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 12 
Abstract 13 
 14 
It was recently shown that, within individuals, longer telomeres shorten at a higher rate. 15 
This explorative study deals with a mathematical model of this process. It is a nonlinear 16 
differential equation describing length-dependent decrease that can be linked to a 17 
Poisson process. The model also takes in account telomere shortening due to the end 18 
replication problem. Parameters are fitted using data from samples of red blood cells of 19 
free-living juvenile corvids. The Poisson process can be related to oxidative stress 20 
causing DNA strand breaks. The shortest telomeres in a genome are the best predictors 21 
of survival, and one can therefore hypothesize on functional grounds that short 22 
telomeres should be better protected by some control mechanism in the cellular system. 23 
However, the present study shows that such a mechanism is not required to explain 24 
length-dependent telomere shortening: agents of telomere shortening such as oxidative 25 
stress with a certain strength modeled by a Poisson process with an appropriately 26 
chosen parameter suffices to generate the observed pattern.  27 
 28 
Key words  telomere shortening, end replication, DNA strand break, oxidative stress, 29 
stochastic process  30 
 31 
 32 
1. Introduction 33 
 34 
Telomeres are highly structured, non-coding DNA elements at the end of linear 35 
eukaryotic chromosomes. In vertebrates they consist of tandem repeated highly 36 
conserved DNA sequence (5’-TTAGGG-3’)n,. Telomeres play an important role in the 37 
protection of chromosome integrity (Blackburn, 1991) and in the longevity of 38 
organisms: associations between telomere length and survival were demonstrated in 39 
humans (Cawthon et al., 2003; Kimura et al., 2008; Bakaysa et al., 2007; Aviv, 2008), 40 
birds (Haussmann et al., 2005; Bize et al., 2009; Salomons et al., 2009) and nematodes 41 
(Joeng et al., 2004). Moreover, comparing species, it was found that the telomere 42 
shortening rate is correlated with maximum lifespan: short lived species lose their 43 
telomeres at a higher rate (Haussmann et al., 2003). It has been anticipated that telomere 44 
length, and its shortening rate in particular, may potentially be used as a proxy for the 45 
‘life stress’ experienced by individual organisms  (Epel et al., 2006; Kotrschal et al., 46 
2007) and hence serve as a marker of an individual’s ‘biological age’. Telomere 47 
shortening rate is accelerated by oxidative stress (Von Zglinicki, 2002; Tchirkov and 48 
Lansdorp, 2003). Since oxidative stress is often considered a major agent of senescence 49 
(Beckman and Ames, 1998), it provides a potential mechanistic link explaining 50 
associations between telomeres and life span, in that shorter telomeres may indicate that 51 
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the organism experienced higher levels of oxidative stress (Jennings et al., 2000; 1 
Monaghan and Haussmann, 2006). The length of the shortest telomere(s) has been 2 
suggested to determine when cellular senescence starts (e.g. Hemann et al., 2001; 3 
Capper et al., 2007; Di Fagagna, 2003; Shay and Wright 2005). On functional grounds 4 
one expects therefore that defensive mechanisms against DNA damage have evolved to 5 
act stronger on chromosomes with short telomeres (Karlseder et al., 2002), resulting in a 6 
lower shortening rate of shorter telomeres (Hemann et al., 2001; Martens et al., 2000).  7 

In literature several models of telomere dynamics can be found (Proctor and 8 
Kirkwood, 2002a; Sidorov et al., 2004; Rodriguez-Brenes and Peskin, 2010). The 9 
present study differs from these studies in that we develop a stochastic model that 10 
specifically describes length-dependent telomere shortening. As an alternative for 11 
intensified DNA repair (negative feedback control), or some form of increased 12 
protection, that may explain why shorter telomeres decrease slower in length (Karlseder 13 
et al., 2002), we choose to test whether a simpler mechanism, not based on an active 14 
response of the cell, could be sufficient to generate the observed pattern. We assume 15 
that over a short telomere interval the risk of breaking of a telomere within a fixed time 16 
span is proportional with the length of that interval. Thus, we build on the assumption 17 
that telomeres are simply more vulnerable if they are larger targets. In line with Nitecki 18 
and Hoffman (1987) and Wilkinson (2006) we choose the Poisson process to describe 19 
this effect in a stochastic model. A mathematical model is formulated based on 20 
biological and physical arguments. In a next step the parameters of this model are fitted 21 
to data of empirical observations (Salomons et al., 2009). We consider data on telomere 22 
length of samples of blood cells of nesting jackdaws (Corvus monedula) from an 23 
observational study (Salomons et al., 2009). The data has random components requiring 24 
a robust model with a small number of parameters.  25 

