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Detection of Missing Roundabouts in Maps for Driving Assistance Systems

Clément Zinoune1,2, Philippe Bonnifait1, Javier Ibañez-Guzmán2

Abstract— Passenger vehicles are evolving into sensor-
based computer controlled platforms with different levels of
autonomy. Digital maps representing road networks are being
used as an a priori source of information to provide context
and to anticipate oncoming situation. On top of it, world
models are built for machine understanding. However, these
can have local errors, affecting location based functions. A
common one is due to the rapid deployment of roundabouts,
as they are introduced widely, with navigation maps ignoring
their presence. This work introduces a novel approach to
make the vehicle able to detect the presence of a roundabout
while it is driven. It is then possible to update the map by
the vehicle itself. The approach is based on graphical pattern
recognition methods using a Bayesian classifier. The approach
has been demonstrated experimentally using data acquired in
real-traffic conditions.

I. INTRODUCTION

Continuous progress in information and communication

technologies has meant that modern vehicles are being trans-

formed into sensor-based platforms with often advanced

wireless connectivity capabilities. Most vehicle manufac-

turers are today working on the deployment of Advanced

Driving Assistance Systems (ADAS). The rationale is to

facilitate the comfort of driving tasks, reduce the number of

accidents as well as to improve traffic flow whilst including

costs as a major constraint.

Statistics have shown that the introduction of ADAS

functions improves safety. For example, the introduction of

an “Automatic Intelligent Speed Assistant” could reduce up

to 15% of road fatalities [1]. However, ADAS require more

and more detailed information about the driving context the

vehicle is going to be facing in the near future. This is

provided in some part by sensors mounted on the vehicle

like radar or camera especially for the close vehicle’s

surroundings because they are necessarily limited by their

fields of view and the occlusions due to obstacles in the

scene (other vehicles for instance). The high cost of these

sensors is also a drawback for their use in standard vehicles.

Digital maps are gradually used to get a wider scale context

information. For example, as they store road geometry

information, they may be used to help to control the vehicle

speed and bend the front lights when a curve is approaching

[2]. Moreover, a large amount of road attributes are kept

in the digital maps which makes possible to inform the

driver of the current speed limit [3], to change the perception
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field of view in accordance to the kind of environment the

vehicle is evolving in (rural or urban) [4], or to turn off the

cruise control system as soon as the vehicle is approaching

a crossing or a toll gate. This is obviously in addition to the

standard use of maps and global navigation satellite systems

(GNSS) for guidance purposes.

However, digital maps include multiple errors originating

in the collected data or in changes that have occurred

since the compilation of the maps and their distribution to

the vehicles. This has resulted in serious integrity issues

that not only are a common client complain of users of

navigation devices but also reduce the integrity of safety

related applications. Within this context, it is very important

to be able to determine when the maps are erroneous and,

if possible, to correct them using data which is collected by

the subject vehicle. Confidence in the detected errors and

in the corrections to make should increase as the trajectory

is repeated by the vehicle and shared with other users.

Map errors can be classified in 3 categories: geometrical,

topological and attributes. Geometrical errors make that the

map doesn’t match with reality. Topological errors refer

to connection errors between nodes of the map. Incorrect

attributes mean that the semantic information extracted from

the map (like speed limit) doesn’t correspond to reality. We

consider in the following only geometrical errors.

In practice, map engines are in charge of providing the

pertinent map information to the ADAS functions through

an Electronic Horizon [5] for instance. In order to monitor

the map quality, a sub-system is introduced between the

map engine and the ADAS (Fig. 1). It collects the GPS and

proprioceptive information to make its own representation of

the travelled trajectory which is then used to detect errors in

the map. Once an error has been detected, the faulty link ID

is then stored in a look-aside database (LADB). This “don’t

use the map” information will be exploited by the ADAS

next time the vehicle will travel in the same area.

In this paper, we focus on one particular kind of geo-

metrical errors, the missing “roundabouts”. Roundabouts

(i.e. traffic circles) are particularly interesting elements of

the road networks that affect the content of a map. They

are introduced extensively instead of crossroad intersections

because they divide by four the number of potential collision

points, they reduce the vehicle speed and improve traffic

flow [6]. Further, they may not be represented in digital

navigation maps. These also have significant consequences

on ADAS. For example, a cruise control system must be

turned off when the vehicle approaches a roundabout which

is possible only if it has been registered in the map.
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Fig. 1. Map monitoring architecture. The system informs the map-aided
ADAS whether the map is wrong thanks to data previously collected and
stored in a look-aside database.

