This is [15, Proposition 2]. |

Proposition 9: Let k and s be non-negative numbers with
0 < s < k. Let (4, B) be k weakly-coupled Assume that
there exists d > 0, 0 < r < k such that || Ba[| < d]], /2
for every 1 in D(|A|"/?). Then for every ¢ > 0, K > 0,
n € N, and (¢;)1<j<n in D(JA[*/2)" there exists N € N
such that for every piecewise constant function u

[ullor < K = [T (4)) = Xy (8 0)mn a2 < e,

foreveryt>0and j=1,...,n.
Proof: This is [15, Proposition 4]. |

Remark 2: An interesting feature of Propositions 8 and 9
is the fact that the bound of the | A|*/2 norm of the solution of
(2) or the bound on the error between the infinite dimensional
system and its finite dimensional approximation only depend
on the L! norm of the control, not on the time.

Proposition 10: Let (A, B) be k-weakly coupled for some
k > 0. Then, for every ¢y in Sg, for every T > 0,
{SKB’L/)Q,K S R} - RT(’I/)())



Proof: Fix K in R and ¢ > 0. For every n > 0,
consider the control u,, constant equal to K /n on the time
interval [0, 5] and equal to zero elsewhere. By Proposition 9,
there exists IV such that || ;" (¢0) — XZ\",)(t, O)mnoll < e
for every t > 0. The classical theory of ODE ensures that
XEL;G)(U, 0)m o tends to eXB g as n goes to zero. W

IV. AN EXAMPLE OF APPROXIMATE
CONTROLLABILITY IN TIME ZERO

A. A toy model

We consider the following bilinear control system

O

"ot
where « is a real constant, 2 = R /2 is the one dimensional
torus, H = L?(€), C) and A is the Laplace-Beltrami operator
on €.

Remark 3: A realistic (and widely used) model for a
rotating molecule is (8) with « = 1. For « # 1, the presented
example is purely academic.

The self-adjoint operator —A has purely discrete spectrum
{k?,k € N}. All its eigenvalues are double but zero which
is simple. The eigenvalue zero is associated with the constant
functions. The eigenvalue k2 for k& > 0 is associated with the
two eigenfunctions 6 +— # cos(k@) and 0 — # sin(k0).
The Hilbert space H = L?(Q2,C) splits in two subspaces
H, and H,, the spaces of even and odd functions of H
respectively. The spaces H. and H, are stable under the
dynamics of (8), hence no global controllability is to be
expected in H.

We consider the restriction of (8) to the space H,. The
function ¢y 6 — sin(kf)/\/7 is an eigenvector of
the skew-adjoint operator A = i|A, Ho|g associated with
eigenvalue ik2®. The familly (¢y)ken is an Hilbert basis
of H,. Here, B is the restriction to H, of the multiplication
by —icos(f). The skew-adjoint operators B is bounded and
has no eigenvalue: L = H,. For every j, k, (¢;, Bor) =0
if j=korl|j—k|l >2, and (¢;, Boj11) = —i/2.

Theorem 11: If o > 5/2, then for every g, in the
Hilbert unit sphere of H,, for every € > 0, for every T' > 0,
there exists a piecewise constant function v : [0,7] — R
such that || T¥vo — ¢1|| < e. In other words, for (8), if
a > 5/2 then p = 0.

= —|A|*Y +u(t)cosfyp 6 €Q (®)

B. Some time estimates

Proposition 12: Assume « > 5/2. Let Ny large enough,
P > Ny and th, ¢ be in Lp N Ly, _; such that [|¢ =
|[#1]] = 1. Then, for every € > 0, there exists u such that
(8) steers 1y to an e-neighbourhood of v; in time less than

604 1 n 2w
a?e(2a —5) (Ng — 1)2e—4 = Ngo©

Proof: From Proposition 9, there exists /V; in N such
that, for every u, ||u||: < 8P implies that.HXZLNl) (t, 0.)1/)]- _
Tip;|| < e/2 for j = 0,1. The problem is now to give an
upper bound on the time needed to steer g to 1)1 with system
dy

dt

= ANy 4 U(t)B(Nl)'l/).

The idea is to find a control u; that steers 1)y to a neighbor-
hood of !0 ¢n, for some ¥y in R in time 7} and, similarly,
a control uy that steers 1 to a neighborhood of emlgb N, for
some ¥ in [Yg,¥9 + 27) in time T;. The final control is
the concatenation of control uj, of control 0 during time
[ — Yo/ AN, and finally of the time-reverse of us (which
steers €l%1¢, to a neighborhood of ;). The total duration
is To+ |91 — 90| /AN, +T1. What remains to do is to give an
estimate for 7j (the same computation gives a similar result
for T1).

