
HAL Id: hal-00709833
https://hal.science/hal-00709833

Submitted on 19 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Succinct Representations for Abstract Interpretation
Julien Henry, David Monniaux, Matthieu Moy

To cite this version:
Julien Henry, David Monniaux, Matthieu Moy. Succinct Representations for Abstract Interpretation.
Static analysis symposium (SAS), Sep 2012, Deauville, France. pp.283-299, �10.1007/978-3-642-33125-
1_20�. �hal-00709833�

https://hal.science/hal-00709833
https://hal.archives-ouvertes.fr

SUCCINCT REPRESENTATIONS FOR ABSTRACT

INTERPRETATION

COMBINED ANALYSIS ALGORITHMS AND EXPERIMENTAL

EVALUATION

JULIEN HENRY, DAVID MONNIAUX, AND MATTHIEU MOY

Abstract. Abstract interpretation techniques can be made more precise by

distinguishing paths inside loops, at the expense of possibly exponential com-

plexity. SMT-solving techniques and sparse representations of paths and sets

of paths avoid this pitfall.

We improve previously proposed techniques for guided static analysis and

the generation of disjunctive invariants by combining them with techniques for

succinct representations of paths and symbolic representations for transitions

based on static single assignment.

Because of the non-monotonicity of the results of abstract interpretation

with widening operators, it is difficult to conclude that some abstraction is

more precise than another based on theoretical local precision results. We thus

conducted extensive comparisons between our new techniques and previous

ones, on a variety of open-source packages.

1. Introduction

Static analysis by abstract interpretation is a fully automatic program analysis
method. When applied to imperative programs, it computes an inductive invariant
mapping each program location (or a subset thereof) to a set of states represented
symbolically [8]. For instance, if we are only interested in scalar numerical program
variables, such a set may be a convex polyhedron (the set of solutions of a system
of linear inequalities) [9, 17, 1, 4].

In such an analysis, information may flow forward or backward; forward pro-
gram analysis computes super-sets of the states reachable from the initialization
of the program, backward program analysis computes super-sets of the states co-
reachable from some property of interest (for instance, the violation of an assertion).
In forward analysis, control-flow joins correspond to convex hulls if using convex
polyhedra (more generally, they correspond to least upper bounds in a lattice); in
backward analysis, it is control-flow splits that correspond to convex hulls.

It is a known limitation of program analysis by abstract interpretation that this
convex hull, or more generally, least upper bound operation, may introduce states
that cannot occur in the real program: for instance, the convex hull of the inter-
vals [−2,−1] and [1, 2] is [−2, 2], strictly larger than the union of the two. Such
introduction may prevent proving desired program properties, for instance 6= 0.
The alternative is to keep the union symbolic (e.g. compute using [−2,−1]∪ [1, 2])
and thus compute in the disjunctive completion of the lattice, but the number of
terms in the union may grow exponentially with the number of successive tests in

This work was partially funded by ANR project “ASOPT”.

Julien Henry is a graduate student at Université Joseph Fourier, VERIMAG laboratory. VER-

IMAG is a joint laboratory of Université Joseph Fourier, CNRS and Grenoble-INP.

David Monniaux is researcher at CNRS, VERIMAG laboratory.

Matthieu Moy is assistant professor at Grenoble-INP, VERIMAG laboratory.

1

2 JULIEN HENRY, DAVID MONNIAUX, AND MATTHIEU MOY

the program to analyze, not to mention difficulties for designing suitable widening
operators for enforcing the convergence of fixpoint iterations [1, 4, 3]. The expo-
nential growth of the number of terms in the union may be controlled by heuristics
that judiciously apply least upper bound operations, as in the trace partitioning
domain [29] implemented in the Astrée analyzer [7, 10].

Assuming we are interested in a loop-free program fragment, the above approach
of keeping symbolic unions gives the same results as performing the analysis sepa-
rately over every path in the fragment. A recent method for finding disjunctive loop
invariants [16] is based on this idea: each path inside the loop body is considered
separately. Two recent proposals use SMT-solving [23] as a decision procedure for
the satisfiability of first-order arithmetic formulas in order to enumerate only paths
that are needed for the progress of the analysis [13, 28]. They can equivalently be
seen as analyses over a multigraph of transitions between some distinguished control
nodes. This multigraph has an exponential number of edges, but is never explicitly
represented in memory; instead, this graph is implicitly or succinctly represented:
its edges are enumerated as needed as solutions to SMT problems.

An additional claim in favor of the methods that distinguish paths inside the
loop body [16, 28] is that they tend to generate better invariants than methods
that do not, by behaving better with respect to the widening operators [8] used for
enforcing convergence when searching for loop invariants by Kleene iterations. A re-
lated technique, guided static analysis [15], computes successive loop invariants for
increasing subsets of the transitions taken into account, until all transitions are con-
sidered; again, the claim is that this approach avoids some gross over-approximation
introduced by widenings.

All these methods improve the precision of the analysis by keeping the same
abstract domain (say, convex polyhedra) but changing the operations applied and
their ordering. An alternative is to change the abstract domain (e.g. octagons,
convex polyhedra [26]), or the widening operator [2, 18].

This article makes the following contributions:
(1) We recast the guided static analysis technique from [15] on the expanded

multigraph from [28], considering entire paths instead of individual transi-
tions, using SMT queries and binary decision diagrams (See §3).

(2) We improve the technique for obtaining disjunctive invariants from [16] by
replacing the explicit exhaustive enumeration of paths by a sequence of
SMT queries (See §4).

(3) We implemented these techniques, in addition to “classical” iterations and
the original guided static analysis, inside a prototype static analyzer. This
tool uses the LLVM bitcode format [24, 25] as input, which can be produced
by compilation from C, C++ and Fortran, enabling it to be run on many
real-life programs. It uses the APRON library [22], which supports a variety
of abstract domains for numerical variables, from which we can choose with
minimal changes to our analyzer.

(4) We conducted extensive experiments with this tool, on real-life programs.

2. Bases

2.1. Static Analysis by Abstract Interpretation. Let X be the set of possible
states of the program variables; for instance, if the program has 3 unbounded
integer variables, then X = Z3. The set P(X) of subsets of X , partially ordered
by inclusion, is the concrete domain. An abstract domain is a set X♯ equipped
with a partial order ⊑ (the associated strict order being ⊏); for instance, it can
be the domain of convex polyhedra in Q3 ordered by geometric inclusion. The

SUCCINCT REPRESENTATIONS FOR ABSTRACT INTERPRETATION 3

concrete and abstract domains are connected by a monotone concretization function
γ :

(

X♯,⊑
)

→ (P(X),⊆): an element x♯ ∈ X♯ represents a set γ(x♯).

