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Approximating Rooted Steiner Networks

Joseph Cheriyan ∗ Bundit Laekhanukit † Guyslain Naves ‡

Adrian Vetta §

September 23, 2011

Abstract

The Directed Steiner Tree (DST) problem is a cornerstone problem in network
design, particularly, in the design of directed networks satisfying connectivity re-
quirements. We focus on the generalization of the problem with higher connectivity
requirements. The problem with one root and two sinks is APX-hard. The problem
with one root and many sinks is as hard to approximate as the directed Steiner
forest problem, and the latter is well known to be as hard to approximate as the
label cover problem. Utilizing previous techniques (due to others), we strengthen
these results and extend them to undirected graphs. Specifically, we give an O(kǫ)
hardness bound for the rooted k-connectivity problem in undirected graphs; this
addresses a recent open question of Khanna.

1 Introduction

Problems in network design have a central position in Theoretical Computer Science and
in Combinatorial Optimization. Moreover, they arise in many practical settings, such as
telecommunication networks, the electricity supply network, etc. By a network we mean
either a directed graph or a graph (undirected), together with non-negative costs on the
edges. A basic problem in network design is to find a minimum cost sub-network H
of a given network G such that H satisfies some prespecified connectivity requirements.
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Fundamental examples include the minimum spanning tree (MST) problem, the Steiner
tree problem, and the directed Steiner tree (DST) problem. In the latter problem, we
are given a directed graph G = (V,E) with costs on the edges, a root vertex r ∈ V , and
a set of terminals (or sinks) T ⊆ V ; the goal is to find a subgraph G′ of minimum cost
such that G′ has a dipath (i.e., directed path) from r to each terminal t ∈ T . The DST
problem plays a key role in the design of directed networks. The problem is NP-hard,
and moreover, a result of Halperin and Krauthgamer [9] shows that the problem is hard
to approximate within polylogarithmic factors; see Section 3 for further details.

We focus on a generalization of the DST problem with higher connectivity require-
ments. An instance of the directed rooted connectivity problem is similar to an instance
of the DST problem, and in addition there is a connectivity requirement of ki (a positive
integer) for each terminal ti ∈ T . The goal is to find a subgraph G′ of minimum cost
such that for each terminal ti ∈ T , G′ has ki openly disjoint dipaths from r to ti. If
all of the connectivity requirements ki are the same, say, ki = k, ∀i, then we call this
special case the directed rooted k-connectivity problem. We also examine the so-called
undirected rooted connectivity problem, where the graph is undirected.

We mention that requirements for arc disjoint (or, edge disjoint) dipaths (or, paths)
are also of interest. But, for directed graphs, the two problems (with requirements for
openly disjoint paths, and for arc disjoint paths, respectively) are essentially equivalent.
For undirected graphs, the two problems are different, since there is a 2-approximation
algorithm for the problem that requires edge disjoint paths by the results of Jain [10],
whereas the problem that requires openly disjoint paths was known to be at least as
hard for approximation as the DST problem by results of Lando and Nutov [12]. For
notational convenience, we focus throughout on the requirements for openly disjoint
paths, except where mentioned otherwise.

1.1 Definitions and notation

We list some key information here; most of this can be found in the texts by Vazirani
[16], or Williamson and Shmoys [17].

In the survivable network design problem (SNDP), we are given a directed or undi-
rected graph G = (V,E) with cost on edges and integral connectivity requirements
req(s, t) ≥ 0 for all pairs of vertices s, t ∈ V . In the edge-connectivity version of the
problem (EC-SNDP), the goal is to find a minimum cost subgraph G′ = (V,E′) of G
such that G′ has req(s, t) edge disjoint paths between every pair s, t of vertices. In the
vertex-connectivity version (VC-SNDP) of the problem, G′ is required to have req(s, t)
openly disjoint (internally vertex disjoint) paths between every pair s, t of vertices.

The directed Steiner forest problem (DSF) is the special case of SNDP on directed
graphs where the requirement of each pair s, t is zero or one, thus, req(s, t) ∈ {0, 1} for

2



all s, t ∈ V × V .
For a pair of vertices s, t ∈ V × V with positive requirement (that is, req(s, t) > 0),

we call s a source and t a sink; in general, a vertex may be both a source and a sink.
For a digraph H and a pair of vertices s, t of H, let λH(s, t) denote the maximum

number of arc disjoint s, t dipaths, and let κH(s, t) denote the maximum number of
openly disjoint s, t dipaths. For subsets of vertices S and S′, we denote the set of out-arcs
from S to S′ in H by δ+H(S, S′) = {(x, y) ∈ H : x ∈ S, y ∈ S′} and δ+H(S) = δH(S, V −S).
Similarly, we denote the set of in-arcs from S to S′ in H by δ−H(S, S′) = {(x, y) ∈ H :
y ∈ S, x ∈ S′} and δ−H(S) = δH(S, V − S). If the graph H is clear in the context, then
we will omit the subscript.

1.2 Summary of our results

Our results shed light on some of the key questions on rooted Steiner networks, and
we resolve, at a qualitative level, a recent question of Khanna [11] on the rooted k-
connectivity problem on undirected graphs. Our results are achieved using standard
techniques and building on previous work (by others), together with some very simple
ideas; this is discussed in more detail at the end of this section.

Our results fall under two headings: (1) results for O(1) terminals, and (2) results
for an arbitrary number of terminals.

Consider the directed rooted connectivity problem on an acyclic digraph. When the
total connectivity requirement is O(1), then it is easy to solve the problem in polynomial
time via dynamic programming. But the natural linear programming (LP) relaxation
is not integral, and there is an example with two terminals and total connectivity re-
quirement of 3 that has an integrality ratio of ≈ 6

5 . Based on this example, we construct
a gadget, and using that, together with a result of Berman et al [3], we show that the
problem is APX-hard, even on an acyclic digraph with two terminals (and with large
total connectivity requirement). Formal statements of these results follow.

Theorem 1. There is a polynomial-time algorithm for the directed rooted connectivity
problem on an acyclic digraph, assuming that the total connectivity requirement is O(1).

Theorem 2. There is an example of the directed rooted arc connectivity problem on an
acyclic digraph such that the natural LP relaxation has an integrality ratio of 6

5 − ǫ, ∀ǫ >
0. This example has two sinks and a total connectivity requirement of 3.

Theorem 3. The directed rooted arc connectivity problem with two terminals (Two-
Sinks-DST) is APX-hard, even in acyclic digraphs with uniform costs.
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The last result is in contrast with results of Feldman and Ruhl [7], who designed a
polynomial-time algorithm for the DSF problem assuming that the number of terminals
is O(1).