On the one hand, road changes including new roundabouts

may be detected by using image processing methods like

active contour [7] or gradient [8] on aerial images. On the

other hand, the vehicle itself can be used to create maps

by converting the vehicle’s trajectory into road segments

[9]. This generally assumes a very accurate (and so often

expensive) localisation system like bi-frequency GPS com-

bined with inertial measurements units or lidars.

Methods based on usual vehicles equipments can also be

found in the literature. In [10], a camera mounted under-

neath the vehicle’s mirror is used to extract and classify road

singularities using a neural network. [11] uses also a neural

network architecture to classify roads travelled by several

vehicles into classes like road, local street, roundabout or

traffic light stop according to a set of parameters (speed,

rate of acceleration, curvature or change in travel direction).

[12] proposes algorithms to infer the presence of road or

roundabouts based on offline and centralized GPS trace

mining.

In this paper, a method for detecting the presence of

roundabouts is studied, using a ego-localization systems

which exploits the vehicle embedded sensors. The idea is

to recognize roundabouts in the passed vehicle’s path. The

immediate trace of the position estimates is first converted in

an adequately sampled window. Then, an efficient descriptor

is proposed and exploited in a Bayesian classifier that has

been chosen to take profit of its low computational com-

plexity and make embedded application possible. Once a

roundabout has been detected, this information is compared

to the digital map content. If the roundabout is not already

recorded in the map, an error is detected and recorded in

the LADB.

The remainder of the paper is organized as follows:

Section II formulates the proposed framework including

the localization algorithm, the preprocessing necessary to

feature recognition, the descriptors, the defined classes as

well as the estimation of the roundabout characteristics.

Section III, includes the experimental content, it validates

the proposed approach using data acquired from a test

vehicle operating in real traffic conditions. It includes the

experimental apparatus, and an analysis of the algorithm

performances. Finally, Section IV concludes the paper.

II. FRAMEWORK

The algorithm presented here uses as input information

coming from standard sensors mounted in the vehicle and

a standard global positioning system (GPS). The odometer,

the yaw rate, the speed and the speed difference between

the rear wheels are used here. They have the advantage to

be broadcast on one single bus in the vehicle (CAN-bus) so

to be easily read and recorded. Proprioceptive sensors are

very efficient to provide a precise estimate of the travelled

path on a short horizon of time. GPS provides the global

position of the vehicle which makes possible to georeference

the roundabouts as soon as they are detected. Merging the

two modalities allows localizing precisely and globally.

A. Localization

The vehicle localisation task is done by a loosely coupled

Extended Kalman Filter (EKF). It uses GPS fixes when

available to correct the proprioceptive estimation [13]. The

state representation is shown in (1).

{

Xk+1 = f(Xk, vk) + αk

Yk = H.Xk + βk
(1)

{

Xk =
[

xk yk ωk bk ψk

]T

Yk =
[

xgps k ygps k ωg k rk
]T (2)

The state, observation and input vectors are detailed in

(2), where index k denotes the kth time step. In the state

vector X ,
(

x y
)

are the vehicle’s coordinates in a East-

North-Up (ENU) reference frame. ψ and ω stand for the

vehicle’s heading (clockwise from the North direction) and

yaw rate (rotation rate around the Up axis) respectively.

Finally, b is the vehicle’s gyroscope bias as defined in (4).

The observation vector Y contains the vehicle’s position

according to the GPS observation
(

xgps ygps
)

, the yaw

rate measured by the vehicle’s gyroscope ωg and the speed

difference between the rear vehicle’s wheels r. The meas-

ured input is the vehicle’s speed v.

The model and observation noises α and β respectively

are supposed to be white and zero mean.