Let us describe intuitively our method. To induce the
transition from ¢y to ¢y,, we will first put the L? mass
of the P level of ¢ to level (P — 1), without changing
the modulus of the other coordinates of v)3. Then, we put all
the L2 mass of the (P — 1)*" level to level P — 2, and so
on until all the mass is concentrated, up to a small error, on
level Ny.

We give now a formal description of the above method.
Write 19 = ZgZNU znoN. For N = Ny, ..., P, we define

ut it ()\N-i—l — )\N) COS(|)\N+1 — )\Nlt + ¢7N)

-2
Ox = arctan & , KN=4M7

P
Zj:N-i—l |52 T

27
‘fO(N+1)2“N2“ u*(t)ei(((N+2)2“(N+1)2"‘)tdt‘

CN - (N+2)22—(N+1)2« ’
Sin (Fw)‘
N A4(L+ 2Ky BOD)(Cy + DB
IN = TN = :
AN nN
Kyny _ 8n(l+ 2Ky BI)(Cy + DB
TN <

- 2|>\N+1*>\N| - (>\N+1*>\N)77N

We proceed by induction on N from P to Ny to steer 1y =
P— P— P—
g o such that [|(1—mp_1)thy [+l 19 ]| <
np. If Y{' is constructed, we steer ¥}’ to z/;év ~1 such that
2

1= w12+ o1 1P < 1= (1= Zimwm) - At
step P — Ny, 7/)1]\\/[(?“ is in an ZZO 2nn < €/2 neighborhood
of e’ ¢y, for some ¥y in R.

This construction is done, following Proposition 3, by us-
ing the control ¢ — u*(¢)/ny during time 7. The L' norm
of the control (equal to K ) is chosen (using the computation
of Section II-C) in such a way that exp (K NM T) sends the
mass of the (N + 1) eigenstate to the N one, that is a
rotation of angle 0. Since, for every N, by y+1 = —i/2,
the matrix M T appearing in Proposition 3 is a block diagonal
matrix with every block equal to zero, but the one in position
N, N + 1 equal to

0 —ielPN /8
ie~i¥ng/8 0 ’
The phase ¢ is equal to ay — by + m where ay and by
are the phase of coordinates N + 1 and N of z/;év +
Notice that, while Proposition 3 is stated for n an integer,

ny 1s not an integer in general. Nevertheless we can apply



Proposition 3 with the integer part |nx | in order to ensure
that the transformation is done with an error less than 7.
Changing the integer |ny | to the real number ny does not
change the bound on the error for more than an factor two
for large ny.

With our definition of A and B, A\y = N2 and ||B|| =
V2 /2. Straightforward computations yield, for Ny large
enough,

151

Bvsd s NN

2N
CN+1S D]
aTm

and, for Ny large enough,

P
D N

Ty <
N=No
P
151 1
<
- a2N0€ Z N2a—4
N=No

< 151 2

~  a®?Npe(2a — 5) (Ng — 1)225

< 302 1

a?e(2a—5) (Nog — 1)2a—4"

Finally, for Ny large enough, the total time needed to steer
1 to an e-neighborhood of ); is less than

604 1 n 27
a?e(2a — 5) (Ng — 1)20—4 = NG’
which concludes the proof of Proposition 12. [ ]

C. Proof of Theorem 11

Proof: [of Theorem 11] Let g, 11 in Sy, € > 0. To
prove Theorem 11, it enough to prove that the system (8) can
approximately steer one point of {eXP1)y, K € R} to an e-
neighborhood of one point of {eXBy;, K € R} in arbitrary
small time.

Since o > 5/2, Né_m and NO_QO‘ tend to zero as Ny
tends to infinity. Define Ny in IN such that

604 1 2w

0?20 —5) (No — 1o " Nz= ©

By the RAGE-Theorem (Theorem 7), there exist Ky and K1

in R such that |7y, e8|l < e and ||ry,e51 By < e.

There exists P in N such that ||(1 — 7p)efoBqyy|| < & and
I(L = mp)eftBapy|| <.

By Proposition 12, there exists a control that steers 7p(1—

TNo—1)%o to an e-neighborhood of 7 p (1 —mn,—1)1)1 in time

less than 7). This concludes the proof of Theorem 11. [ ]

n.