We also assume a join operator ⊔ : X♯ × X♯ → X♯, with infix notation; in
practice, it is generally a least upper bound operation, but we only need it to
satisfy γ(x♯) ∪ γ(y♯) ⊆ γ(x♯ ⊔ y♯) for all x♯, y♯.

Classically, one considers the control-flow graph of the program, with edges la-
beled with concrete transition relations (e.g. x′ = x+1 for an instruction x = x+1;),
and attaches an abstract element to each control point. A concrete transition rela-
tion τ ⊆ X ×X is replaced by an abstract forward abstract transformer τ ♯ : X♯ →
X♯, such that ∀x♯ ∈ X♯, x, x′ ∈ X, x ∈ γ(x♯) ∧ (x, x′) ∈ τ =⇒ x′ ∈ γ ◦ τ ♯(x♯).
It is easy to see that if to any control point p ∈ P we attach an abstract element
x♯
p such that (i) for any p, γ(x♯

p) includes all initial states possible at control node

p (ii) for any p, p′, τ ♯p,p′(x♯
p) ⊑ x♯

p′ , noting τp,p′ the transition from p to p′, then

(γ(x♯
p))p∈P form an inductive invariant : by induction, when the control point is p,

the program state always lies in γ(x♯
p).

Kleene iterations compute such an inductive invariant as the stationary limit,
if it exists, of the following system: for each p, initialize x♯

p such that γ(x♯
p) is a

superset of the initial states at point p; then iterate the following: if τ ♯p,p′(x♯
p) 6⊑ x♯

p′ ,

replace x♯
p′ by x♯

p′ ⊔ τ ♯p,p′(x♯
p). Such a stationary limit is bound to exist if X♯ has

no infinite ascending chain a1 ⊏ a2 ⊏ . . . ; this condition is however not met by
domains such as intervals or convex polyhedra.

Widening-accelerated Kleene iterations proceed by replacing x♯
p′ ⊔ τ ♯p,p′(x♯

p) by

x♯
p′ ▽(x

♯
p′⊔τ

♯
p,p′(x♯

p)) where ▽ is a widening operator : for all x♯, y♯, γ(y♯) ⊆ γ(x♯
▽ y♯),

and any sequence u♯
1, u

♯
2, . . . of the form u♯

n+1 = u♯
n▽ v♯n, where v♯n is another se-

quence, become stationary. The stationary limit (x♯
p)p∈P , defines an inductive

invariant (γ(x♯
p))p∈P . Note that this invariant is not, in general, the least one ex-

pressible in the abstract domain, and may depend on the iteration ordering (the
successive choices p, p′).

Once an inductive invariant γ((x♯
p)p∈P) has been obtained, one can attempt

decreasing or narrowing iterations to reduce it. In their simplest form, this just
means running the following operation until a fixpoint or a maximal number of

iterations are reached: for any p′, replace x♯
p′ by x♯

p′ ∩
(

⊔

p∈P τ ♯p,p′(x♯
p)
)

. The result

also defines an inductive invariant. These decreasing iterations are indispensable
to recover properties from guards (tests) in the program in most iteration settings;
unfortunately, certain loops, particularly those involving identity (no-operation)
transitions, may foil them: the iterations immediately reach a fixpoint and do not
decrease further (see example in §2.3). Sections 2.4 and 2.5 describe techniques
that work around this problem.

2.2. SMT-solving. Boolean satisfiability (SAT) is the canonical NP-complete prob-
lem: given a propositional formula (e.g. (a ∨ ¬b) ∧ (¬a ∨ b ∨ ¬c)), decide whether
it is satisfiable — and, if so, output a satisfying assignment. Despite an expo-
nential worst-case complexity, the DPLL algorithm [23, 6] solves many useful SAT
problems in practice.

SAT was extended to satisfiability modulo theory (SMT): in addition to proposi-
tional literals, SMT formulas admit atoms from a theory. For instance, the theories
of linear integer arithmetic (LIA) and linear real arithmetic (LRA) have atoms of
the form a1x1+· · ·+anxn ⊲⊳ C where a1, . . . , an, C are integer constants, x1, . . . , xn

are variables (interpreted over Z for LIA and R or Q for LRA), and ⊲⊳ is a com-
parison operator =, 6=, <,≤, >,≥. Satisfiability for LIA and LRA is NP-complete,

4 JULIEN HENRY, DAVID MONNIAUX, AND MATTHIEU MOY

yet tools based on DPLL(T) approach [23, 6] solve many useful SMT problems in
practice. All these tools provide a satisfying assignment if the problem is satisfiable.

2.3. A Simple, Motivating Example. Consider the following program, adapted
from [28], where input(a, b) stands for a nondeterministic input in [a, b] (the control-
flow graph on the right depicts the loop body, s is the start node and e the end
node):

1 void r a t e l i m i t e r () {

2 i n t x o l d = 0 ;

3 while (1) {

4 i n t x = i n p u t (−100000, 100000) ;

5 i f (x > x o l d +10) x = x o l d +10;

6 i f (x < x o ld −10) x = x o ld −10;

7 x o l d = x ;

8 } }

s

e

This program implements a construct commonly found in control programs (in
e.g. automotive or avionics): a rate or slope limiter.

The expected inductive invariant is x old ∈ [−100000, 100000], but classical
abstract interpretation using intervals (or octagons or polyhedra) finds x old ∈
(−∞,+∞) [10]. Let us briefly see why.

Widening iterations converge to x old ∈ (−∞,+∞); let us now see why decreas-
ing iterations fail to recover the desired invariant. The x > x old+10 test at line 6,
if taken, yields x old ∈ (−∞, 99990); followed by x = x old+10, we obtain x ∈ (−∞,
100000), and the same after union with the no-operation “else” branch. Line 7
yields x ∈ (−∞,+∞).

We could use “widening up to” or “widening with thresholds”, propagating the
“magic values” ±100000 associated to x into x old, but these syntactic approaches
cannot directly cope with programs for which x ∈ [−100000,+100000] is itself
obtained by analysis. The guided static analysis of [15] does not perform better,
and also obtains x old ∈ (−∞,+∞).