Our second batch of results (arbitrary number of terminals) is based on a very sim-
ple construction that reduces the directed Steiner forest (DSF) problem to the directed
rooted k-connectivity problem, where k is equal to the number of demands pairs. (For
more detail, see Section 3.1.) It follows that the directed rooted k-connectivity problem
is at least as hard to approximate as the DSF problem; the latter problem is well known
to be as hard to approximate as the label cover problem (which has a hardness of ap-

proximation threshold of 2log
1−ǫ n, for any fixed ǫ > 0, assuming that NP is not contained

in DTIME(polylog(n))).
One drawback of the above result is that the connectivity parameter k is large, since

k equals the number of demand pairs in the DSF problem. We get an improved hardness
result for the directed rooted k-connectivity problem by starting with a different prob-
lem and applying our construction with more care. Following a result of Chakraborty,
Chuzhoy and Khanna [4], we start with a special case of the label cover problem that has
a hardness threshold of 2γℓ (where ℓ is a positive integer and γ > 0 is a constant), such
that the connectivity parameter k of the rooted instance can be fixed at 3ℓ; it follows
that the hardness threshold for the rooted k-connectivity problem is kǫ for some constant
ǫ > 0. Although the details have to be verified with care, the key point is that the special
case of the label cover problem (given by the construction of [4]) can be reduced to an
instance of the rooted k-connectivity problem using the simple method described in the
previous paragraph. Formal statements of these results follow.

Theorem 4. The directed rooted k-connectivity problem is at least as hard to approxi-
mate as the label cover problem.

Theorem 5. The directed rooted k-connectivity problem cannot be approximated within
O(kǫ), for some constant ǫ > 0, assuming NP is not contained in DTIME(polylog(n)).

We remark that Lando and Nutov [13] recently gave an approximation-preserving
reduction from an instance of SNDP on a directed graph to an instance of SNDP on an
undirected graph; the size of the vertex set and each positive connectivity requirement
increase by an additive term of n (the number of vertices of the directed graph). By
applying this result together with Theorem 4 we get a label-cover hardness result for
undirected rooted connectivity problems.

However a more refined construction allows us to get the stronger hardness result for
undirected graphs as well.

Theorem 6. The undirected rooted k-connectivity problem cannot be approximated within
O(kε), for some constant ε > 0, assuming NP is not contained in DTIME(polylog(n)).
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To the best of our knowledge, all previous hardness results for (all variants of) the
undirected rooted connectivity problem were poly-logarithmic (of the form Ω(logΘ(1) n))
or weaker. This prompted Sanjeev Khanna [11] to raise the question of narrowing this
gap. Our results have addressed Khanna’s question, and the gap has been substantially
narrowed.

We modify a construction (and analysis) of Chakraborty, Chuzhoy and Khanna [4]
to show that the natural linear programming (LP) relaxation for the directed rooted
k-connectivity problem has a large integrality ratio.

Theorem 7. The natural LP relaxation of the directed rooted k-connectivity problem
has an integrality ratio of Ω̃(k).

1.3 Our techniques

We elaborate on the techniques used to prove our second batch of results (arbitrary num-
ber of terminals). All of these results are obtained by starting from results/constructions
of Dodis and Khanna [6] or Chakraborty, Chuzhoy and Khanna [4], and then giving a
reduction to an instance of the directed rooted k-connectivity problem (by adding a
root node, some arcs incident to the root, and adding padding arcs). Of course, these
reductions have to be analyzed carefully, but usually the analysis follows from standard
methods in the literature.

2 Directed rooted connectivity with O(1) terminals

This section has our results on the directed rooted connectivity problem in the special
but important case of O(1) terminals. Moreover, all of the hardness results in this section
apply to acyclic digraphs. When the total connectivity requirement is O(1), then it is
easy to solve the problem in polynomial time via dynamic programming. But the natural
linear programming (LP) relaxation is not integral, and there is an example with two
terminals and total connectivity requirement of 3 that has an integrality ratio of ≈ 6

5 .
Based on this example, we construct a gadget, and using that, together with a result of
Berman et al [3], we show that the problem is APX-hard, even with two terminals (and
with large total connectivity requirement).

2.1 Acyclic digraphs with O(1) total connectivity requirements

Consider the directed rooted connectivity problem on an acyclic digraph. This subsection
shows the following: when the total connectivity requirement is O(1), then the problem
can be solved in polynomial time via dynamic programming.
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Theorem 1. There is a polynomial-time algorithm for the directed rooted connectivity
problem on an acyclic digraph, assuming that the total connectivity requirement is O(1).

Proof. We assume that the digraph G = (V,E) is layered. That is, the vertex set V can
be partitioned into layers V1, V2, . . . , Vq so that every arc goes from layer Vi to Vi+1, for
1 ≤ i ≤ q. By the length of a dipath we mean the number of arcs in the dipath (not the
cost). The key property of layered digraphs is that for every pair of vertices u and v,
every u, v-dipath has the same length.

To see this, we apply the following transformation to any given acyclic digraph. Let
the root be r, let T denote the set of terminals, and let the connectivity requirement of
tj ∈ T be kj ; let k denote maxj{kj}; assume that there is a dipath from r to v for each
vertex v. Moreover, we may assume that V1 = {r}, and Vq = T , that is, the root is the
only vertex in the first layer, and the terminals are the only vertices in the last layer
(details omitted). Let L(u, v) denote the length of a longest u, v-dipath and let S(u, v)
denote the length of a shortest u, v-dipath in G; both are computable in polynomial time
in an acyclic digraph. Now take any arc (u, v). If L(r, u)+1 < L(r, v) then we subdivide
(u, v) into L(r, v) − L(r, u) arcs, and arbitrarily fix the costs of these new arcs so that
they sum to c(u, v). This does not affect L(·, ·) nor the cost of a solution. The process
terminates with S(r, v) = L(r, v) for all vertices v, i.e., we have a layered digraph.

For each terminal tj ∈ T there must be kj openly disjoint dipaths from r to tj . For
each layer Vi we may guess the kj vertices (intersection points) used by these dipaths.
Thus we have a collection of |T | sets, one set for each terminal in T , and each set has size
≤ k. Over all the terminals, there are at most |Vi|

k·|T | ways to choose such a collection.
We then need to connect, at minimum cost, each such collection of intersection points
to the terminals via dipaths that are openly disjoint for each terminal (and its set in the
collection); note that the goal is to minimize the total cost, and not just the cost for the
openly disjoint dipaths for one terminal. This can be done via dynamic programming,
by solving for collections in increasing order of distance from the terminal layer; we omit
the details. The algorithm runs in polynomial time, assuming that the total connectivity
requirement is O(1).

2.2 Integrality ratio for directed rooted arc connectivity with two ter-

minals

This subsection has our construction for the integrality ratio for the directed rooted
connectivity problem with total requirement O(1); the digraph is acyclic.

Theorem 2. There is an example of the directed rooted arc connectivity problem on an
acyclic digraph such that the natural LP relaxation has an integrality ratio of 6

5 − ǫ, ∀ǫ >
0. This example has two sinks and a total connectivity requirement of 3.
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Proof. Consider the digraph in Figures 1 and 2 and its associated arc costs; an arc
labeled α has cost α, an arc labeled β has cost β, and an unlabeled arc has cost 1. Now
suppose we desire a minimum cost subgraph with connectivity 1 from s to t1 and 2 from
s to t2.

s t2t1

α

α

α

β

β

α

β

β

Figure 1: An integral solution.

s t2t1

α

α

α

β

β

α

β

β

Figure 2: A fractional solution.

