
HAL Id: hal-00709572
https://hal.science/hal-00709572

Submitted on 19 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tackling interoperability issues within UIMA workflows
Nicolas Hernandez

To cite this version:
Nicolas Hernandez. Tackling interoperability issues within UIMA workflows. Language Resources and
Evaluation (LREC’12), May 2012, Istanbul, Turkey. pp.3618-3625, 978-2-9517408-7-7. �hal-00709572�

https://hal.science/hal-00709572
https://hal.archives-ouvertes.fr

Tackling interoperability issues within UIMA workflows

Nicolas Hernandez

LINA (CNRS - UMR 6241) – University of Nantes

2 rue de la Houssinière – B.P. 92208, 44322 NANTES Cedex 3, France

first.last@univ-nantes.fr

Abstract

One of the major issues dealing with any workflow management frameworks is the components interoperability. In this paper, we are

concerned with the Apache UIMA framework. We address the problem by considering separately the development of new components

and the integration of existing tools. For the former objective, we propose an API to generically handle TS objects by their name using

reflexivity in order to make the components TS-independent. In the latter case, we distinguish the case of aggregating heterogeneous

TS-dependent UIMA components from the case of integrating non UIMA-native third party tools. We propose a mapper component

to aggregate TS-dependent UIMA components. And we propose a component to wrap command lines third party tools and a set of

components to connect various markup languages with the UIMA data structure. Finally we present two situations where these solutions

were effectively used: Training a POS tagger system from a treebank, and embedding an external POS tagger in a workflow. Our

approch aims at providing quick development solutions.

Keywords: UIMA, interoperability, type system, data serialization format, software component integration

1. Introduction

Over the last few years, there has been growing interest in

the Apache Unstructured Information Management Archi-

tecture 1 (UIMA) (Ferrucci and Lally, 2004) as a software

solution to manage unstructured information. In compar-

ison with GATE2 (Cunningham, 2002), its probable ma-

jor difference is that it was initiated more recently and not

by researchers but by industrials (IBM) with stronger en-

gineering and design skills. GATE presents the interests

of being used for long in the Natural Language Processing

(NLP) community and of offering a wide range of analysis

components and tools. NLTK3 remains also an interesting

framework in particular because of the availability of nu-

merous integrated third party tools and data resources, and

because of its programming language –Python– which is

well-adapted for handling text material and quick develop-

ment.

From the NLP researcher point of view, Apache UIMA

is an attractive solution for at least two reasons4: First, it

dissociates the engineering middleware problems from the

NLP issues and takes in charge many of the engineering

needs like the workflow deployment, the data transmission

or the data serialization; Second, it offers a programming

framework for defining and managing NLP objects present

in analysis tasks (such as creating or getting the annotations

of a given type).

One of the major issues dealing with any workflow man-

agement frameworks is the components interoperability.

UIMA components only exchange data. So the data struc-

ture of the shared data is important since it ensures the in-

teroperability. UIMA offers mechanisms to freely define

its own data structure and the means to handle it afterwards.

This may lead to some interoperability problems since any-

1http://uima.apache.org
2http://gate.ac.uk
3http://www.nltk.org
4See (Hernandez et al., 2010) for more reasons.

one can design its own domain model to represent the same

concepts. For example, word, mot or token can be different

names to mean the same type of information. In addition,

as shown in Figure 1, an information, such as the part-of-

speech (POS) value Noun of a word, can be represented in

several ways. In (1), it is the value of a POS feature of a

word annotation. In (2), it is the value of a whatever feature

of a POS annotation at the same offset of a word annotation.

And in (3), it corresponds itself to a type of an annotation

covering the desired text offsets of a word. In the UIMA

jargon, the definition of the data structure is called the type

system (TS).

In this paper, we address the interoperability issue by con-

sidering separately the development of new components

and the integration of existing software instruments. For the

former objective, we propose an API to generically handle

TS objects by their name using reflexivity in order to make

the components TS-independent (Section 3.1.). In the latter

case, we distinguish the case of aggregating heterogeneous

TS-dependent UIMA components from the case of inte-

grating non UIMA-native third party tools. We propose

a mapper component to aggregate TS-dependent UIMA

components (Section 3.2.). And we propose a component

to wrap command lines third party tools (Section 3.3.) and

a set of components to connect various markup languages

with the UIMA data structure (Section 3.4.). Finally we

present two situations where these solutions were effec-

tively used: Training a POS tagger system from a treebank

(Section 4.1.), and embedding an external POS tagger in a

workflow (Section 4.2.).