In contrast, let us distinguish all four possible execution paths through the tests
at lines 6 and 7. The path through both “else” branches is infeasible; the program
is thus equivalent to a program with 3 paths:

1 void r a t e l i m i t e r () {

2 i n t x o l d = 0 ;

3 while (1) {

4 i n t x = i n p u t (−100000, 100000) ;

5 i f (x > x o l d +10) x o l d = x o l d +10;

6 else i f (x < x o ld −10) x o l d = x o ld −10;

7 else x o l d = x ;

8 } }

s

e

Classical interval analysis on this program yields x old ∈ [−100000, 100000]. We
have transformed the program, manually pruning out infeasible paths; yet in general
the resulting program could be exponentially larger than the first, even though not
all feasible paths are needed to compute the invariant.

Following recent suggestions [13, 28], we avoid this space explosion by keeping
the second program implicit while simulating its analysis. This means we work
on an implicitly represented transition multigraph ; it is succinctly represented
by the transition graph of the first program. Our first contribution (§3) is to
recast the “guided analysis” from [15] on such a succinct representation of the
paths in lieu of the individual transitions. A similar explosion occurs in disjunctive

SUCCINCT REPRESENTATIONS FOR ABSTRACT INTERPRETATION 5

1 i n t x = 0 , y = 0 ;

2 while (1) {

3 i f (x <= 50) y ++;

4 else y−−;

5 i f (y < 0) break ;

6 x ++;

7 }

x

y

y ≤ x ∧ y ≤ 102− x ∧ y ≥ 0.

Figure 1. Example program and its invariant: the piecewise lin-
ear, solid line is the strongest invariant, the grayed polyhedron is
its convex hull.

invariant generation, following [16]; our second contribution (§4) applies our implicit
representation to their method.

2.4. Guided Static Analysis. Guided static analysis was proposed by [15] as an
improvement over classical upward Kleene iterations with widening. Consider the
program in Fig. 1, taken from [15].

Classical iterations on the domain of convex polyhedra [9, 2] or octagons [26] start
with x = 0 ∧ x = 0, then continue with x = y ∧ 0 ≤ x ≤ 1. The widening operator
extrapolates from these two iterations and yields x = y ∧ x ≥ 0. From there, the
“else” branch at line 4 may be taken; with further widening, 0 ≤ y ≤ x is obtained
as a loop invariant, and thus the computed loop postcondition is x ≥ 0 ∧ y = 0.
Yet the strongest invariant is (0 ≤ x ≤ 51∧ y = x) ∨ (51 ≤ x ≤ 102∧ x+ y = 102),
and its convex hull, a convex polyhedron (Fig. 1).

Intuitively, this disappointing result is obtained because widening extrapolates
from the first iterations of the loop, but the loop has two different phases (x ≤ 50
and x > 50) with different behaviors, thus the extrapolation from the first phase is
not valid for the second.

Gopan and Reps’ idea is to analyze the first phase of the loop with a widening
and narrowing sequence, and thus obtain 0 ≤ x ≤ 50∧ y = x, and then analyze the
second phase, finally obtaining invariant (2.4); each phase is identified by the tests
taken or not taken.

The analysis starts by identifying the tests taken and not taken during the first
iteration of the loop, starting in the loop initialization. The branches not taken are
pruned from the loop body, yielding:

while (1) {

i f (x <= 50) y ++;

else break ; / * not taken i n phase 1 * /

i f (y < 0) break ;

x ++;

}

Analyzing this loop using widening and narrowing on convex polyhedra or oc-
tagons yields the loop invariant 0 ≤ x ≤ 51 ∧ y = x. Now, the transition at
line 4 becomes feasible; and we analyze the full loop, starting iterations from
0 ≤ x ≤ 51 ∧ y = x, and obtain invariant (2.4) in Fig 1.

More generally, this analysis method considers an ascending sequence of subsets
of the transitions in the loop body ; for each subset, an inductive invariant is
computed for the program restricted to it. The starting subset consists in the
transitions reachable in one step from the loop initialization. If for a given subset S
in the sequence, no transitions outside S are reachable from the inductive invariant

6 JULIEN HENRY, DAVID MONNIAUX, AND MATTHIEU MOY

attached to S, then iterations stop; otherwise, add these transitions to S and iterate
more. Termination ensues from the finiteness of the control-flow graph.

2.5. Path-focusing. Monniaux & Gonnord’s path-focusing [28] technique distin-
guishes the different paths in the program in order to avoid loss of precision due
to merge operations. Since the number of paths may be exponential, the technique
keeps them implicit and computes them when needed using SMT-solving. The (ac-
celerated) Kleene iterations (§2.1) are computed over a reduced multigraph instead
of the classical transition graph.

Let P be the set of control points in the transition graph, PW ⊆ P the set of
widening points such that removing the points in PW gives an acyclic graph. One
can choose a set PR such that PW ⊆ PR ⊆ P .

The set of paths is kept implicit by an SMT formula ρ expressing the semantics
of the program, assuming that the transition semantics can be expressed within a
decidable theory. For an easy construction of ρ, we also assume that the program
is expressed in SSA form, meaning that each variable is only assigned once in the
transition graph. This is not a restriction, since there exists standard algorithms
that transform a program into an SSA format.

This formula contains Boolean reachability predicates bi for each control points
pi /∈ PR, bsi and bdi for each pi ∈ PR, so that a path pi1 → pi2 → · · · → pin
between two points pi1 , pin ∈ PR can easily be expressed as the conjunction bsi1 ∧
∧

2≤k<n bik ∧ b
d
in
. The Boolean bsi is true when the path starts at point pi, whereas

bdi is true when the path arrives at pi. In other words, we split the points in PR

into a source point, with only outgoing transitions, and a destination point, with
only incoming transitions, so that the resulting graph is acyclic and there are no
paths going through control points in PR.

In order to find focus paths, we solve an SMT formula which is satisfiable when
there exists a path starting at a point pi ∈ PR in a state included in the current
invariant candidate Xi, and arriving at a point pj ∈ PR in a state outside Xj . In
this case, we construct this path using the model and update Xj . When pi = pj ,
meaning that the path is actually a self-loop, we can apply a widening/narrowing
sequence, or even compute the transitive closure of the loop (or an approximation
thereof, or its application to Xi) using abstract acceleration [14].