Assume that α = 2β and β ≥ 1; we need this to ensure optimality of the integral
solution discussed below. An optimal integral solution, with cost 2α+ 2β + 6 = 6β + 6,
is shown in red in Figure 1. To see that this is optimal, observe that (i) if we select
three arcs of cost α then we need 7 more arcs, giving a total cost of ≥ 3α+ 7 = 6β + 7,
and (ii) selecting exactly two of the four arcs of cost α also produces a solution of cost
≥ 2α+ 2β + 7 = 6β + 7. On the other hand, Figure 2 shows in red a fractional solution
of cost 2α+ β + 7 = 5β + 7; each dotted red arc has value 1

2 in the fractional solution.
Thus an integral solution has cost ≥ 6β+6 while a fractional solution has cost 5β+7;

hence, by taking β to be sufficiently large, we get an integrality ratio of 6
5 − ǫ, ǫ > 0.

2.3 APX-hardness of directed rooted arc connectivity

We show that the following special case of the directed rooted arc connectivity problem
is APX-hard. In fact, our construction uses an acyclic digraph.

Problem 8 (Two-Sinks-DST). Given a digraph G with cost c : E(G) → N, ver-
tices s, t1, t2 ∈ V (G), and arc connectivity requirements k1, k2 ∈ N, find a minimal cost
subgraph G′ of G, such that λG′(s, ti) = ki, i = 1, 2 (that is, G′ has ki arc disjoint
s, ti-dipaths, for i = 1, 2).

We need the following result:
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Theorem 9 (Berman, Karpinski, Scott, 2003 [3]). For every 0 < ε < 1, it is NP-
Hard to approximate MAX-3SAT where each literal appears exactly twice, within an
approximation ratio smaller than 1016−ε

1015 .

Theorem 3. The directed rooted arc connectivity problem with two terminals (Two-
Sinks-DST) is APX-hard, even in acyclic digraphs with uniform costs.

Proof. We use a reduction from MAX-3SAT where each literal appears exactly twice.
Let C1, . . . , Cq be q clauses of size 3 over variables in {X1, . . . , Xn}, where each literal
appears twice in C1, . . . , Cq (hence each variable appears four times).

To create the corresponding instance of Two-Sinks-DST, we build a digraph G
consisting of variable gadgets, clause gadgets, and the three terminal vertices s, t1 and
t2. For each clause Cj , we have a clause gadget consisting simply of two vertices uj and
vj joined by an arc (ui, vi). For each variable Xi, we have variable gadget, Hi, as shown
in Figure 3.

2

2

2

2

b

a

x

r2

r1

⊥

⊤

Figure 3: A variable gadget. Arc costs equal 1, except for the cost 2 arcs shown.

In addition to the arcs within the gadgets, we have the following arcs:

• For every variable gadget Hj , we have arcs (s, r1), (s, r2), and (x, t1).

• For every clause Ci, we have two parallel arcs (ui, t2) and a single arc (vi, t2).

• For each (positive) occurrence of Xi in Cj , an arc (⊥, uj) where ⊥ refers to the vertex
of Hi,

• For each (negative) occurrence of Xi in Cj , an arc (⊤, uj), where ⊤ refers to the
vertex of Hi.

All the arcs have cost 1, except those explicitly mentioned in the variable gadgets
H1, . . . , Hn. (Note that we could reduce the problem to the uniform case by subdividing
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every arc of cost 2 into two arcs.) An illustration of the construction is given in Figure 4.
Observe that G is acyclic. Finally, to complete the instance of Two-Sinks-DST, we
need to specify the arc connectivity requirements. We will have requirements of n from
s to t1 and 2n from s to t2.

Given this construction, we need to show how solutions to the Two-Sinks-DST
problem relate to solutions to the satisfiability problem. Our plan is to exhibit a
polynomial-time computable bijection between truth assignments and canonical solu-
tions to the Two-Sinks-DST instance, such that the cost of solution F is equal to
13n+α, where α is the number of clauses not satisfied by the corresponding assignment.
Towards this goal, let F be an inclusion-wise minimal solution to the Two-Sinks-DST
problem obtained from a formula on n variables. We explain our notion of canonical
solutions.

Notice that every variable gadget can and must contribute to exactly two paths
towards t2, and one path towards t1. Hence, in every variable gagdet Hi, we have
λF ({r1, r2}, {⊤,⊥}) = 2. There are three possibilites:

(a) λF ({r1, r2},⊥) = 2, with a symmetric solution of value 6,

(b) λF ({r1, r2},⊤) = 2, with solution {(r1,⊤), (r2, b), (b,⊤), (b, x)} of value 6,

(c) λF ({r1, r2},⊥) = λF ({r1, r2},⊤) = 1, with a best solution of value 7.

We may assume the third case is not used. Indeed, given a variable gadget in case c, we
can switch it to one of the two other cases, say a. Then we must replace a path from
⊤ to t2 (of length at least 2) by a path from ⊥ to t2 (of length at most 3). Note that
we can always find a path from ⊥ to t2 in G− F because the vertices of clause gadgets
satisfy the Euler condition: d+(v) = d−(v). The new solution is thus no more expensive
than the original one.

A solution F is canonical if F is inclusion-wise minimal, case c does not occur, and
ujvj ∈ F if and only if λF (uj , t2) = 3. This last requirement implies that a canonical
solution is determined by the partial solution at variable gadgets only. Thus, assignment
φ and solution F are in correspondance when φ(Xi) = ⊤ if and only if Hi is in case b.
Notice that λF (uj , t2) = 3 if and only if the clause j is not satisfied in the corresponding
assignment. Paths from a ⊥ or ⊤ vertex to t2 have length 2, except paths using a ujvj
arc. Hence, the cost of a solution F corresponding to the truth assignment φ is 13n+α,
where α is the number of clauses that are not satisfied by φ.

Finally, it only remains to prove the approximation ratio. Let ρ > 1 be the approxi-
mation ratio of a polytime algorithm for Two-Sinks-DST. Let OPT be the maximum
number of clauses satisfied by a truth assignment, and APP be the value of an approxi-
mate solution found by using the algorithm of ratio ρ for Two-Sinks-DST on G. Recall
that the number of clauses q is equal to 4n

3 because each variable appears exactly four
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t1 t2s

Cp

C4

C3

C2

C1

⊥

⊤

Xn

X3

X2

X1

Figure 4: An example for the reduction used in Theorem 3. Red arcs have cost 2, the
other arcs have cost 1. The arc connectivity requirement is n for t1 and 2n for t2.

times, and that OPT ≥ 7q
8 = 7n

6 (because this is the expected value of a random truth
assignment). Hence, 13n+ q ≤ 86

7 OPT. We deduce:
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ρ ≥
13n+ (q −APP)

13n+ (q −OPT)
= 1 +

OPT−APP

13n+ q −OPT
≥ 1 +

7

79

OPT−APP

OPT
= 1 +

7

79

(
1− γ−1

)

where γ = 1016−ε
1015 is the ratio of approximation for MAX-3SAT (Theorem 9). This

proves that unless P = NP , Two-Sinks-DST is hard to approximate within a ratio of
1 + 7

80264 − ξ, for any ξ > 0.