The state transition function f depends on the input v
and on the state itself. It is defined in (3) where T is

the sampling period and l is the vehicle’s rear track. The

observation model H used here is given in (6).

f (Xk, vk) =













xk + T vk sin(ψk)
yk + T vk cos(ψk)

ωk

bk
ψk − T ωk













(3)

ωg = ω + b (4)

r =
2

l
ω (5)

H =









1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 2/l 0 0









(6)



For a moving vehicle, the observability of each state

variable can be easily demonstrated.

The vehicle’s state is computed in real time and its

position over the last L meter is kept in a sliding window.

This track is used in the following to ascertain the vehicle

has crossed a roundabout.

B. Pre-processing

The first step of feature recognition is pre-processing. The

area of interest is isolated from the whole vehicle track using

the concept of sliding window, e.g. only the last L meters

of the vehicle’s trajectory are used to search for features.

The vehicle’s odometer is used to spot the time since

which the vehicle covered L meters. The vehicle positions

are stored in a buffer memory and dismissed as soon as it

goes out of the sliding window. The track present in the

buffer memory at any time is called buffer track.

Pre-processing consists in changing the reference frame

of the buffer track to reduce the diversity of the possible

roundabout shapes. The shapes and roundabout orientations

are then made independent. For this purpose, we propose to

use an egocentric approach. The buffer track is transformed

into the current vehicle frame using the rotation matrix Z
defined in (7). As ψ denotes the vehicle’s heading with

respect to the North (vertical axis), this rotation matrix is

slightly different from the usual one.

Zk =

[

sin (ψk) − cos (ψk)
cos (ψk) sin (ψk)

]

(7)

C. Descriptor

In classification and recognition tasks, the choice of a

descriptor is crucial. In this paper, we focus on pieces of

vehicle’s trajectory as graphical 2D objects. The descriptor

should then illustrate these two dimensions independently.

Our choice of a descriptor was motivated by the similar-

ities between our problem and the handwriting recognition

domain [14], [15]. Let the descriptor be composed of two

halves: left and down profiles. The left (resp. down) vector

stores the distances between the left (resp. down) side of the

interval and the first point met on this line (resp. column)

as shown in Fig. 2. The profiles contain n equally spaced

elements.

One issue when one deals with features such as round-

abouts is the diversity of the elements called roundabouts.

This comes, on the one hand from the number of exits of

the roundabout and the one chosen by the driver, and on

the other hand the roundabout radius. The first difficulty

will be solved by defining a suitable number of classes, as

developed later on. Secondly, to prevent scale effects, the

descriptor is normalized using (8). The descriptor of one

buffer track is therefore a vector D of 2n elements.

D =





c1 c2 · · · cn

max
i:1→n

(ci)

l1 l2 · · · ln

max
i:1→n

(li)



 (8)
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Fig. 2. An example of buffer track (in blue) with its associated descriptor.
The first half is left profile (in green), the second one is down profile (in
red).

As soon as the vehicle goes straight, the projection of

the buffer track along the Y axis becomes very small. The

left profile sampling shown in Fig. 2 is made inconvenient

and may introduce errors in the classifier. Moreover, in this

situation, the vehicle cannot have crossed any roundabout,

thus, buffer tracks that have a vertical range less than

threshold ∆Ymin are neglected.

D. Classes

Consistent classes must be defined to make the recog-

nition process efficient. It is not suitable to create only

two main classes: one containing every buffer track that

contains a roundabout and the other with anything else.

Indeed, a too wide variety of shapes inside the same class

(due to the large diversity of roundabout shapes as said

previously) makes them inconsistent and the learning and

recognition steps very tough. The solution found here has

been to split the “roundabout” class into sub-classes. Each

one being associated to one kind of buffer track containing

a roundabout (one for the vehicle went straight, one for

the vehicle took the third exit, ...). Likewise, several

classes associated to non-roundabout buffer tracks have been

designed.

Table I illustrates the typical buffer tracks of every class.

These have been manually designed to represent the variety

of the buffer tracks as well as possible. Thus, roundabout

at which the vehicle went straight, turned left and made a

U-turn are represented. Also, a class is set for each one

of them when the roundabout is at the beginning and at

the end of the buffer track to improve the robustness of

the classifier. This makes the first eight classes. The same

way to proceed is applied to non-roundabout classes: Nearly

straight trajectories are in classes nine and ten, left turns are

in classes eleven, fourteen and fifteen and right turns are in

classes twelve and thirteen.
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CLASSES USED FOR ROUNDABOUT INFERENCE
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Once these representative samples have been manually

isolated, their corresponding descriptors are computed as

developed in the previous paragraph.