We assume that we can encode the concrete semantics of the program into the
SMT formula, or at least an abstraction thereof at least as precise as the one
applied by the abstract interpreter (in simple terms: we want to avoid the case
where the SMT solver exhibits a possible path, but the static analyzer realizes that
this path is infeasible; this would lead to nontermination, because the SMT solver
would exhibit the same path on the next iteration). A workaround would be to
apply satisfiability modulo path programs [19]: from each path ruled infeasible by
abstract interpretation, extract a blocking clause for the SAT solver underlying the
SMT-solver.

3. Guided Analysis over the Paths

Guided static analysis, as proposed by [15], applies to the transition graph of the
program. We now present a new technique applying this analysis on the implicit
multigraph from [28], thus avoiding control flow merges with unfeasible paths. In
this section, we use the same notations as §2.5.

The combination of these two techniques aims at first discovering a precise in-
ductive invariant for a subset of paths between two points in PR, by the mean of
ascending and narrowing iterations. When an inductive invariant has been found,
we add new feasible paths to the subset and compute an inductive invariant for this

SUCCINCT REPRESENTATIONS FOR ABSTRACT INTERPRETATION 7

new subset, starting with the results from the previous analysis. In other words,
our technique considers an ascending sequence of subsets of the paths between two
points in PR. We iterate the operations until the whole program (i.e all the feasible
paths) has been considered. The result will then be an inductive invariant of the
entire program.

The ascending iteration applies path-focusing [28] to a subset of the multigraph.
As [15], we do some narrowing, to recover precision lost by widening, before com-
puting and taking into account new feasible paths. Thus, our technique combines
the advantages of Guided Static Analysis and Path-focusing.

Algorithm 1 performs Guided static analysis on the implicitly represented multi-
graph. Ip denotes a set of initial states at program point p (thus ∅ for most p).
The current working subset of paths, noted P and initially empty, is stored using
a compact representation, such as binary decision diagrams. We also maintain two
sets of control points:

• A′ : points in PR that may be the starting points of new feasible paths.
• A : points in PR on which we apply the ascending iterations. When the
abstract value of a control point p is updated, p is added to both A and A′.

Algorithm 1 Guided static analysis on implicit multigraph

1: A′ ← {p|PR/Ip 6= ∅}
2: A← ∅
3: P ← ∅ // Paths in the current subset
4: for all pi ∈ PR do

5: Xi ← Ipi

6: end for

7: while A′ 6= ∅ do
8: while A′ 6= ∅ do
9: Select pi ∈ A′

10: A′ ← A′ \ {pi}
11: ComputeNewPaths(pi) // Update A, A′ and P
12: end while

13: // ascending iterations on P
14: while A 6= ∅ do
15: Select pi ∈ A
16: A← A \ {pi}
17: PathFocusing(pi) // Update A and A′

18: end while

19: Narrow
20: end while

21: return {Xi, i ∈ PR}

We distinguish three phases in the main loop of the analysis:
(1) We start finding a new relevant subset P of the graph. Either the previous

iteration or the initialization led us to a state where there are no more paths
in the previous subset P , starting at pi, that make the abstract values of
the successors grow (otherwise, the SMT solver would not have answered
“unsat”). Narrowing iterations preserve this property. However, there may
exist such paths in the entire multigraph, that are not in P . This phase
computes these paths and adds them to the subset. This phase is described
in 3.2 and corresponds to lines in 8 to 12 in Algorithm 1.

(2) Given a new subset P , we search for paths starting at point pi ∈ PR, such
that these paths are in P , i.e are included in the working subgraph. Each

8 JULIEN HENRY, DAVID MONNIAUX, AND MATTHIEU MOY

time we find a path, we update the abstract value of the destination point
of the path. This is the phase explained in 3.1, and corresponds to lines 14
to 18 in Algorithm 1.

(3) We perform narrowing iterations the usual way (line 19 in algorithm 1) and
reiterate from step 1 unless there are no more points to explore, i.e. A′ = ∅.

The order of steps is important: narrowing has to be performed before adding
new paths, or spurious new paths would be added to P . Starting with the addition
of new paths avoids doing the ascending iterations on an empty graph.

3.1. Ascending Iterations by Path-focusing. For computing an inductive in-
variant over a subgraph, we use the Path-focusing algorithm from [28] with special
treatment for self loops (line 17 in algorithm 1).

In order to find which path to focus on, we construct an SMT formula f(pi),
whose model when satisfiable is a path that starts in pi, goes to a successor pj ∈ PR

of pi, such that the image of Xi by the path transformation is not included in the
current Xj . Intuitively, such a path makes the abstract value Xj grow, and thus is
an interesting path to focus on. We loop until the formula becomes unsatisfiable,
meaning that the analysis of pi is finished.

If we note Succ(i) the set of indices j such that pj ∈ PR is a successor of pi in
the expanded multigraph, and Xi the abstract value associated to pi :

f(pi) = ρ ∧ bsi ∧
∧

j∈PR
j 6=i

¬bsj ∧Xi ∧
∨

j∈Succ(i)

(bdj ∧ ¬Xj)

The difference with [28] is that we do not work on the entire transition graph but on
a subset of it. Therefore we conjoin the formula f(pi) with the actual set of working
paths, noted P , expressed as a Boolean formula, where the Boolean variables are the
reachability predicates of the control points. We can easily construct this formula
from the binary decision diagram using dynamic programming, and avoiding an
exponentially sized formula. In other words, we force the SMT solver to give us
a path included in P . Each time the invariant candidate of a point pj has been
updated, pj is inserted into A′ since it may be the start of a new feasible paths.

3.2. Adding New Paths. Our technique computes the fixpoint iterations on an
ascending sequence of subgraphs, until the complete graph is reached. When the
analysis of a subgraph is finished, meaning that the abstract values for each control
point has converged to an inductive invariant for this subgraph, the next subgraph
to work on has to be computed.

This new subgraph contains all the paths from the previous one, and also new
paths that become feasible regarding the current abstract values. The new paths
in P are computed one after another, until no more path can make the invariant
grow. This is line 11 in Algorithm 1, which corresponds to Algorithm 2. We also use
SMT solving to discover these new paths, but we subtly change the SMT formula
given to the SMT solver: we now try to find a path that is not yet in P , but is
feasible and makes the invariant candidate of its destination grow. We thus check
the satisfiability of the formula f ′(pi), where:

f ′(pi) = f(pi) ∧ ¬P

Xj is updated using an abstract union when the point pj is the target of a new
path. This way, further SMT queries do not compute other paths with the same
source and destination if it is not needed (because these new paths would not make
Xj grow, hence would not be returned by the SMT solver).