On the other hand, it is easy to find an algorithm with approximation ratio 2: find a
minimum cost flow f1 of value k1 from r to t1, and a minimum cost flow f2 of value k2
from r to t2, and take each edge contained in at least one of these two flows. The cost
of the solution is at most the sum of the cost of the two flows, but the sum of any of the
flows is a lower bound on the minimum solution to the Two-Sinks-DST problem.

2.4 A related problem: undirected min-cost cycle through three given

vertices

This subsection shows an intimate connection between the undirected rooted connectivity
problem and the following problem whose complexity status (polynomial-time solvable
or not) is a long-standing open question in the area of Combinatorial Optimization.

Problem 10 (Min-cost Cycle on Three Given Vertices). Given an undirected
graph G with cost c : E(G) → N, and vertices p, q, r ∈ V (G), find a minimum cost cycle
C of G such that C contains p, q, r (if such a cycle exists).

We show that (a special case of) the undirected rooted connectivity problem is closely
related to the above problem. The following problem is similar to Problem 8, except
the graph is undirected and the requirement is for openly disjoint paths (not arc disjoint
dipaths).

Problem 11 (Undirected Two-Sinks with requirements (1,2)). Given an undi-
rected graph G with cost c : E(G) → N, and distinct vertices r, t1, t2 ∈ V (G), find a
minimal cost subgraph G′ of G, such that κG′(r, ti) = i, i = 1, 2 (that is, G′ has i
openly disjoint r, ti-paths, for i = 1, 2).

Proposition 12. There is a polynomial-time reduction from the undirected Two-Sinks
problem with requirements (1,2) to the problem of finding a min-cost cycle on three given
vertices.

11



Proof. Consider an optimal solution to the above problem. In general, it consists of
a cycle C∗ that contains r and t2, and a path P ∗ between t1 and a vertex v∗ of C∗.
(Possibly, t1 = v∗ and P ∗ has zero edges.)

We can find an optimal solution by guessing the vertex v∗, and then computing
a min-cost cycle through r, t2, v

∗, together with a min-cost path from v∗ to t1. The
subgraph with the minimum total cost, over all choices of v∗, gives an optimal solution
to Problem 11.

3 Hardness of directed rooted connectivity with many ter-

minals

This section has our hardness results for the (general) directed rooted connectivity prob-
lem; there is no restriction on the number of terminals.

3.1 Label cover hardness for rooted connectivity

We begin with a simple reduction that illustrates our methods.

Theorem 4. The directed rooted k-connectivity problem is at least as hard to approxi-
mate as the label cover problem; the same hardness result applies to the undirected rooted
k-connectivity problem.

Proof. We give an approximation-preserving reduction from the directed Steiner forest
problem to the directed rooted k-connectivity problem. The hardness bound then follows
from a result of Dodis and Khanna [6]. Recall that in the directed Steiner forest problem
(DSF) we are given a directed graph G = (V,E) with arc costs, a set of sources S, a set
of sinks T , and a set of demand pairs D ⊆ S × T . The goal is to find a minimum cost
subgraph that has an s, t-dipath for every demand pair (s, t) ∈ D.

First we may apply some basic operations to an arbitrary instance of DSF to obtain
an instance with a simplified structure. Specifically, for each demand pair (s, t) with
req(s, t) = 1, we may add two new vertices s′ and t′, and two new arcs (s′, s) and
(t, t′) of zero cost; we then replace the demand pair (s, t) with the demand pair (s′, t′).
Clearly, the resulting instance is “equivalent” to the original one. Thus, we may assume
that:

• S and T are disjoint.

• For each source s, there is exactly one demand pair (s, t) in D.

Now, given G, S and T , we construct an instance of directed rooted k-connectivity.
First, we construct an auxiliary graph Ĝ. We add to G a root vertex r with zero-cost
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arcs (r, s) to all sources s ∈ S. Then for each demand pair (s, t), we add a padding arc
of zero-cost from each s′ ∈ S − {s} to t. We define the root (source) to be r; the set of
terminals is then the set of sinks T . We set the connectivity requirements to be k = |S|.
The construction is illustrated in Figure 5.

s

t

root

Figure 5: The figure shows an example of a reduction from DSF to the directed rooted
k-connectivity problem. The instance of DSF is on the left, and the instance of directed
rooted connectivity is on the right. The blue vertices are the sources and sinks (re-
spectively, root and terminals). The green arcs are padding arcs corresponding to one
terminal t, and all other padding arcs are omitted. The red dipath from the root to t
corresponds to an s, t-dipath of the DSF instance.

To complete the proof, it can be verified that a solution of the DSF instance maps
to a solution of the rooted k-connectivity instance with the same cost, by adding the
root r, all its incident arcs, and all of the padding arcs. (Note that these additional arcs
all have zero cost.) Conversely, a solution of the rooted connectivity instance maps to
a solution of the DSF instance with the same cost, by removing the root r, its incident
arcs, and all of the padding arcs. Observe that a solution subgraph of the DSF instance
has an s, t-dipath, where (s, t) ∈ D, if and only if the corresponding solution subgraph
of the rooted connectivity instance has k openly disjoint r, t-dipaths.

The above result (on the directed rooted k-connectivity problem), together with the
reduction of Lando and Nutov [12], gives a similar hardness bound for the the undirected
rooted k-connectivity problem.

3.2 k
ǫ-hardness for directed graphs

In this section, we give a reduction from the label cover problem to the directed rooted
k-connectivity problem, to prove the following results.
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Theorem 5. The directed rooted k-connectivity problem cannot be approximated to
within O(kǫ), for some constant ǫ > 0, assuming that NP is not contained in DTIME(polylog(n)).

As a starting point, we use an instance of the label cover problem obtained from
MAX-3SAT(5) with ℓ repetitions.

3.2.1 A label cover instance from MAX-3SAT(5)

In MAX-3SAT(5), we are given a formula φ on N variables x1, x2, . . . , xN and 5N/3
clauses C1, C2, . . . , C5N/3. Each clause has 3 literals, and each variable appears in exactly
5 clauses. The goal is to find an assignment to variables that maximizes the number of
clauses satisfied. The following is the famous PCP theorem.

Theorem 13 (PCP Theorem [2, 1]). There is a constant ξ : 0 < ξ < 1 such that it is
NP-hard to approximate MAX-3SAT(5) within a factor of (1− ξ).

In the minimum total label cover problem (the label cover problem, in short), we are
given, a d-regular bipartite graph G = (U,W,E), a set of labels L, and a constraint (or
a set of admissible pairs of labels) Πe ⊆ L × L for each edge e ∈ E. A labeling f is a
function f : (U ∪W ) → 2L assigning a subset of labels to each vertex of U and W . We
say that f covers an edge (u,w) ∈ E if there are labels a ∈ f(u) and b ∈ f(w) such that
(a, b) ∈ Π(u,w). The cost of the labeling f is the total number of labels assigned by f ,
i.e.,

∑
v∈(U∪W ) |f(v)|. The goal in the minimum total label cover problem is to find a

minimum cost labeling that covers all the edges.
By a standard reduction, we can reduce MAX-3SAT(5) with N variables to the label

cover problem with ℓ repetitions that have the following properties. (See Chapter 16.4
of [17] for more detail.)

|U | = |W | = NO(ℓ) |L| = 10ℓ d = 15ℓ

The next theorem follows from Raz’s well-known Parallel Repetition Theorem.