Our approach aims at providing quick development so-

lutions. This work is part of the efforts for building a

French-speaking community around UIMA (Hernandez et

al., 2010).

Figure 1: Various data model definitions.

2. Background

The question of interoperability for sharing language re-

sources and technology is the concern of several related ini-

tiatives such as the CLARIN5 project and the META-NET6

network. Various kinds of related interoperability aspects

can be considered: the «domain models» which provide

definitions of the types of the data elements that constitute

a domain as well as the description of how these types are

structured in the domain, the «data serialization formats»

which are used to store or to remotely transmit the primary

data and its associated metadata, the «metamodels» which

are abstractions of domain models. . .

2.1. UIMA concepts

In March 2009, the UIMA metamodel was voted as a stan-

dard by the OASIS consortium7. «The specification de-

fines platform-independent data representations and inter-

faces for text and multi-modal components or services. The

principal objective of the UIMA specification is to support

interoperability among components or services.»

The Common Analysis Structure (CAS) is the data struc-

ture which is exchanged between the UIMA components.

It includes the data, subject of analysis and called the Arte-

fact, and the metadata, in general simply called the Anno-

tations, which describe the data. The annotations are struc-

tured in Views (e.g. an HTML document can have the fol-

lowing views: the HTML structure, the extracted text, and

a translation of the latter) where they are directly associ-

ated to. The annotations are made of a feature structure and

are stored in CAS index. The definition of an annotation

structure is called the Type System (TS) and consists of an

implementation of a domain model.

A UIMA workflow is made of three types of components:

the Collection Reader (CR) which imports the data to pro-

cess (for example from the Web or from the file system...)

and turns it into a CAS. The Analysis Engines (AE) which

literally process the data (including but not restricted to

NLP analysis tasks); The annotations result from AE pro-

cessing. And lastly the CAS Consumer (CC) which exports

the annotations (for example to a database or to an XML

representation of the analysis results).

The UIMA framework handles the effective transmission

of the data either as objects between components deployed

on a same computer or as XML streams by (a)synchronous

web services. In addition, the UIMA framework comes

5http://www.clarin.eu
6http://www.meta-net.eu
7http://www.oasis-open.org/committees/

uima

with components which offer the possibility to serialize the

exchanged data into the XML Model Interchange8 (XMI)

format which is the OMG’s XML standard for exchanging

Unified Model Language (UML) metadata.

2.2. Serialization formats for exchanging data

between third party tools

As part of the ISO’s TC37 SC4, (Ide and Suderman, 2009)

defend the idea that the GrAF (Graph Annotation Frame-

work) format, which is the xml serialization of the LAF

(Linguistic Annotation Framework) metamodel (Romary

and Ide, 2004), can serve primarily as a «pivot» for trans-

ducing serialization formats. They show that it is possible

to convert the information from the GrAF to a UIMA CAS.

This is mainly made possible since both underlying meta-

models are based on a graph structure. Nevertheless the

conversion is not straightforward; Since the UIMA CAS

defines typed feature structures, the process requires the

use of external knowledge sources to be able to specify

the types of the UIMA features. Neither the outcome is

not completely bijective; The process requires the defini-

tion of UIMA additional features for being able to explicit

the graph structure of the GrAF and consequently to reverse

the process. As a consequence, any UIMA CAS cannot be

transduced into a GrAF without an adaptation of its struc-

ture.

As a matter of fact the XMI format remains an appealing

solution to store and exchange UIMA CAS.

2.3. Main trend for tackling the type system

interoperability problem

The proposed solutions to tackle the domain model

(i.e. type system) interoperability problems were similar

to the solutions proposed for tackling the XML languages

interoperability problems. The main trend was to define

a common tool- and domain-free TS. In fact, several TS

emerged: The CCP metamodel’s TS (Verspoor et al., 2009),

the DKPro’s TS at the Darmstadt University9 (Gurevych et

al., 2007), the Julie lab’s TS (Hahn et al., 2007)10 and the

U-Compare project’s TS (Kano et al., 2009; Thompson et

al., 2011)11. The former consists of a simple annotation

hierarchy where the domain semantics is captured through

pointers into external resources. The others roughly con-

8http://www.omg.org/spec/XMI
9http://www.ukp.tu-darmstadt.de/software/

dkpro
10https://www.julielab.de/Resources/

Software.html
11http://u-compare.org

sist of an abstract hierarchy of NLP concepts covering the

various linguistic analysis levels.