E. Recognition

Let us consider a closed frame of discernment Ω and

a set of classes {wi} (i = 1 → k) being a partition of

Ω. According to total probability law and to the Bayes’

theorem, the conditional probability of a sample D to belong

to the ith class is given by (9). In this equation, it is assumed

that every class has the same prior probability.

P (wi|D) =
P (D|wi)
k
∑

j=1

P (D|wj)

(9)

We consider sample D as a vector containing 2n random

variables. Let us assume that, within a given class wi,

samples are normally distributed around the representative

sample Di. Thus, if D belongs to wi then D ∼ N (Di,P)∨
i ∈ {1, ..., k} where P is the covariance matrix.

The posterior probability of wi to be the correct class

associated to the sample D is then given by (10).

P (wi|D) =
exp

(

− (D−Di)
T
·P−1

·(D−Di)
2

)

k
∑

j=1

exp
(

− (D−Dj)
T
·P−1

·(D−Dj)
2

)

(10)

The sample D is then associated to the maximum pos-

terior probability class. This method minimises error prob-

ability.

F. Roundabout placement

As soon as a roundabout has been detected in a buffer

track, the final step is to find its centre and its radius.

This allows to convert the discovery of a roundabout back

into absolute coordinates and to identify it clearly into the

LADB. This step is based on the clustering of the successive

rotation centres. It is easy to prove that if three points are

not aligned, a unique circle passing by them exists. The

centre and radius of every points trio is computed along the

whole buffer track as presented by blue crosses in Fig. 3.

Considering the fact that the curvature radius remains almost

constant while the vehicle is in the roundabout, the true

centre belongs to the densest cluster. As shown by the red

square and circle, the selected centre is the barycentre of

this cluster. This method is a good compromise between

simplicity and robustness.

The centre coordinates are converted back into absolute

ENU using the reciprocals of (7) and then into global

latitude/longitude coordinates.

Usually, the roundabout information is actually one of

possible value of the attribute road type linked to a road

segment (as motorway, parking, tunnel,...). If a roundabout

has been detected for the first time by the vehicle and is

missing in the digital map, its location is added to the digital

map and a “don’t use the digital map here” flag is raised for
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Fig. 3. Determination of the roundabout centre and radius in a buffer track.

Blue line represents the buffer track itself and blue crosses are its successive
rotation centres. Red square denotes the centre retained associated to its
circle (red line).

ADAS. Then, next time the vehicle goes through this place,

ADAS will be able to reject the map information.

III. RESULTS

A. Experimental setup

The method has been tested in real conditions thanks

to a Renault Espace passenger vehicle driven in various

conditions, urban, suburban and rural environments. The

localisation system on board was a standard single frequency

Ublox 4T receiver. A Ixsea LandIns Inertial Navigation

System (INS) tightly coupled to a Novatel GPS receiver

has been used as position ground truth.

We also had access to more than 300 vehicle’s internal

states variables of the vehicle via the CAN-bus. More

precisely, we have used the odometer, the speed, the rear

wheel speed difference and the yaw rate.

The few parameters of the algorithm have been tuned as

follows. First the length L of the buffer track must be larger

than the perimeter of the biggest roundabout the vehicle

may cross. We have set L = 250m which corresponds

to a roundabout radius of 40 meters which is also the value

chosen for the maximum detectable radius RMax in the filter

described before. Then, the minimum Y range defined in

this filter is set so that ∆Ymin = 10m which corresponds

to minimum detectable radius of 5 meters for U-turns and

10 meters for straight crossings. Finally, as the covariance

matrix P of the classifier is not sensitive, the identity matrix

has been used.

B. Method performance evaluation

The most relevant way to assess the method is to use it

on real data. A large amount of data representing more than

150 km have been recorded in various environments. Rural,

suburban and urban areas have been covered totalling up

37 different roundabouts. Some of them have been crossed

several times by different ways and under different traffic

conditions.