Theorem 14 (Parallel Repetition Theorem [15, 1]). There exists a constant γ > 0 (in-
dependent of ℓ) such that the minimum total label cover problem obtained from instances
of MAX-3SAT(5) with ℓ repetitions cannot be approximated within a factor of 2γℓ. (For
a constant ℓ, this holds if P 6= NP . For ℓ = polylog(n), this holds under the assumption
that NP * DTIME(polylog(n)).)

For the ease of presentation, we may think that U = {u1, u2, . . . , uq}, and each vertex
ui has its own set of labels, namely, Ai, which are all distinct, i.e., Ai∩Ai′ = ∅ for i 6= i′.
Similarly, W = {w1, w2, . . . , wq}, and each vertex wj has a set of labels, namely, Bj ,
which are all distinct, i.e., Bj ∩Bj′ = ∅ for j 6= j′.

14



3.2.2 The reduction

We now present a reduction from instances of the label cover problem obtained from
MAX-3SAT(5) with ℓ repetitions to instances of the directed rooted k-connectivity
problem. We start by creating a directed bipartite graph Ĝ = (A,B, Ê), where A =
A1∪A2∪ . . .∪Aq, B = B1∪B2∪ . . .∪Bq and Ê = {(a, b) : a ∈ Ai, b ∈ Bj , (a, b) ∈ Πui,wj

}.

The cost of every arc of Ĝ is zero. Note that arcs in Ĝ are directed from A to B. Next,
we add to Ĝ a set of vertices U and W . For each vertex ui ∈ U , for i = 1, 2, . . . , q,
we add to Ĝ an arc (ui, a) with cost 1 for each a ∈ Ai. For each vertex wj ∈ W , for
j = 1, 2, . . . , q, we add to Ĝ an arc (b, wj) with cost 1 for each b ∈ Bj .

Next, we add to Ĝ a root vertex s and add an arc (s, ui) for each vertex ui ∈ U of zero-
cost. For each edge (ui, wj) ∈ E of the label cover instance, we add a terminal ti,j and add
to Ĝ a zero-cost arc (wj , ti,j). We denote the set of terminals by T = {ti,j : (ui, wj) ∈ E}.
For each terminal ti,j , we add padding arcs (ui′ , ti,j) for all i

′ = 1, 2, . . . , q such that i′ 6= i
and (ui′ , wj) ∈ E. Finally, we set k to be the degree of a vertex of W , i.e., k = 3ℓ. The
construction is illustrated in Figure 6 where, for ease of presentation, we use ℓ = 1 and
use a label cover instance obtained from MAX-2SAT instead of MAX-3SAT(5).
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Figure 6: The figure shows an example of a reduction from the label cover problem to
the directed rooted k-connectivity problem. The instance of the label cover problem is
on the left, and the instance of the directed rooted k-connectivity problem is on the
right. The blue vertices are the root vertex and terminals. The green arcs are padding
arcs. The red path is an s, t-path corresponding to a satisfying labeling of (u2, w1).

Construction size: The above construction has NO(ℓ) vertices, and the connectivity
requirement is k = 15ℓ. Since the hardness of the label cover problem is 2γℓ for some
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fixed γ > 0, this implies kǫ-hardness for the directed rooted k-connectivity problem,
for some fixed ǫ > 0. This argument also applies for arc connectivity requirements on
directed graphs, so the same hardness bound holds there too.

Next, we will show the correctness of the construction. Going from a solution to the
label cover instance to a solution to the rooted k-connectivity instance is straightforward.
The key idea of the other direction is that there is a path from a vertex ui ∈ U to the
terminal ti,j ∈ T iff there is an arc (ui, wj) ∈ E. But, (k − 1) paths are forced to use
padding arcs via vertices ui′ 6= ui. Thus, the remaining one path forms a satisfying
labeling.

Completeness: The solution f to the label cover instance maps to the solution Ĝ′

to the directed rooted k-connectivity instance by adding all the zero-cost arcs, and arcs
corresponding to the chosen labels. That is, for each vertex ui ∈ U , we add to Ĝ′ an arc
(ui, a), if a label a is assigned to ui. Similarly, for each vertex wj ∈ W , we add to Ĝ′ an
arc (b, wj) if a label b ∈ Bj is assigned to wj . Clearly, the cost of Ĝ′ is equal to the cost
of f .

For the feasibility, observe that a satisfying label (a, b) that covers an arc (ui, wj) ∈ E
forms an s, ti,j-path (s, ui, a, b, wj , ti,j) in Ĝ′, where a ∈ f(ui), b ∈ f(wj) and (a, b) ∈
Πwi,uj

. By the construction, Ĝ has other (k − 1) s, ti,j-paths of the form (s, ui′ , ti′,j),
where i′ 6= i and (ui′ , wj) ∈ E. All of these s, ti,j-paths uses different arcs (and also
vertices). Thus, Ĝ′ has k arc disjoint s, ti,j-paths for every terminal ti,j ∈ T , satisfying
the connectivity requirements.

Soundness: The solution Ĝ′ to the directed rooted k-connectivity instance maps to
the solution to the label cover instance by choosing labels corresponding to non-zero cost
arcs of Ĝ′. That is, we have a label a ∈ f(ui) if (ui, a) is in Ĝ′, where ui ∈ U and a ∈ Ai.
The labels for each vertex of W is obtained similarly. Clearly, the cost of f and Ĝ′ are
the same.

For the feasibility of f , we show that f covers all the edges. Consider an edge (ui, wj)
of the label cover instance. We assume wlog that Ĝ′ has all the zero-cost arcs. Observe
that the terminal ti,j is incident to k arcs in Ĝ′, one is an arc (wj , ti,j) and the others
are padding arcs (ui′ , ti,j), where i′ 6= i. For (ui′ , ti,j) to form an s, ti,j-path, it must be
of the form (s, ui′ , ti,j) because of the construction. This gives (k − 1) openly disjoint
s, ti,j-paths. It remains to show that the k-th s, ti,j-path, namely P is a canonical path
of the form (s, ui, a, b, wj , ti,j), where a ∈ f(ui), b ∈ f(wj) and (ui, wj) ∈ Πui,wj

. If not,
then P = (s, ui′ , a

′, b, wj , ti,j). But, then P has an edge (s, ui′) in common with the

other path, a contradiction. As we have (ui, a), (b, wj) in Ĝ′ and (a, b) ∈ Πui,wj
, f covers

(ui, wj). Therefore, f is feasible to the label cover problem.
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3.3 k
ǫ-hardness of undirected rooted connectivity

Now, we show the hardness of the rooted k-connectivity problem on undirected graphs.