In particular, (Thompson et al., 2011) defend the adop-

tion of the Apache UIMA framework and of the integra-

tion U-Compare system within the META-SHARE infras-

tructure which is an initiative of META-NET for sharing

language resources and technology on a range of European

languages.

In practice these type systems are still in use separately.

As we mentioned in (Hernandez et al., 2010), as often

as possible existing TS should be used, but in our opin-

ion, distinct TS will always exist and it will always be

necessary to develop software converters either to ensure

compatibility with existing TS-dependent components or

to fit with specific problem requirements. The U-Compare

project, for example, comes with some ad hoc TS convert-

ers from CCP, OpenNLP and Apache which turn them into

the U-Compare TS. It offers also some U-Compare TS to

OpenNLP.

3. Handling more easily and generically the

UIMA framework

Below we present the projects we develop for this purpose.

They are made of libraries and UIMA components.

3.1. uima-common: Re-using common UIMA codes

uima-common12 aims at assembling common and generic

code snippets that can be usefully reused in several distinct

UIMA developments (like AE or any applications). It is

mainly made of two parts: A UIMA utilities library and a

generic AE implementation.

The library defines methods to generically handle the var-

ious UIMA object types (i.e.view, annotation, feature) re-

ferring to them by string names. It centralizes redundant

codes in particular for parsing collections of these objects,

getting and setting them.

The generic AE can be used by extending its class. It allows

to develop TS-independent AE and so to handle generically

the processed views and annotations. This is made possible

by specifying the names of the handled views and annota-

tions by parameters. In addition, the AE follows a com-

mon analysis template: It allows to perform some process

(e.g.. does it start with an upper case letter) on some an-

notations (e.g. the tokens) covered by some others (e.g.

the sentences) which are only present in some views (e.g.

the extracted text) by simply overwriting the right methods.

The processing result can be stored in a new view, or a new

annotation13 only by setting their name by parameters.

In some way, it can be compared with uimaFIT14 but

uima-common is more centered on the internal develop-

ment of components while uimaFIT is more dedicated to

the development of applications with the ability to perform

dynamic configuration and instantiation of components and

workflows.

The implementation is hardly based on the

java.lang.reflect API.

12http://code.google.com/p/uima-common
13It is also possible to set or update the feature value of an an-

notation.
14http://code.google.com/p/uimafit

3.2. uima-mapper: Mapping between UIMA

objects

uima-mapper15 aims at tackling two issues: mapping

UIMA objects (annotations and features from distinct type

systems and views) and recognizing annotation patterns.

Both issues are indeed two views of a same process per-

formed on the fly by declarative rules.

In NLP, the rule-based analysis is one of the two main ap-

proaches to process the documents; The other one is based

on machine learning. The development of graph matching

systems presents two difficulties: 1. designing simple and

intuitive language for expressing rules and 2. implementing

an effective engine to process the rules over graphs.

uima-common offers some solutions when developing

new UIMA components to make them TS-independent.

Nevertheless, many components available 16 assume the

names of the view to work with and of the annotations

to process or create. uima-mapper proposes to address

this problem by inserting between two components using

the same concepts defined with distinct TS, a specific AE

which is able to translate annotations from the former TS

to the latter TS.

The AE only requires to define the parameters of the rules

file paths. A rule declares some edit operations (such as

creation) by specifying constraints over an annotations pat-

tern and over the annotations. On the creation operation

it is possible to set features with values imported from the

matched pattern. Currently the pattern can count only one

annotation and only the creation operation is supported. As

a matter of fact, this AE was first a proof of concept. The

respect of the semantic coherence of the transformation is

up to the user.

The implementation is based on W3C XPath17 as the lan-

guage to support the declaration of constraints over the

source annotations and Apache JXPath18 as the engine

which processes the constraints.

JAPE of GATE (Thakker et al., 2009; Cunningham et al.,

2011) and Unitex (Paumier, 2003) offer capabilities for

defining regular expressions over annotations. Efforts have

been performed to allow the embedding of GATE pipelines

within UIMA19; and similarly with Unitex (Meunier et al.,

2009)20. Even if the embedding of such tools can be a solu-

tion for mapping UIMA annotations, the approach seems

too complex and resources consuming compared to the

need. Indeed, it is necessary to both configure these tools

as well as the embedding; In addition to having to write the

mapping rules between UIMA objects, the user must also

supply mapping rules defining how to map between UIMA

and GATE/Unitex annotations.