V. CONCLUSIONS AND FUTURE WORKS
A. Conclusions

The question of the minimal time needed to steer a
quantum system from an arbitrary source to (a neighborhood
of) an arbitrary target is of great importance in practice.
This note presents a simple example of bilinear conservative
control system in an infinite dimensional Hilbert space for
which approximate controllability in the Hilbert unit sphere
holds for arbitrary small time.

B. Future Works

At this time, we have no simple criterion to decide in
the general case (unbounded drift operator A and control
operator B without eigenvalue) whether a system of type
(2) has zero temporal diameter. New methods will likely be
needed for further investigations.

VI. ACKNOWLEDGMENTS

This work has been partially supported by INRIA Nancy-
Grand Est.

Second and third authors were partially supported by
French Agence National de la Recherche ANR “GCM?” pro-
gram “BLANC-CSD”, contract number NT09-504590. The
third author was partially supported by European Research
Council ERC StG 2009 “GeCoMethods”, contract number
239748.

REFERENCES

[1] K. Beauchard, “Local controllability of a 1-D Schrodinger equation,”
J. Math. Pures Appl., vol. 84, no. 7, pp. 851-956, 2005.

[2] K. Beauchard and C. Laurent, “Local controllability of 1D linear and
nonlinear Schrédinger equations with bilinear control,” J. Math. Pures
Appl., vol. 94, no. 5, pp. 520-554, 2010.

[3] G. Turinici, “On the controllability of bilinear quantum systems,” in
Mathematical models and methods for ab initio Quantum Chemistry,
ser. Lecture Notes in Chemistry, M. Defranceschi and C. Le Bris, Eds.,
vol. 74.  Springer, 2000.

[4] V. Nersesyan, “Global approximate controllability for Schrodinger
equation in higher Sobolev norms and applications,” Ann. Inst. H.
Poincaré Anal. Non Linéaire, vol. 27, no. 3, pp. 901-915, 2010.

[5] K. Beauchard and M. Mirrahimi, “Practical stabilization of a quantum
particle in a one-dimensional infinite square potential well,” SIAM J.
Control Optim., vol. 48, no. 2, pp. 1179-1205, 2009.

[6] M. Mirrahimi, “Lyapunov control of a quantum particle in a decaying
potential,” Ann. Inst. H. Poincaré Anal. Non Linéaire, vol. 26, no. 5,
pp. 1743-1765, 2009.

[7]1 U. Boscain, M. Caponigro, T. Chambrion, and M. Sigalotti, “A weak
spectral condition for the controllability of the bilinear Schrodinger
equation with application to the control of a rotating planar molecule,”
Communications in Mathematical Physics, vol. 311, no. 2, pp. 423—
455, 2012.

[8] P. Mason and M. Sigalotti, “Generic controllability properties for the
bilinear Schrodinger equation,” Communications in Partial Differential
Equations, vol. 35, pp. 685-706, 2010.

[9] Y. Privat and M. Sigalotti, “The squares of the Laplacian—Dirichlet
eigenfunctions are generically linearly independent,” ESAIM: COCV,
vol. 16, pp. 794-807, 2010.

[10] N. Khaneja, S. J. Glaser, and R. Brockett, “Sub-Riemannian geometry
and time optimal control of three spin systems: quantum gates and
coherence transfer,” Phys. Rev. A (3), vol. 65, no. 3, part A, pp.
032301, 11, 2002.

[11] U. Boscain and P. Mason, “Time minimal trajectories for a spin 1/2
particle in a magnetic field,” J. Math. Phys., vol. 47, no. 6, pp. 062 101,
29, 2006.

[12] Y. L. Sachkov, “Controllability of invariant systems on Lie groups and
homogeneous spaces,” J. Math. Sci. (New York), vol. 100, no. 4, pp.
2355-2427, 2000, dynamical systems, 8.

[13] T. Chambrion, “Periodic excitations of bilinear quantum systems,”
ArXiv 1103.1130, 2011.

[14] M. Reed and B. Simon, Methods of modern mathematical physics.
III. Scattering theory. New York: Academic Press [Harcourt Brace
Jovanovich Publishers], 1979.

[15] N. Boussaid, M. Caponigro, and T. Chambrion, “Weakly-coupled
systems in quantum control,” arXiv:1109.1900v1. [Online]. Available:
http://hal.archives-ouvertes.fr/hal-00620733/en/