Theorem 6. The undirected rooted k-connectivity problem cannot be approximated to
within O(kε), for some constant ε > 0, assuming that NP is not contained in DTIME(polylog(n)).

3.3.1 Construction

The construction is adapted from the hardness construction of VC-SNDP by Chakraborty,
Chuzhoy and Khanna [4]. In short, Chakraborty et al. uses as a base construction the
construction from the label cover problem to DSF (the same as our base construction
for the directed rooted k-connectivity problem). However, this works only in directed
graphs because, in undirected graphs, a ui, wj-path may not be directed from Ai to
Bj ; i.e., we may have an illegal path (Ai, Bj′ , Ai′ , Bj), which cannot be decoded to a
feasible solution to the label cover problem. To solve this, they add padding edges to
force (k − 1) paths to block all illegal paths, thus simulating directed graphs. For the
undirected rooted k-vertex connectivity problem, this does not work because each source
vertex si,j in their construction only admits one openly disjoint path from the root. To
fix this, we replace si,j by a clique Xi,j to allow more than one vertex disjoint paths.

We start with an instance of the label cover problem derived from MAX-3SAT(5)
with ℓ repetitions: a d-regular bipartite graph Ĝ = (U,W, Ê), a set of labels L, and a
constraint Πe on each edge e. We construct an instance G = (V,E) of the undirected
rooted k-vertex connectivity problem as follows.

• For each vertex ui ∈ U , we add to G a vertex ui and a set of vertices Ai corresponding
to labels of ui. Then we join ui to each vertex a ∈ Ai by an edge (ui, a) with cost 1.
Each edge (ui, a) corresponds to a label a.

• For each vertex wj ∈ W , we add to G a vertex wj and a set of vertices Bj corre-
sponding to labels of wj . Then we join wj to each vertex b ∈ Bj by an edge (wj , b)
with cost 1. Each edge (wj , b) corresponds to a label b.

• For each edge (ui, wj) ∈ Ê, we add to G a terminal ti,j and join ti,j to wj by zero-cost
edges.

• For each edge (ui, wj) ∈ Ê, we add to G a clique Xi,j with zero-cost. The size of Xi

will be specified later. Then we add a zero-cost edge joining each vertex of Xi,j to
ui.

• For each pair (Ai, Bj) with (ui, wj) ∈ Ê, we add a zero-cost edge (a, b) for a ∈ Ai

and b ∈ Bj if (a, b) ∈ Πui,wj
.
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• We add a root vertex r to G and add a zero-cost edge joining r to each vertex of Xi,j

for all i, j.

This completes the base construction. It remains to add padding edges to G and to
specify the size of Xi,j . We define the padding of each terminal ti,j in term of two sets of
vertices, Yi,j and Zi,j . We remark that Yi,j and Zi,j are not new vertices – all vertices of
Yi,j and Zi,j are chosen from amongst the current set of vertices. We start from Yi,j = ∅
and Zi,j = ∅. Then we add some Xi′,j′ to Yi,j and add some Ai′ , Bj′ and ti′,j′ to Zi,j .
Note that by adding a set we mean adding all of its vertices. Finally, we add padding
edges with zero-cost: edges (y, ti,j) for all vertices y ∈ Yi,j and edges (x, z) and (z, ti,j)
for all vertices z ∈ Zi,j and x ∈ Xi,j . The former set of padding edges form paths of the
form (r, Yi,j , ti,j), and the latter set form paths of the form (r,Xi,j , Zi,j , ti,j). However,
the padding edges may not give the same connectivity for all terminals. So, we make up
the connectivity requirement by adding a set of new vertices Qi,j for each terminal ti,j
and adding zero-cost edges (r, q) and (q, ti,j) for all vertices q ∈ Qi,j .

To do the padding, we consider the line graph H of Ĝ, where Ĝ is the graph of the
label cover instance. That is, each vertex of H is an edge of Ĝ, and there is an edge
(e1, e2) in H if edges e1 and e2 of Ĝ have a common endpoint. The graph H shows the
dependency structures for the pairs (ui, wj). For the sake of presentation, we write (i, j)
to mean an edge (ui, wj) of Ĝ. Since we obtain the instance of the label cover problem
from Max-3SAT(5) with ℓ repetitions, we may assume that every vertex (i′, j) or (i, j′)
incident to (i, j) in H is incident to another vertex (i′, j′), where i′ 6= i and j′ 6= j

Consider a vertex (i, j) of H ((i, j) is an edge of Ĝ). For each vertex (i′, j′) such that
the distance of (i, j) and (i′, j′) in H is 2, we do the following padding. Remark that
i′ 6= i and j′ 6= j.

• Case 1: There is an edge (i′, j) in Ê. Then we add Xi′,j and Xi′,j′ to Yi,j , and
we add ti′,j , ti′,j′ and Ai′ to Zi,j .

• Case 2: There is an edge (i, j′) in Ê. Then we add Xi,j′ and Xi′,j′ to Yi,j , and
we add ti,j′ , ti′,j′ and Bj′ to Zi,j .

For the case that both (i′, j) and (i, j′) are in Ê, we apply both paddings. Observe
that there is an almost symmetric structure in the paddings because the distance from
(i, j) to (i′, j′) and from (i′, j′) to (i, j) are the same. Thus, if we apply the (i, j)-padding
of Case 1 to (i′, j′), then we also apply the (i′, j′)-padding of Case 2 to (i, j) and vice
versa. Figure 7 illustrates the incident graph of the padding.

To finish, we have to specify the size of each clique Xi,j and select the connectivity
requirement k. For each terminal ti,j , we want the first (k − 1) r, ti,j-paths to be of the
form (r, Yi,j , ti,j) or (r,Xi,j , Zi,j , ti,j) and the kth r, ti,j-path to be a canonical path, i.e.,
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Figure 7: An incident graph of the padding of Case 1.

it contains a subpath of the form (ui, Ai, Bi, wj). Thus, we set the size of Xi,j to be
|Zi,j |+1 so that we have one vertex of Xi,j for the kth path, and we set the connectivity
requirement to be k = max(i,j)∈Ê(|Xi,j |+ |Yi,j |). Note that some terminals may not have
enough incident edges to satisfy the connectivity requirement. So, for each such terminal
ti,j , we add a set of vertices Qi,j with size k − (|Xi,j | + |Yi,j |) and then add zero-cost
padding edges (r, q) and (q, ti,j) for each q ∈ Qi,j . This completes the construction.

Construction size: Now, we have to calculate the size of G and the connectivity
requirement k. Recall that we obtain the instance of the label cover problem from the
instance of Max-3SAT(5) with ℓ repetitions that have the following properties: |U | =
|W | = NO(ℓ), R = |Ai| = |Bj | = 10ℓ for all i, j and d = 15ℓ. The next lemma shows that
k is O(1)ℓ.

Lemma 15. The value of k is O(1)ℓ.