Up to our knowledge, it exists currently two native UIMA

projects whose goal is to offer capabilities for recognis-

ing UIMA annotations patterns in a UIMA workflow: The

zanzibar21 project and the TextMarker component (Kluegl

15http://code.google.com/p/uima-mapper
16http://uima.apache.org/sandbox.html
17http://www.w3.org/TR/xpath
18http://commons.apache.org/jxpath
19http://gate.ac.uk/sale/tao/#x1-48400020
20http://sourceforge.net/p/gramlab
21http://code.google.com/p/zanzibar and

et al., 2009)22. The former project has not been upgraded

since March 2011. The current version is hardly stable.

And despite the fact that patterns can be defined, the con-

straints over the annotation are quite limited in expressive-

ness (i.e. only the presence of a feature value can be spec-

ified). On the other hand, the TextMarker component is a

very appealing project because of the rich expressiveness it

aims at offering. It is now further developed and hosted at

Apache UIMA and there is no current stable release and it

is recommended to use the previous stable version which

remains very complex to use and quite dependent of the

Eclipse environment. In this previous version, we encoun-

tered the problem that TextMarker engine allowed only one

annotation of the same type starting at the same offset. This

limitation prevents us from using it since we could not com-

bined it with the uima-connectors’s XML2CAS AE

presented below (See Section 3.4.). The XML2CASAE pro-

duces as many annotations of the same type as there are

attributes in an XML element. There was no possibility to

express TextMarker rules for selecting a specific annotation

of this type; The TextMarker always considered the first one

at this offset in the annotation index.

3.3. uima-shell: Integrating non native UIMA

third party tools

uima-shell23 offers a way to process Shell command

over a CAS element, view or annotation, and to store the

result either as a new view or annotation. It mainly aims

at running within a UIMA workflow some external third

party tools available via command line. These tools must

perform their processing by taking the input as a file name

parameter or a standard input (stdin) and produce the result

via the standard output (stdout).

The specified CAS element to analyse will be turned into

a file argument which will be accessed by specifying the

commands and the argument tokens which precede the file

argument (i.e. PreCommand parameter) as well as the

commands and the argument tokens which follow the file

argument (i.e. PostCommand parameter).

Under a LINUX system, if the command to pro-

cess takes its input from the standard input, then the

PreCommand parameter will be set with a cat value and

the PostCommand parameter will starts with a pipe char-

acter «|» followed by the command. If the command to

process takes its input as an argument at a specific posi-

tion then the PreCommand parameter will be set with the

command and the first arguments and the PostCommand

parameter with the last arguments. In any case it is pos-

sible to set several commands pre and post the file argu-

ment. It is also possible to specify environment variables

(i.e. EnvironmentVariable parameter) which will be

available for the process running the commands.

With the uima-connectors project (See Section 3.4.),

this current component aims at solving interoperability is-

sues when dealing with non native UIMA tools. The im-

http://art.uniroma2.it
22http://tmwiki.informatik.uni-wuerzburg.

de
23http://code.google.com/p/uima-shell

plementation is based on the Martini’Shell API24.

3.4. uima-connectors: Connecting various text

markup languages with UIMA

uima-connectors25 mainly aims at offering solutions

to build the bridge between some markup languages and

the UIMA CAS.

The Apache UIMA Tika 16 project aims at detect-

ing and extracting metadata and structured text content

from various type MIME documents. In comparison,

uima-connectors is more dedicated to perfom map-

ping from/to text formats to/from CAS, providing solu-

tions for handling general markup language such as eX-

tended Markup Language (XML), Comma Separated Value

(CSV), whitespace-tokenized texts with a sentence per

line... or applications of these formats such as Message

Understanding Conferences (MUC), Apache OpenNLP,

CONLL (B-I-E). . .

Similar facilities are offered by other plateforms such as

U-Compare, the GrAF softwares26, GATE. The aim of

uima-connectors is to offer the most generic solu-

tion as possible in order to prevent from having to develop

ad hoc solutions or to extend existing ones. The basic

idea is to assume that there are recurrent situations where

the metamodels of these formats (XML, CSV. . .) can be

aligned with the CAS.

In practice, solutions could be collection readers, analysis

engines and CAS consumers. We preferentially adopt an

approach in terms of development of AEs which allows to

cut into any point of a workflow by specifying the view

to process. These components can complete the wrapping

performed by the uima-shell component but they can

also be used at the beginning or at the end of a processing

workflow to import or export from/to specific serialization

formats.