When a new path has been found, it is immediately added into P . We then have
to add pi and pj into A (since we do not apply widening in this section) and pj into
A′, since pj may be the starting point of a new feasible path.

SUCCINCT REPRESENTATIONS FOR ABSTRACT INTERPRETATION 9

Algorithm 2 ComputeNewPaths

1: while true do

2: res← SmtSolve [f ′(pi)]
3: if res = unsat then
4: break

5: end if

6: Compute the path e from the model
7: Xj ← Xj ⊔ τe(Xi)
8: P ← P ∪ {e}
9: A← A ∪ {pi}

10: A′ ← A′ ∪ {pi}
11: end while

3.3. Termination. Termination of this algorithm is guaranteed, because: (1) the
subset of paths P strictly increases at each loop iteration, and is bounded by the
finite set of paths in the entire graph. (2) when computing new paths, we cunjunct
our formula with ¬P , meaning that we obtain each possible path only once. The
number of path is finite, so this computation always terminates. (3) the Path-
focusing iterations terminate because of the properties of widening.

3.4. Example. We revise the rate limiter described in 2.3. In this example, Path-
focusing works well because all the paths starting at the loop header are actually
self loops. In such a case, the technique performs a widening/narrowing sequence
or accelerates the loop, thus leading to a precise invariant. However, in some cases,
there also exists paths that are not self loops, in which case Path-focusing applies
widening. This widening may induce unrecoverable loss of precision.

Suppose the main loop of the rate limiter contains a nested loop like:

1 void r a t e l i m i t e r () {

2 i n t x o l d = 0 ;

3 while (1) {

4 i n t x = i n p u t (−100000, 100000) ;

5 i f (x > x o l d +10) x = x o l d +10;

6 i f (x < x o ld −10) x = x o ld −10;

7 x o l d = x ;

8 while (wa i t ()) {}

9 } }

We choose PR as the set of loop headers of the function, plus the initial state.
In this case, we have three elements in PR.

The main loop in the expanded multigraph has then 4 distinct paths going to
the header of the nested loop.

Guided static analysis from [15] yields, at line 3, x old ∈ (−∞,+∞). Path-
focusing [28] also finds x old ∈ (−∞,+∞). Now, let us see how our technique
performs on this example.

Figure 2 shows the sequence of subset of paths during the analysis. The points
in PR are noted pi, where i is the corresponding line in the code: for instance, p3
corresponds to the header of the main loop.

(1) The starting subgraph is depicted on Figure 2 Step 1. At the beginning,
this graph has no transitions.

(2) We compute the new feasible paths that have to be added into the subgraph.
We first find the path from p1 to p3 and obtain at p3 x old = 0.

10 JULIEN HENRY, DAVID MONNIAUX, AND MATTHIEU MOY

p1

p3

p8

Step 1 p1

p3

p8

Step 2

x old← 0

−10000 ≤ x ≤ 10000

x old− 10 ≤ x
x ≤ x old + 10/
x old← x

Figure 2. Ascending sequence of subgraphs

The image of x old = 0 by the path that goes from p3 to p8, and that
goes through the else branch of each if-then-else, is −10 ≤ x old ≤ 10. This
path is then added to our subgraph.

Moreover, there is no other path starting at p3 whose image is not in
−10 ≤ x old ≤ 10.

Finally, since the abstract value associated to p8 is −10 ≤ x old ≤ 10,
the path from p8 to p3 is feasible and is added into P . The final subgraph
is depicted on Figure 2 Step 2.

(3) We then compute the ascending iterations by path-focusing. At the end of
these iterations, we obtain −∞ ≤ x old ≤ +∞ for both p3 and p8.

(4) We now can apply narrowing iterations, and recover the precision lost by
widening: we obtain −10000 ≤ x old ≤ 10000 at points p3 and p8.

(5) Finally, we compute the next subgraph. The SMT-solver does not find any
new path that makes the abstract values grow, and the algorithm termi-
nates.

Our technique gives us the expected invariant x old ∈ [−10000, 10000]. Here,
only 3 paths out of the 6 have been computed during the analysis. In practice,
depending on the order the SMT-solver returns the paths, other feasible paths
could have been added during the analysis.

In this example, we see that our technique actually combines best of Guided
Static Analysis and Path Focusing.

4. Disjunctive Invariants

While many (most?) useful program invariants on numerical variables can be
expressed as conjunctions of inequalities and congruences, it is sometimes necessary
to introduce disjunctions. For instance, the loop for (int i=0; i<n; i++) {...} has
head invariant 0 ≤ i ≤ n ∨ (i = 0 ∧ n < 0). For this very simple example, a simple
syntactic transformation of the control structure (into i=0; if (i<n)do {...} while (

i<n)) is sufficient, but in more complex cases more advanced analyses are necessary
[5, 21, 30, 27]; in intuitive terms, they discover phases or modes in loops.

Gulwani & Zuleger [16] proposed a technique for computing disjunctive invari-
ants, by distinguishing all the paths inside a loop. In this section, we propose to
improve this technique by using SMT queries to find interesting paths, the objec-
tive being to avoid an explicit exhaustive enumeration of an exponential number of
paths.

For each control point pi, we compute a disjunctive invariant
∨

1≤j≤mi
Xi,j . We

denote by ni the number of distinct paths starting at pi. To perform the analysis,
one chooses an integer δi ∈ [1,mi], and a mapping function σi : [1,mi] × [1, ni] 7→
[1,mi]. The k-th path starting fom pi is denoted τi,k. The image of the j-th disjunct

SUCCINCT REPRESENTATIONS FOR ABSTRACT INTERPRETATION 11

Xi,j by the path τi,k is then joined with Xi,σ(j,k). Initially, the δi-th abstract value
contains the initial states of pi, and all other abstract values contain ∅.

For each control point pi ∈ PR, mi, δi and σi can be defined heuristically. For
instance, one could define σi so that σi(j, k) only depends on the last transition of
the path, or else construct it dynamically during the analysis.