Proof. To calculate the value of k, it suffices to calculate the size of Yi,j and Zi,j . Recall
that the graph Ĝ of the label cover instance is d-regular graph. Thus, for each vertex
(i, j) of the line graph H of Ĝ, the number of vertices at distance 1 of (i, j) is at most
2d, and the number of vertices at distance 2 of (i, j) is at most 2d2. Observe that each
vertex of distance 1 contributes to R + 1 vertices of Zi,j (from Ai′ and ti′,j or from Bj′

and ti,j′), and each vertex of distance 2 from (i, j) contributes to 1 vertex of Zi,j (from
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ti′,j′). Thus, |Xi,j | = |Zi,j | + 1 ≤ O(d2 + d · R). For each vertex (i′, j′) of distance
1 and 2 from (i, j), we add Xi′,j′ to Yi,j . So, |Yi,j | ≤ O((d + d2)(d2 + d · R). All of
|Xi,j |, |Yi,j |, |Zi,j | are in terms of d and R, so all of these numbers are O(1)ℓ. Therefore,
k = max(i,j)∈Ê(|Xi,j |+ |Yi,j |) = O(1)ℓ.

The hardness of the label cover problem is 2γℓ, for some fixed γ > 0, while k = O(1)ℓ.
Thus, we have kε-hardness for the undirected rooted k-vertex connectivity problem, for
some fixed ε > 0. It remains to prove the completeness and soundness.

Completeness: Given a solution f to the label cover instance, we obtain a solu-
tion G′ to the undirected rooted k-vertex connectivity problem by taking all zero-cost
edges and taking edges (ui, a) and (wj , b) corresponding to the chosen labels. Clearly,
the cost of G′ and f are the same. Consider a terminal ti,j ∈ T . By construction, we
have |Yi,j |+ |Zi,j |+ |Qi,j | = k−1 and |Xi,j | = |Zi,j |+1. Moreover, all the vertices of Yi,j ,
Zi,j , Qi,j and Xi,j are disjoint. Thus, we have (k−1) openly disjoint r, ti,j-paths through
Yi,j by paths of the form (r, Yi,j , ti,j), through Xi,j by paths of the form (r,Xi,j , Zi,j , ti,j)
and through Qi,j by paths of the form (r,Qi,j , ti,j). Since |Xi,j | = |Zi,j |+1, we have one
vertex x ∈ Xi,j not used by any path. As all edges are covered by the labeling f , we have
the kth r, ti,j-path (r, x, ui, a, b, wj , ti,j), where a ∈ f(ui), b ∈ f(wj) and (a, b) ∈ Πui,wj

.
The kth path has no common vertices with the other paths except r and ti,j . Thus, the
connectivity requirement for each terminal ti,j is satisfied, and the solution is feasible.

Soundness: Given a solution G′ to the undirected rooted k-vertex connectivity
problem instance, we construct a solution f to the label cover instance by choosing labels
corresponding to edges (ui, a) and (wj , b) of G

′. Clearly, the cost of f is the same as the
cost of G′. To show that f covers all the edges, it suffices to show that there is a canonical
sub-path of the form (ui, Ai, Bj , wj , ti,j) for every terminal ti,j . Consider a terminal ti,j .
The degree of ti,j in the input graph G is k. Thus, we have to use all the edges incident
to ti,j . We may assume that the first (k − 1) r, ti,j-paths used all the padding edges
incident to ti,j . Thus, the kth path cannot use any vertex of Yi,j ∪ Zi,j ∪ Qi,j . We will
show that the kth r, ti,j-path must be a canonical path.

Lemma 16. Consider a graph Gi,j = G− (Yi,j ∪ Zi,j ∪Qi,j). Let S = {ui} ∪Ai ∪Bj ∪
{wj} ∪ {ti,j}. Then, for any edge e = (v, p) of Gi,j with one endpoint v ∈ S, the other
endpoint p of e is in S or e = (ui, x) for some x ∈ Xi,j.

Proof. We proceed by case analysis. Recall we write (i, j) to mean an edge (ui, wj) ∈ Ê.

• If v = ti,j , then p ∈ S because all padding edges incident to ti,j are not in Gi,j .
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• If v = ui or v = wj , then p ∈ Ai or p ∈ Bj or e = (ui, x) for some x ∈ Xi,j because
ui and wj are not incident to any padding edge.

• If v ∈ Ai but p /∈ Bj ∪ {ui}, then, by the construction, the other endpoint p of v
is in some Bj′ , or in some Xi′,j′ , or at some terminal ti′,j′ . (It can be seen that
p /∈ Xi,j because of the construction.) Note that, at this point, we do not rule out
the cases that i′ = i or j′ = j.

If p ∈ Bj′ , then e is not a padding edge. So, we must have an edge (i, j′) ∈ Ê,
where j′ 6= j. By Case 2 of the padding, Bj′ would have been added to Zi,j , a
contradiction.

If p ∈ Xi′,j′ , then, by construction, we must have an edge (i, j′) ∈ Ê, where i′ 6= i.
It is possible that j′ = j, but, in either case, (i′, j′) is within distance 2 of (i, j) in
the line graph of Ĝ. Thus, we would have added Xi′,j′ to Yi,j , a contradiction.

If p is some terminal ti′,j′ , then, by the construction, (i, j) must be within distance 2

of (i′, j′), i.e., we either have j′ = j and (i′, j) ∈ Ê or have j′ 6= j and (i′, j), (i′, j′) ∈
Ê, where i′ 6= i. But then (i′, j′) is within distance 2 of (i, j), so we would have
added ti′,j′ to Zi,j , a contradiction.

Therefore, p must be in S.

• For the case that v ∈ Bj , the proof is the same as in the previous one. That is,
it can be done by interchanging Ai with Bj , Bj′ with Ai′ and ui with wj . So, we
omit the detail.

By Lemma 16, any edge entering S = {ui} ∪ Ai ∪ Bj ∪ {wj} ∪ {ti,j} has to enter at
ui. Notice that no edges with both endpoints in S are padding edges. So, any r, ti,j-path
in Gi,j must contain a canonical subpath (ui, a, b, wj , ti,j), where a ∈ Ai and b ∈ Bj and
(a, b) ∈ Πui,wj

. Thus, the labeling f covers the edge (ui, wj) ∈ Ê. Therefore, f is feasible
for the label cover problem, and the cost of f is the same as the cost of G′, completing
the soundness proof.

4 Integrality ratio for directed rooted connectivity

In this section, we modify a construction (and analysis) of Chakraborty, Chuzhoy and
Khanna [4] to show that the natural linear programming (LP) relaxation for the di-
rected rooted connectivity problem has an integrality ratio of at least Ω(k/ log k). The
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construction of Chakraborty, Chuzhoy and Khanna [4] gives an integrality ratio of Ω̃(k
1

3 )
for VC-SNDP. We restate the main result of this section.

Theorem 7. The natural LP relaxation of the directed rooted k-connectivity problem
has an integrality ratio of Ω̃(k).