Examples of uima-connectors include the CSV2CAS

and the XML2CAS AEs. The CSV2CAS AE offers various

ways to create or to update annotations with CSV-like for-

matted information. The type of the annotation to handle is

given as parameter. If the annotation type exists in a speci-

fied view, the AE will update the annotations. The number

of CSV lines is so assumed to be the same as the number

of the annotations instances to update. The AE allows to

set the correspondence between features names and column

ranks.

The XML2CAS AE transduces the information from the

XML tree structure to the CAS by creating annotations

over the text spans delimited by the begin and the end

tags of XML elements. The types of the created anno-

tations are predefined and represent the XML element

and attribute nodes: XMLElementAnnotation

and XMLAttributeAnnotation. The

XMLAttributeAnnotation type, for exam-

ple, comes with dedicated features to inform about

24http://blog.developpez.com/

adiguba/p3035/java/5-0-tiger/

runtime-exec-n-est-pas-des-plus-simple
25http://code.google.com/p/uima-connectors
26http://www.americannationalcorpus.org/

tools/index.html#uima

its name (i.e. attributeName feature), its value

(i.e. attributeValue feature) and the element name

to which it belongs (i.e. elementName feature). As

annotations, both have begin, end and coveredText

features. This AE offers a way to process the XML

structure of any XML document without having to define

new UIMA types. In practice, we use the uima-mapper

afterwards, to turn the generic types into the specific input

annotation types of another following AEs.

4. Examples of use cases

Below we present two actual uses cases where we used the

components presented in the previous section.

4.1. Mapping annotations: from the FTB to the

HMMPOSTaggerTrainer

In this section we present a situation where it is useful to use

a mapping AE to connect two AEs which handle distinct

annotations for the same concept. We illustrate this use case

on the task of building a statistic model for a Tagger sys-

tem from the French Treebank (FTB) corpus (Abeillé and

Barrier, 2004). We use the Apache HMM tagger trainer
16 (apache-addons:HMMPOSTaggerTrainer) to

build an HMM model from the data. The workflow is rep-

resented in Figure 2.

Figure 2: Mapping annotations: from the FTB to the

HMMPOSTaggerTrainer.

The FTB is available for research purpose in an XML for-

mat. Figure 3 shows an example of annotations at various

analysis levels. For this use case, we are interested by the

XML w element which marks the words. The XML cat,

lemma and mph attributes describe respectively the POS,

the lemma and some morphological information about the

words. The w element is used for simple words and multi-

word expressions; Embedded w elements do not have a cat

attribute but a catint attribute (See the first occurrence of

the w element).

The uima-connectors’s XML2CAS AE allows to

process XML content and to produce annotations for

the specified XML nodes. As described in Sec-

tion 3.4., this AE defines its own TS. Indeed, for

each word XML annotation, the AE will create a

CAS annotation XMLElementAnnotation for the el-

ement w and an XMLAttributeAnnotation for each

one of the attributes. For instance, the following

<SENT nb="8000">

<w cat="ADV" mph="ADV" lemma="tout au plus">

<w catint="ADV">Tout</w> <w catint="P">au</w>

<w catint="D"/> <w catint="ADV">plus</w>

</w>

<NP>

<w lemma="un" cat="D" mph="D-ind-fp">des</w>

<w cat="A" mph="A-qual-fp" lemma="petit">petites</w>

<w cat="N" mph="N-C-fp" lemma="chose">choses</w>

</NP>

<VPinf>

<w cat="P" mph="P" lemma="à">à</w>

<VN>

<w cat="V" mph="V--W" lemma="changer">changer</w>

</VN>

<PP>

<w cat="P" mph="P" lemma="sur">sur</w>

<NP>

<w cat="D" mph="D-def-fs" lemma="le">l‘</w>

<w cat="N" mph="N-C-fs"

lemma="intégration">intégration</w>

</NP>

</PP>

</VPinf>

<w cat="PONCT" mph="PONCT-S" lemma=".">.</w>

</SENT>

Figure 3: Example of annotations from the

lmf3_08000_08499ep.xd.cat.xml file of the

FTB. Some attributes have been removed or renamed for

readability purpose.