Our method improves this technique in two ways :
• Instead of enumerating the whole set of paths, we keep them implicit and
compute them only when needed.
• At each loop iteration of the original algorithm [16], an image by each path
inside the loop is computed for each disjunct of the invariant candidate.
Yet, many of these images may be redundant: for instance, if our invariant
candidate is (0 ≤ x ≤ 10∧0 ≤ y ≤ 1000)∨ (x < −10∧y < −10), then there
is no point enumerating paths whose image is included in this invariant
candidate. In our approach, we compute such an image only if it makes the
resulting abstract value grow.

Our improvement consists in a modification of the SMT formula we solve in
3. We introduce in this formula Boolean variables {dj , 1 ≤ j ≤ m}, so that we
can easily find in the model which abstract value of the disjunction of the source
point has to be chosen to make the invariant of the destination grow. The resulting
formula that is given to the SMT solver is defined by g(pi). When the formula is
satisfiable, we know that the index j of the starting disjunct that has to be chosen
is the one for which the associate Boolean value dj is true in the model. Then, we
can easily compute the value of σi(j, k), thus know the index of the disjunct to join
with.

g(pi) = ρ∧ bsi ∧
∧

j∈PR
j 6=i

¬bsj ∧
∨

1≤k≤mi

(dk ∧Xi,k ∧
∧

l 6=k

¬dl)∧
∨

j∈Succ(i)

(bdj ∧
∧

1≤k≤mi

(¬Xj,k))

In our algorithm, the initialization of the abstract values slightly differs from
algorithm 1 line 5, since we now have to initialize each disjunct. Instead of Line 5,
we initialize Xi,k with ⊥ for all k ∈ {1, ..,mi} \ {δi}, and Xi,δi with ← Ipi

.
Furthermore, the Path-focused algorithm (line 17 from algorithm 1) is enhanced

to deal with disjunctive invariants, and is detailed in algorithm 3.
The Update function can classically assign Xi,σi(j,k) ▽(Xi,σi(j,k) ⊔ τi,k(Xi,j)) to

Xi,σi(j,k), or can integrate the special treatment for self loops proposed by [28],
with widening/narrowing sequence or acceleration.

Algorithm 3 Disjunctive invariant computation with implicit paths

1: while true do

2: res← SmtSolve [g(pi)]
3: if res = unsat then
4: break

5: end if

6: Compute the path τi,k from res
7: Take j ∈ {l|dl = true}
8: Update(Xi,σi(j,k))
9: end while

We experimented with a heuristic of dynamic construction of the σi functions,
adapted from [16]. For each control point pi ∈ PR, we start with one single disjunct
(mi = 1) and define δi = 1. M denotes an upper bound on the number of disjuncts
per control point.

The σi functions take as parameters the index of the starting abstract value,
and the path we focus on. Since we dynamically construct these functions during

12 JULIEN HENRY, DAVID MONNIAUX, AND MATTHIEU MOY

the analysis, we store their already computed image into a compact representation,
such as Algebraic Decision Diagrams. σi(j, k) is then constructed on the fly only
when needed, and computed only once. When the value of σi(j, k) is required but
undefined, we first compute the image of the abstract valueXi,j by the path indexed
by k, and try to find an existing disjunct of index j′ so that the least upper bound
of the two abstract values is exactly their union (using SMT-solving). If such an
index exists, then we set σi(j, k) = j′. Otherwise:

• if mi < M , we increase mi by 1 and define σi(j, k) = mi

• if mi = M , we define σi(j, k) = M
The main difference with the original algorithm [16] is that we construct σi(j, k)
using SMT queries instead of enumerating a possibly exponential number of paths
to find a solution.

5. Implementation and Experimental Comparisons

We have implemented our proposed solutions inside a prototype of intraproce-
dural static analyzer called PAGAI, as well as the classical abstract interpretation
algorithm, and the state-of-the-art techniques Path Focusing [28] and Guided Static
Analysis [15]. It is available online at https://forge.imag.fr/projects/pagai/.
The implementation is documented in [20].

PAGAI operates over LLVM bitcode [25, 24], which is a target for several com-
pilers, most notably Clang (supporting C and C++) and llvm-gcc (supporting C,
C++, Fortran and Ada). Abstract domains are provided by the APRON library
[22], and include convex polyhedra (from the builtin Polka “PK” library), octagons,
intervals, and linear congruences. For SMT-solving, our analyzer uses Yices [12] or
Microsoft Z3 [11].

PAGAI currently neither models the memory heap nor performs interprocedural
analysis. Instead, LLVM optimization phases are applied prior to analysis, in order
to inline non-recursive function calls and lift certain memory accesses to opera-
tions on explicit numerical variables (e.g. y=t [0]* t [0]; preceded by t [0]=x; without
any aliased write in between is replaced by y=x*x;). The remaining memory reads
are considered as indeterminates, and memory writes are ignored; this is a sound
abstraction.

We conducted extensive experiments on real-life programs in order to compare
the different techniques, mostly on open-source projects (Fig. 3) written in C, C++
and Fortran. These results confirm that our combined technique improve the anal-
ysis in comparison with the two techniques taken individually, at a reasonable cost.
The extension with disjunctive invariants increases precision in many cases, but
with higher cost in terms of execution time.

6. Conclusion and Future Prospects

Roughly, an analysis by abstract interpretation is defined by the choice of an
iteration strategy and an abstract domain. In this article, we demonstrated that
changes in the iteration algorithm can significantly improve precision, sometimes
while improving analysis times.

A common criticism of analysis techniques based on SMT-solving is that they do
not scale up. Yet, our experiments show that, for numerical properties, they scale
up to the size of typical functions and loops. It is however quite certain that, naively
applied, they cannot scale to the kind of programs targeted by e.g. the Astrée tool,
that is, a dozens or hundreds of thousands of lines of code in a single loop operating
over similar numbers of remanent variables. Actually, for such applications, only
(quasi-)linear algorithms scale up, and “cheap” abstract domains such as octagons
(O(n3) where n is the number of variables) are not applied to the full variable set,

https://forge.imag.fr/projects/pagai/

SUCCINCT REPRESENTATIONS FOR ABSTRACT INTERPRETATION 13

but to restricted subsets thereof. It thus seems reasonable that techniques such as
considering “packs” of related variables, slicing, etc. may similarly help SMT-based
techniques to scale to global analyses.