In fact, we prove this result for the special case of the rooted connectivity augmentation
problem, where the zero-cost arcs form an initial graph G0 = (V,E0) that already has
(k− 1) openly disjoint r, t-dipaths for each terminal t ∈ T . We denote the set of positive
cost arcs (or augmenting arcs) by Eaug. Consider the initial graph G0. For subsets of
vertices S and S′, we denote the set of out-arcs from S to S′ by δ+(S, S′) = {(x, y) ∈
E0 : x ∈ S, y ∈ S′}; moreover, for S ⊆ V , we denote the set of out-neighbors of S
by Γ+(S) = {y : (x, y) ∈ E0, x ∈ S, y /∈ S}, and the out-vertex complement of S by
S∗ = V − (S ∪ Γ+(S)).

The following is an LP relaxation for the directed rooted connectivity augmentation
problem.

min
∑

e∈E

cexe

s.t.
∑

e∈δ+(S,S∗)

xe ≥ 1 ∀S ⊆ V , r ∈ S, S∗ ∩ T 6= ∅, and |Γ+(S)| = k − 1.

0 ≤ xe ≤ 1 ∀e ∈ Eaug.

(LP)

4.1 Construction

The construction of [4] starts with a bipartite graph H = (A,B,E). Let A1, A2, . . . , Aq

and B1, B2, . . . , Bq be a partition of the vertices of A and B, respectively, where |Ai| = p
for all i and |Bj | = p for all j. For each pair (Ai, Bj), we add a random perfect matching
Πi,j between Ai and Bj . All of these edges have cost zero, i.e., each edge in each perfect
matching has cost zero. Next, for each Ai, we add a vertex ui and add an edge {ui, a}
joining ui to every vertex a ∈ Ai. Similarly, for each Bj , we add a vertex wj and add an
edge {b, wj} joining wj to every vertex b ∈ Bj . All of these edges have cost 1.

Our construction uses a directed graph; we start with H and direct every edge be-
tween A and B from A to B; moreover, we direct every edge of the form {ui, a} from ui
to a, and every edge of the form {b, wj} from b to wj .

Then we add a root vertex r and join r to every vertex ui by a zero-cost arc (r, ui).
For each pair (Ai, Bj), we add a terminal ti,j and join wj to ti,j by a zero-cost arc
(wj , ti,j). Finally, we add padding arcs of zero cost. For each terminal ti,j , we add arcs
(ui′ , ti,j) for all i′ 6= i. We set a connectivity requirement k = q and set the parameter
p = k2; recall that p = |Ai| = |Bj |, ∀i, ∀j.
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It can be seen that the zero-cost arcs form a graph G0 = (V,E0) that has (k − 1)
openly disjoint r, ti,j-paths for every terminal ti,j , and the instance has a feasible solution.
Thus, the instance is valid for the rooted connectivity augmentation problem.

Observe that the construction corresponds to an instance of the label cover problem,
where we are given a complete bipartite graph, and each constraint Πi,j forms a perfect
matching on the set of labels.

4.2 Fractional solution

We show that there is a fraction solution of cost 2k, giving an upper bound on the LP
solution. To see this, we assign xe = 1/k2 for all positive cost arcs e. (We have xe = 1
for all zero-cost arcs e.) This give an LP solution x of cost 2k. It only remains to show
that x satisfies the constraints of the LP.

Consider the initial graph G0. Let S ⊂ V be any subset of vertices in the constraint
of (LP), i.e., r ∈ S, S∗∩T 6= ∅ and |Γ+(S)| = k−1, and let ti,j be a terminal in S∗. First,
S and S∗ cannot contain any vertex ui′ for i

′ 6= i; otherwise, we would have ti,j or r in
Γ+(S), contradicting the fact that r ∈ S and ti,j ∈ S∗. Thus, ui′ ∈ Γ+(S) for all i′ 6= i.
Similarly, it can be seen that wj /∈ S; otherwise, we would have ti,j in Γ+(S) because of
the zero-cost arc (wj , ti,j). Notice that we already have k − 1 vertices in Γ+(S). So, for
each zero-cost arc e, if S contains the tail of e, then S also contains its head. Thus, ui ∈ S
because r ∈ S and (r, ui) ∈ E0, and if S contains a vertex a ∈ Ai, then S also contains
a vertex of b ∈ Bj with (a, b) ∈ E0. This implies that |Ai − S| + |Bj ∩ S| = |Ai| = k2.
Consequently, we have

∑

e∈δ+(S)

xe ≥
∑

a∈Ai−S

x(ui,a) +
∑

b∈Bj∩S

x(wj ,b) = k2 ·
1

k2
= 1.

Therefore, x is a feasible solution of the LP.

4.3 Integral solution

We show that there exist instances such that every integral solution has cost ≥ Ω̃(k2).
The proof proceeds by analyzing the probability that such a solution exists.

For any feasible solution, every terminal ti,j has (k − 1) openly disjoint s, ti,j-paths
via zero-cost arcs of the form (s, ui′ , ti,j), where i′ 6= i. For the k-th s, ti,j-path, it must
be a canonical path of the form (s, ui, a, b, wj , ti,j), where (a, b) ∈ Πi,j . We use this fact
in the analysis.

Suppose every solution G′ has cost at most γk/2. We assume wlog that all zero-cost
arcs are included. We say that we buy a vertex a ∈ Ai (resp. b ∈ Bj) if (ui, a) (resp.
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(b, wj)) is in G′. As the solution has cost at most γk/2, which is the number of positive
cost arcs of G′, there are at most k/2 Ais that can afford to buy ≥ γ vertices of Ai. The
same applies for the Bjs. Thus, we have ≥ k2/4 (Ai, Bj) pairs such that we bought less
than γ vertices from each of Ai and Bj . We call such pair a bad pair.

For each vertex-pair (a, b), where a ∈ Ai and b ∈ Bj , the probability that (a, b) ∈ Πi,j

is 1/|Bj | = 1/|Ai| = 1/k2. Thus, for each bad pair (Ai, Bj), the probability that we can
form a canonical path, i.e., we bought both a and b of a pair (a, b) ∈ Πi,j , is less than
γ2/k2. The perfect matchings Πi,j are independently chosen. Thus, the probability
that we can form a canonical path for a particular bad pair is less than γ2/k2, and the
probability that we can form such paths for all the bad pairs is less than (γ/k)k

2/2. In
other words, an integer “solution” of cost ≤ γk/2 is feasible with probability < (γ/k)k

2/2.
Now, we count all the possible integral solution with cost at most γk/2. The number

of such solution is at most

γk/2∑

i=1

(
2k3

i

)
≤ 2

(
2k3

γk/2

)
≤ 2(2k)3γk/2.

Setting γ = k/(2 log k), the expected number of integer “solutions” of cost ≤ γk/2
that are feasible is

< 2(2k)3γk/2 · (γ/k)k
2/2 = 2(2k)(3k

2)/(2 log 2k) · (log 2k)−k2/2.

Taking logarithm on both side, we have

log 2 + 3k2/2− (k2/2) log 2k < log 1 = 0 for large enough k.

Thus, there exist instances that have zero integer “solutions” of cost ≤ γk/2 that are
feasible; that is, every integer “solution” that is feasible has cost > k2/(2 log 2k).

Thus, we have an LP solution of cost at most 2k while every integral solution has
cost at least k2/(2 log 2k); hence, the integrality ratio of (LP) is at least Ω(k/ log k). This
proves Theorem 7.
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