XML annotation <w cat="A" mph="A-qual-fp"

lemma="petit">petites</w> will produce three

XMLAttributeAnnotation annotations; Detail for

the XMLElementAnnotation is not given here. Ta-

ble 1 shows the feature names (first line) and the

corresponding values of each of the three created

XMLAttributeAnnotation annotations. begin and

end features and values are not shown to make the table

simpler. All the three annotations share the same begin

and end values.

elementName attributeName attributeValue coveredText

w cat A petites

w lemma petit petites

w mph A-qual-fp petites

Table 1: Features names and values of the

three XMLAttributeAnnotation annota-

tions created for the attributes of the XML an-

notation <w cat="A" mph="A-qual-fp"

lemma="petit">petites</w>. The begin and

end features and values are not shown for readability

purpose.

For our training purpose let consider we want to work

with the w elements which are simple words or parts of

a multiword but not a multiword. We are so interested

by the XMLAttributeAnnotation annotations which

have the following criteria: Either cat or catint as

value of the attributeName feature and w as value of

the elementName feature. In addition, in order to dis-

tinguish the XMLAttributeAnnotation annotations

which correspond to simple words from those which cor-

respond to embedding w elements (both have cat as value

of the attributeName feature), we decide to filter

them out based on the presence of a whitespace charac-

ter in the covered text. Figure 4 shows an example of

<rule id="XMLAttributeAnnotationW2ApacheTokenAnnotation"

description="In the FTB, select the w elements which are simple words or parts of a multiword but not one">

<pattern>

<patternElement type="fr.univnantes.lina.uima.connectors.types.XMLAttributeAnnotation">

<constraint>.[(@elementName=’w’) and ((@attributeName=’cat’) or (@attributeName=’catint’))

and not(contains(@coveredText,’ ’))]</constraint>

<create type="org.apache.uima.TokenAnnotation" >

<setFeature name="posTag" value="normalize-space(./@attributeValue)"/>

</create>

</patternElement>

</pattern>

</rule>

Figure 4: Example of an uima-mapper’s rule for mapping UIMA annotations.

uima-mapper’s rule for mapping annotations which im-

plements this definition. The rule declares that for each

XMLAttributeAnnotation annotation, if the XPath

constraint is satisfied, then it will imply the creation

of a TokenAnnotation at the same offsets and set

its posTag feature with a value resulting from another

XPath processing on the matched annotation. This exam-

ple gives an idea of the expressive power of XPath which

allows to express constraints with many kinds of operators

(e.g. boolean, comparison, regular expression. . .) and func-

tions (e.g. string, mathematical. . .).

4.2. Integrating a third party tool: TreeTagger

In this section we show how to process UIMA CAS ele-

ments with command line tools and how to set the UIMA

CAS elements with the produced results. In particular we

describe how to integrate a command line tool with CSV-

like input and output formats. We illustrate this use case by

setting the POS and the lemma features of some CAS token

annotations with the processing results of an external POS

tagger.

As a third party tool example, we use the (Schmid, 1994)’s

POS tagger (also named «TreeTagger») which takes a word

per line and produces POS and lemma annotations as tabu-

lated values aside of each input word (i.e. petites ADJ

petit). Both input and output formats can be considered

as CSV-like formats; The input format being a special case

with a single column. We also use the Apache whitespace

tokenizer 16 (apache-addons:wst) which segments

text into word token annotations.

The workflow is represented in Figure 5. Each component

works on a specified input view and stores its result in a

specified output view. The raw text of a document is present

in the view _InitialView at the beginning of the pro-

cessing. The CAS2CSV and the CSV2CAS AEs are part of

the uima-connectors project. They take in charge the

conversion from/to CSV-like formats to/from UIMA CAS

elements. The shell AE refers to the uima-shell AE

and allows the integration of TreeTagger.

The processing proceeds like this: The Apache whites-

pace tokenizer performs the segmentation and stores

the token annotations (i.e. TokenAnnotation) in its

working input view _InitialView. The POS tag

and the lemma features are not yet set. The CAS2CSV

AE takes in parameters the names of an annotation

type (i.e. TokenAnnotation) and of the features

(i.e. coveredText) to process. For each annota-

tion instances present in the given _InitialView,

Figure 5: Integrating a third party tool: TreeTagger.

it creates a CSV-formatted line with the values of

the specified features at a specified column rank.