Size Execution time (seconds)
Name kLOC |PR| S G PF G+PF DIS

a2ps-4.14 55 2012 23 74 34 115 162
gawk-4.0.0 59 902 15 46 12 40 50
gnuchess-6.0.0 38 1222 50 220 81 312 351
gnugo-3.8 83 2801 77 159 92 766 1493
grep-2.9 35 820 41 85 22 65 122
gzip-1.4 27 494 22 268 91 303 230
lapack-3.3.1 954 16422 294 3740 3773 8159 10351
make-3.82 34 993 67 108 53 109 257
tar-1.26 73 1712 37 218 115 253 396

Table 1. Execution times for various techniques

0

2

4

6

8

10

12

14

16

G
/S

PF/S

PF/G

G
+
PF/PF

G
+
PF/G

G
+
PF/S

D
IS/G

+
PF

p
er
ce
n
ta
g
e
o
f
co
n
tr
o
l
p
o
in
ts

(
)

uncomparable

Figure 3. Comparison of the abstract values obtained on several
open-source projects. The table shows their respective number of
lines of code, number of control points in PR, and execution time
on various techniques. Techniques are classical abstract interpreta-
tion (S), Guided Static Analysis (G), Path-focused technique (PF),
our combined technique (G+PF), and its version with disjunctive
invariants (DIS). The (bars (resp.)) gives the percentage of in-
variants stronger (more precise; smaller with respect to inclusion)
with the left-side (resp. right-side) technique, and “uncompara-
ble” gives the percentage of invariants that are uncomparable, i.e
neither greater nor smaller; the code points where both invariants
are equal make up the remaining percentage.

We compared the precision of different techniques and abstract domains by com-
paring the invariants for the inclusion ordering. A better metric is perhaps to take
a client analysis — such as the detection of overflows and array bound violations
— and compare the rates of alarms.

We focused on numerical properties, because they are supported by easily avail-
able abstract libraries. Yet, in most programs, properties of data structures are

14 JULIEN HENRY, DAVID MONNIAUX, AND MATTHIEU MOY

important for proving interesting properties. Further investigations are needed not
only on good abstractions for pointers (many are already known) but also on their
conversion to SMT problems.

References

[1] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. The Parma Polyhedra
Library, version 0.9. URL http://www.cs.unipr.it/ppl.

[2] Roberto Bagnara, Patricia M. Hill, Elisa Ricci, and Enea Zaffanella. Precise
widening operators for convex polyhedra. Science of Computer Programming,
58(1–2):28–56, October 2005. doi: 10.1016/j.scico.2005.02.003.

[3] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. Widening op-
erators for powerset domains. International Journal on Software Tools
for Technology Transfer (STTT), 8(4-5):449–466, August 2006. doi:
10.1007/s10009-005-0215-8.

[4] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. The Parma Polyhedra
Library: Toward a complete set of numerical abstractions for the analysis and
verification of hardware and software systems. Science of Computer Program-
ming, 72(1–2):3–21, 2008.

[5] Gogul Balakrishnan, Sriram Sankaranarayanan, Franjo Ivancic, and Aarti
Gupta. Refining the control structure of loops using static analysis.
In EMSOFT, pages 49–58. ACM, 2009. ISBN 978-1-60558-627-4. doi:
10.1145/1629335.1629343.

[6] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Hand-
book of satisfiability, volume 185 of Frontiers in Artificial Intelligence and Ap-
plications. IOS Press, Amsterdam, 2009. ISBN 978-1-58603-929-5.

[7] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. A static ana-
lyzer for large safety-critical software. In Programming Language Design and
Implementation (PLDI), pages 196–207. ACM, 2003. ISBN 1-58113-662-5. doi:
10.1145/781131.781153.

[8] Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks. J. of
Logic and Computation, pages 511–547, August 1992. ISSN 0955-792X. doi:
10.1093/logcom/2.4.511.

[9] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear re-
straints among variables of a program. In Principles of Programming Lan-
guages (POPL), pages 84–96. ACM, 1978. doi: 10.1145/512760.512770.

[10] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine

Miné, David Monniaux, and Xavier Rival. The ASTRÉE analyzer. In Pro-
gramming Languages and Systems (ESOP), number 3444 in Lecture Notes in
Computer Science, pages 21–30. Springer Verlag, 2005. ISBN 3-540-25435-8.
doi: 10.1007/b107380.

[11] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient SMT
solver. In TACAS, volume 4963 of Lecture Notes in Computer Science, pages
337–340. Springer, 2008. ISBN 978-3-540-78799-0.

[12] Bruno Dutertre and Leonardo Mendonça de Moura. A fast linear-arithmetic
solver for DPLL(T). In CAV, volume 4144 of Lecture Notes in Computer
Science, pages 81–94. Springer, 2006. ISBN 3-540-37406-X.

[13] Thomas Gawlitza and David Monniaux. Improving strategies via SMT
solving. In ESOP, number 6602 in Lecture Notes in Computer Science,
pages 236–255. Springer Verlag, 2011. ISBN 978-3-642-19717-8. doi:
10.1007/978-3-642-19718-5 13.

http://www.cs.unipr.it/ppl
http://dx.doi.org/10.1016/j.scico.2005.02.003
http://dx.doi.org/10.1007/s10009-005-0215-8
http://www.worldcat.org/isbn/978-1-60558-627-4
http://dx.doi.org/10.1145/1629335.1629343
http://www.worldcat.org/isbn/978-1-58603-929-5
http://www.worldcat.org/isbn/1-58113-662-5
http://dx.doi.org/10.1145/781131.781153
http://www.worldcat.org/issn/0955-792X
http://dx.doi.org/10.1093/logcom/2.4.511
http://dx.doi.org/10.1145/512760.512770
http://www.worldcat.org/isbn/3-540-25435-8
http://dx.doi.org/10.1007/b107380
http://www.worldcat.org/isbn/978-3-540-78799-0
http://www.worldcat.org/isbn/3-540-37406-X
http://www.worldcat.org/isbn/978-3-642-19717-8
http://dx.doi.org/10.1007/978-3-642-19718-5_13

SUCCINCT REPRESENTATIONS FOR ABSTRACT INTERPRETATION 15

[14] Laure Gonnord and Nicolas Halbwachs. Combining widening and accelera-
tion in linear relation analysis. In Static analysis (SAS), volume 4134 of Lec-
ture Notes in Computer Science, pages 144–160. Springer Verlag, 2006. ISBN
3-540-37756-5. doi: 10.1007/11823230 10.