Firstly, the performance of the localization sub-system

has been assessed thanks to the ground truth provided by

Fig. 4. Detail of vehicle’s path. The position estimations are associated
to their covariance ellipses (blue line, crosses and ellipses). GPS fixes used
in the filter are denoted in red and ground truth is in green.

TABLE II

METHOD PERFORMANCE

True positives: 100% False negatives: 7.2%

False positives: 0% True negatives: 92.8%

the INS. The maximum distance error is below 15 meters

and equals 5 meters in average.

The consistency of the filter is highlighted in Fig. 4. It

shows that the true position (in green) and the measured

position (in red) are always inside the 3-sigmas covariance

ellipses (blue ellipses) which corresponds to a 99.7% prob-

ability. One can notice that when the vehicle is stopped

(bottom side of the picture), these ellipses decrease due to

a larger number of observations for the same position.

Secondly, the classifier performance has been deduced

from more than 100 km of driving sequences. The classes

assigned by the classifier have been manually compared to

true classes. The results have been merged to provide the

overall roundabout detection rates. These are summarized

in Table II. One can notice that every buffer track classified

as roundabout actually contains a roundabout, i.e. there

are no false positives. Moreover, data used here contains

ambiguous manoeuvres like U-turn and left turns with no

roundabout. However some roundabouts are missed by the

classifier. This is due, on the one hand, to the fact that

the vehicle crossed them nearly straight which makes the

roundabout almost invisible in the buffer track. On the other

hand, the evaluation of a buffer track is independent from

one time step to the other. A roundabout miss-detected when

it was at the beginning of the track may be detected a few

time steps later. This justifies the uses of two classes for

one roundabout shape as denoted in II-D.

Fig. 5 represents a part of the outputs of the algorithm.

One can notice that the roundabouts have been correctly

detected and their centres located on the map. A direct

application of the algorithm is shown in Fig. 6. The vehicle

has been driven on a recently modified road. On road D926,

a new roundabout has been built and another one is still

under construction. We can see the roundabout centres (red

stars) detected by the algorithm while the vehicle was driven



Fig. 5. The position estimates of the vehicle in urban area is represented
by a blue line. The vehicle is travelling anticlockwise. The roundabout
centres found by the program are shown by red stars.

along the blue path. It can also be noticed on this picture that

the U-turn is successfully classified as a non-roundabout.

The algorithm makes then possible to detected that the map

is obsolete and to store this information for next passages

in the LADB. We see in this situation that a cruise control

system must be henceforth turned off on road D924.

The background map used in Fig. 5 and Fig. 6 to illustrate

the results is taken from OpenStreetMap project [16], [17].

The method has been coded and tested in Matlab and runs

more than 10 times faster than the real data. Then, even if

it has not been implemented yet, it makes conceivable an

embedded application.

IV. CONCLUSIONS AND FUTURE WORK

The presented approach is based on the notion of integrity

monitoring of digital maps used in ADAS functions for

passenger vehicles. To prevent malfunctions, the detection

of one typical road geometrical error has been addressed,

namely, missing representation of roundabouts in digital

maps. The shape of a path followed by a vehicle when tra-

versing a roundabout has a typical signature, thus it has been

possible to apply a Bayesian classifier on data representing

the traversed path. For this purpose, only data from existing

vehicle sensors was used (i.e. odometer, gyroscope, speedo-

meters and GPS). Further, the resulting algorithm has low

computational complexity, so it can be easily incorporated

into embedded applications. The proposed solution has been

extensively tested on data acquired in real-traffic conditions

showing promising results by detecting the roundabouts that

the vehicle traversed whatever their diameter, shape or the

driver trajectory within the roundabout. It was possible

to detect recently built roundabouts and to add them onto

a look-aside database as these were not yet present in

commercially available digital maps. The on-line correction

of digital road maps is applicable in particular to commuting

trajectories, even after the first run. Thus the performance of

map-based ADAS functions is made more reliable. Further

to this work, other aspects of map integrity will be assessed

drawing also advantage from perception system based on

camera which appears widely in passenger vehicles.

Fig. 6. Example of application of the algorithm in rural environment.
Here the road network has changed recently, one roundabout has been
created and another one is being built. These are not registered in the
digital map (red lines) yet. The vehicle track is in blue and the centres of
the roundabouts found by our algorithm are in red stars.
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