The result is stored in the CAS2CSV_View. The

uima-shell AE is set with the following parameters

values: The EnvironmentVariable parameter de-

clares TT_HOME=/path/to/application/home/tree-tagger, and

the PreCommand and the PostCommand parameters

declare respectively the following values: cat and

| ${TT_HOME}/bin/tree-tagger ${TT_HOME}/lib/french.par

-token -lemma -sgml. The CSV2CAS AE parses the

TT_View. Thanks to the given name of an annotation

type (i.e. TokenAnnotation) and the associations of

column ranks with feature names specified by parameters

(e.g. 1 -> posTag ; 2 -> lemma), the process updates each

annotation instance from the given _InitialView with

information coming from the CSV-formatted content; Each

line corresponds to an annotation. The POS tag and the

lemma features are so set.

It is interesting to note that the apache-addons:wst

and the CAS2CSV components can simply be removed and

functionally replaced by a command line token such as

| perl -ne ’chomp; s/(\p{IsAlnum})(\p{IsPunct})/$1 $2/g;

s/(\p{IsPunct})(\p{IsAlnum})/$1 $2/g; s/ /\n/g; print’

in the PostCommand parameter before the TreeTagger

command.

5. Conclusion

This uima-common project is a common basis for all

the uima-components we develop such as uima-mapper,

uima-shell, and uima-connectors. It was

also used for example for developing a wrapper for

the java implementations of the C99 and TextTil-

ing segmentation algorithms, written by Freddy Choi

uima-text-segmenter27.

All the presented components aim at tackling the problem

of interoperability within a UIMA workflow. They were

both developed and used for building workflows in par-

ticular for importing and connecting an XML version of

the French Treebank corpus (Abeillé and Barrier, 2004) to

trainer systems such as the Apache HMM tagger28 and the

OpenNLP MaxEnt preliminary processing tools (Boudin

and Hernandez, 2012).

As perspectives, we want primarily to inform about these

solutions to motivate people to use them and to participate

to the development of these projects. Considering our short

term developments, we plan to concentrate our efforts on

the uima-mapper. We are thinking in some ways to build

UIMA annotations index which could effectively support

the implementation of recognition mechanisms for match-

ing annotations patterns. We also would like to evaluate the

performance of the various existing solutions in terms of

expressiveness and resource consuming.

The uima-connectors will also evolve. As we pre-

viously mentioned, we are more interested by generic ap-

proaches than ad hoc ones. Currently, we offer a solution

to import to the CAS, the information that can be inferred

from the tree structure of XML formats (e.g. two elements

can be considered as in relation due to the fact that one of

them encloses the other one). Since, several XML formats,

such as GrAF, are used to represent graph structures thanks

to common mechanisms (e.g. couples of id/idref attributes),

we are interested to offer a way to specify generically these

mechanisms and to align them with elements of the CAS

structure in order to be able to handle any XML documents

representing graphs.

Concerning the uima-shell, the current version does

not address the security problems such as the injections of

malicious codes or the lack of system resources to perform

safely the commands. Indeed, the commands, which are

intended to be run, are assumed to be performed by an al-

lowed user as well as to be safe for the running system.

We believe that the component should not be restricted be-

cause it runs counter to what it aims to do. And in addition,

we believe that it can not be restricted because it is impos-

sible to a priori enumerate all the unsafe use cases. The

best solutions to prevent these risks are to run the vulnera-

ble process in «jail» environments with restricted rights and

resources (i.e. to configure correctly the embedding appli-

cation servers and operating systems).

6. Acknowledgements

This work was financially supported by La région Pays

de la Loire under the DEPART project http://www.

projet-depart.org.

27https://code.google.com/p/

uima-text-segmenter
28http://enicolashernandez.blogspot.com/

2011/05/construire-des-modelisations-du-french.

html

I also would like to express my gratitude to the reviewers

for there insightful comments.

7. References

Anne Abeillé and Nicolas Barrier. 2004. Enriching a

french treebank. In Actes de la conférence LREC, Lis-

bonne.

Florian Boudin and Nicolas Hernandez. 2012. Détection et

correction automatique d’erreurs d’annotation morpho-

syntaxique du french treebank. In TALN.

Hamish Cunningham, Diana Maynard, Kalina Bontcheva,

Valentin Tablan, Niraj Aswani, Ian Roberts, Genevieve

Gorrell, Adam Funk, Angus Roberts, Danica Daml-

janovic, Thomas Heitz, Mark A. Greenwood, Horacio

Saggion, Johann Petrak, Yaoyong Li, and Wim Peters.

2011. Text processing with gate. University of Sheffield

Department of Computer Science. ISBN 0956599311,

April 15th.