[15] Denis Gopan and Thomas W. Reps. Guided static analysis. In SAS, volume
4634 of Lecture Notes in Computer Science, pages 349–365. Springer, 2007.
ISBN 978-3-540-74060-5.

[16] Sumit Gulwani and Florian Zuleger. The reachability-bound problem.
In PLDI, pages 292–304. ACM, 2010. ISBN 978-1-4503-0019-3. doi:
10.1145/1806596.1806630.

[17] Nicolas Halbwachs. Détermination automatique de relations linéaires vérifiées
par les variables d’un programme. PhD thesis, Grenoble University, 1979.

[18] Nicolas Halbwachs, Yann-Erick Proy, and Patrick Roumanoff. Verification of
real-time systems using linear relation analysis. Formal Methods in System
Design, 11(2):157–185, August 1997.

[19] William R. Harris, Sriram Sankaranarayanan, Franjo Ivancic, and Aarti Gupta.
Program analysis via satisfiability modulo path programs. In POPL, pages 71–
82. ACM, 2010. ISBN 978-1-60558-479-9. doi: 10.1145/1706299.1706309.

[20] Julien Henry. Static analysis by path focusing. Master’s thesis, Grenoble INP,
2011. URL http://www-verimag.imag.fr/~jhenry/pdf/M2R_report.pdf.

[21] Bertrand Jeannet. Dynamic partitioning in linear relation analysis: Applica-
tion to the verification of reactive systems. Formal Methods in System Design,
23(1):5–37, 2003.

[22] Bertrand Jeannet and Antoine Miné. Apron: A library of numerical abstract
domains for static analysis. In CAV, volume 5643 of Lecture Notes in Computer
Science, pages 661–667. Springer Verlag, 2009. ISBN 978-3-642-02657-7. doi:
10.1007/978-3-642-02658-4 52.

[23] Daniel Kroening and Ofer Strichman. Decision procedures. Springer Verlag,
2008. ISBN 978-3-540-74104-6.

[24] Chris Lattner and Vikram Adve. LLVM: A compilation framework for life-
long program analysis & transformation. In CGO, pages 75–86, Washington,
DC, USA, August 2004. IEEE Computer Society. ISBN 0-7695-2102-9. doi:
10.1109/CGO.2004.1281665.

[25] LLVM Language Reference Manual. LLVM team, 2011.
http://llvm.org/docs/LangRef.html.

[26] Antoine Miné. The octagon abstract domain. Higher-Order and Symbolic
Computation, 19(1):31–100, 2006. doi: 10.1007/s10990-006-8609-1.

[27] David Monniaux and Martin Bodin. Modular abstractions of reactive nodes us-
ing disjunctive invariants. In Programming Languages and Systems (APLAS),
pages 19–33, 2011. ISBN 978-3-642-25317-1. doi: 10.1007/978-3-642-25318-8 5.

[28] David Monniaux and Laure Gonnord. Using bounded model checking to focus
fixpoint iterations. In Static analysis (SAS), volume 6887 of Lecture Notes in
Computer Science, pages 369–385. Springer Verlag, 2011.

[29] Xavier Rival and Laurent Mauborgne. The trace partitioning abstract domain.
Transactions on Programming Languages and Systems (TOPLAS), 29(5):26,
2007. ISSN 0164-0925. doi: 10.1145/1275497.1275501.

[30] Rahul Sharma, Isil Dillig, Thomas Dillig, and Alex Aiken. Simplifying loop
invariant generation using splitter predicates. In CAV, volume 6806 of Lec-
ture Notes in Computer Science, pages 703–719. Springer Verlag, 2011. ISBN
978-3-642-22109-5. doi: 10.1007/978-3-642-22110-1 57.

http://www.worldcat.org/isbn/3-540-37756-5
http://dx.doi.org/10.1007/11823230_10
http://www.worldcat.org/isbn/978-3-540-74060-5
http://www.worldcat.org/isbn/978-1-4503-0019-3
http://dx.doi.org/10.1145/1806596.1806630
http://www.worldcat.org/isbn/978-1-60558-479-9
http://dx.doi.org/10.1145/1706299.1706309
http://www-verimag.imag.fr/~jhenry/pdf/M2R_report.pdf
http://www.worldcat.org/isbn/978-3-642-02657-7
http://dx.doi.org/10.1007/978-3-642-02658-4_52
http://www.worldcat.org/isbn/978-3-540-74104-6
http://www.worldcat.org/isbn/0-7695-2102-9
http://dx.doi.org/10.1109/CGO.2004.1281665
http://llvm.org/docs/LangRef.html
http://dx.doi.org/10.1007/s10990-006-8609-1
http://www.worldcat.org/isbn/978-3-642-25317-1
http://dx.doi.org/10.1007/978-3-642-25318-8_5
http://www.worldcat.org/issn/0164-0925
http://dx.doi.org/10.1145/1275497.1275501
http://www.worldcat.org/isbn/978-3-642-22109-5
http://dx.doi.org/10.1007/978-3-642-22110-1_57

16 JULIEN HENRY, DAVID MONNIAUX, AND MATTHIEU MOY

J. Henry, VERIMAG, 2 av de Vignate, 38610 Gières, France

E-mail address: Julien.Henry@imag.fr

URL: http://www-verimag.imag.fr/~jhenry/

D. Monniaux, VERIMAG, 2 av de Vignate, 38610 Gières, France

E-mail address: David.Monniaux@imag.fr

URL: http://www-verimag.imag.fr/~monniaux/

M. Moy, VERIMAG, 2 av de Vignate, 38610 Gières, France

E-mail address: Matthieu.Moy@grenoble-inp.fr

URL: http://www-verimag.imag.fr/~moy/

	1. Introduction
	2. Bases
	2.1. Static Analysis by Abstract Interpretation
	2.2. SMT-solving
	2.3. A Simple, Motivating Example
	2.4. Guided Static Analysis
	2.5. Path-focusing

	3. Guided Analysis over the Paths
	3.1. Ascending Iterations by Path-focusing
	3.2. Adding New Paths
	3.3. Termination
	3.4. Example

	4. Disjunctive Invariants
	5. Implementation and Experimental Comparisons
	6. Conclusion and Future Prospects
	References