Hamish Cunningham. 2002. Gate, a general architecture

for text engineering. Computers and the Humanities,

36:223–254.

David Ferrucci and Adam Lally. 2004. Uima: an architec-

tural approach to unstructured information processing in

the corporate research environment. Natural Language

Engineering, 10(3-4):327–348.

Iryna Gurevych, Max Mühlhäuser, Christof Müller, Jürgen

Steimle, Markus Weimer, and Torsten Zesch and. 2007.

Darmstadt knowledge processing repository based on

uima. In Proceedings of the First Workshop on Unstruc-

tured Information Management Architecture at Biannual

Conference of the Society for Computational Linguistics

and Language Technology, Tübingen, Germany.

Udo Hahn, Ekaterina Buyko, Katrin Tomanek, Scott Piao,

John McNaught, Yoshimasa Tsuruoka, and Sophia Ana-

niadou. 2007. An annotation type system for a data-

driven nlp pipeline. In The LAW at ACL 2007 – Proceed-

ings of the Linguistic Annotation Workshop, pages 33–

40. Prague, Czech Republic, June 28-29, 2007. Strouds-

burg, PA: Association for Computational Linguistics.

Nicolas Hernandez, Fabien Poulard, Matthieu Vernier, and

Jérôme Rocheteau. 2010. Building a French-speaking

community around UIMA, gathering research, education

and industrial partners, mainly in Natural Language Pro-

cessing and Speech Recognizing domains. Proceedings

of the LREC 2008 Workshop ’New Challenges for NLP

Frameworks’, La Valleta, Malta, 05.

Nancy Ide and Keith Suderman. 2009. Bridging the gaps:

interoperability for graf, gate, and uima. In Proceed-

ings of the Third Linguistic Annotation Workshop, ACL-

IJCNLP’09, pages 27–34, Stroudsburg, PA, USA. Asso-

ciation for Computational Linguistics.

Yoshinobu Kano, Luke McCrohon, Sophia Ananiadou, and

Jun’ichi Tsujii. 2009. Integrated NLP evaluation sys-

tem for pluggable evaluation metrics with extensive in-

teroperable toolkit. In Proceedings of the Workshop on

Software Engineering, Testing, and Quality Assurance

for Natural Language Processing (SETQA-NLP 2009),

pages 22–30, Boulder, Colorado, June. Association for

Computational Linguistics.

Peter Kluegl, Martin Atzmueller, and Frank Puppe. 2009.

Textmarker: A tool for rule-based information extrac-

tion. In Christian Chiarcos, Richard Eckart de Castilho,

and Manfred Stede, editors, Proceedings of the Biennial

GSCL Conference 2009, 2nd UIMA@GSCL Workshop,

pages 233–240. Gunter Narr Verlag.

Frédéric Meunier, Philippe Laval, Gaëlle Recourcé, and

Sylvain Surcin. 2009. Kwaga : une chaîne uima

d’analyse de contenu des mails. In First French-

speaking meeting around the framework Apache UIMA

at the 10th Libre Software Meeting, University of Nantes,

July.

Sébastien Paumier. 2003. A Time-Efficient Token Rep-

resentation for Parsers. pages 83–90. Proceedings of

the EACL Workshop on Finite-State Methods in Natu-

ral Language Processing.

Laurent Romary and Nancy Ide. 2004. International Stan-

dard for a Linguistic Annotation Framework. Natural

Language Engineering, 10(3-4):211–225, September.

Helmut Schmid. 1994. Probabilistic part-of-speech tag-

ging using decision trees. In Proceedings of the Confer-

ence on New Methods in Language Processing, Manch-

ester, UK.

Dhaval Thakker, Taha Osman, and Phil Lakin. 2009. Gate

jape grammar tutorial, February 27.

Paul Thompson, Yoshinobu Kano, John McNaught, Steve

Pettifer, Teresa Attwood, John Keane, and Sophia Ana-

niadou. 2011. Promoting interoperability of resources

in meta-share. In Proceedings of the Workshop on Lan-

guage Resources, Technology and Services in the Shar-

ing Paradigm, pages 50–58, Chiang Mai, Thailand,

November. Asian Federation of Natural Language Pro-

cessing.

Karin Verspoor, William Baumgartner Jr., Christophe

Roeder, and Lawrence Hunter. 2009. Abstracting the

types away from a uima type system. In 2nd UIMA

Workshop at Gesellschaft für Sprachtechnologie und

Computerlinguistik (GSCL), Tagung, Germany, October.