In an earlier study telomere length and its shortening in erythrocytes of jackdaws 26 
has been quantified (Salomons et al., 2009). Telomere length varies between 27 
erythrocytes and between chromosomes within a genome (Baird et al., 2003; Lansdorp 28 
et al., 1996; Martens et al., 1998). A degree of randomness within the population of 29 
hematopoietic stem cells that generate the erythrocytes is one of the sources of this 30 
variation. Salomons et al. (2009) used pulsed-field gel electrophoresis to measure 31 
telomeres. The method produces genome-wide distributions of telomere lengths for 32 
each sample. Hence it provides the opportunity to quantify telomere shortening 33 
separately for subsets of these size distributions (Haussmann et al., 2008). Indeed these 34 
data showed that, within adult and juvenile individuals, shortening of telomeres was size 35 
dependent, with longer telomeres losing base pairs at a higher rate.  36 
 In Section 2 we describe the way the data has been collected. In nestling 37 
jackdaws the shortening of telomeres was quantified by percentiles of the length 38 
distribution over the full interval (0, 100) at day 5 and day 30. From a graphical 39 
representation of the differences between equal percentiles at the two observation 40 
moments we already observe that in the subjects of our study length-dependent telomere 41 
shortening occurs in the sense that in the mean shorter telomeres exhibit a smaller 42 
shortening rate. In Section 3 we discuss mechanisms that may cause telomere 43 
shortening. First, there is the end replication problem being part of the cell division 44 
process (Olovnikov, 1996). Secondly, we consider the breaking of a telomere occurring 45 
spontaneously, e.g. due to oxidative stress, and model it by a Poisson process. In first 46 
instance we only consider a deterministic model based on the mean effect of these two 47 
mechanisms. We estimate the parameters in that model and give an estimate of the 48 
contribution of the different terms to the process. In Section 4 we use a Brownian 49 
motion process related to the Poisson process by choosing drift and diffusion that 50 
correspond with those of the Poisson process. Again we estimate parameters, now for 51 
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one individual, and compare the results of the different approaches.  Finally, we 1 
summarize our findings and draw conclusions in Section 5.  2 
 3 
   4 
2. Data collection 5 
 6 
We used data on free-living nestling jackdaws, a hole breeding semi-colonial bird 7 
species, in the colony at the Biological Centre in Haren (The Netherlands), a semi-urban 8 
environment, and in five smaller colonies located in a more rural area 5-10 kilometres 9 
south of Haren, see Salomons et al. (2009) for more details. In brief, at the ages of 5 and 10 
30 days a small blood sample was taken for DNA, and telomere length in erythrocytes 11 
was measured using pulsed field electrophoresis. The size distribution of telomeres was 12 
determined through densitometry using the open-source software ImageJ version 1.38x 13 
(Haussmann et al., 2008). The distribution of terminal restriction fragments is usually 14 
characterized using the average telomere length only. However, as explained above, 15 
telomere shortening rate may not be the same for chromosomes with short as for the 16 
chromosomes with long telomeres. The telomere distributions were characterized not 17 
only by the mean, but also by the mode and by 21 equidistant percentiles. 18 

From the two blood samples of 75 jackdaws, taken at 5 and 30 days of age, the 19 
distribution of the mean change in length between these two days is given in Figure 1. 20 
The global mean of change takes the value -223.7 bp being significantly negative. In 21 
Figure 2a we give a graphical representation of the data of one jackdaw: the distribution 22 
of the length is depicted by percentiles for both days. In Figure 2b an approximation of 23 
the probability density function is derived from these data. Looking in more detail at the 24 
change in length for a given percentile of all 75 jackdaws, we observe that percentiles at 25 
the lower end (0, 5) behave irregularly compared with the larger percentiles (>10). A 26 
similar, but less outspoken, behaviour is found at the upper end. The tails of the 27 
distribution are more difficult to measure than the denser parts, and we therefore 28 
attribute these fluctuations to measurement error. For this reason we only use the 29 
percentiles ipi 5= , i = 2,…, 18 in our penalty function when making parameter 30 
estimates. In a graph for each of the 75 cases (Fig.3) we give the change of length 31 
percentiles between day 5 and day 30 as a function of the mean  32 
 33 

)(
iii ppp Δ=Δ ,  )5()30( iii ppp −=Δ  and  2/))30()5(( iii

ppp += , i = 2,…,18. 34 

 35 
The curves show large differences. As possible causes for this strong variation we 36 
mention differences in genotype and (non)active cellular processes (telomerase). 37 
Moreover, external circumstances like measurement errors are expected to play a role 38 
From the figure we observe indeed that there is a mainstream of curves that have a 39 
tendency of a smaller decrease at a smaller length, see Salomons et al. (2009) for a 40 
different analysis with the same conclusion.  41 

 42 
 43 
3. Mechanisms for telomere shortening 44 
 45 
We next explore possible shortening mechanisms and formulated a model as follows. It 46 
consists of a sequence of cell generations from which one cell is selected at each 47 
generation. The cells have a mother-daughter relation and one of the daughters is 48 
selected randomly. Events, such as replication and strand breaks, are only marked in 49 
time by the rate they occur per unit of time in this process. In this way we choose a 50 
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single path in the branching process of cell proliferation. Repeating this selection of 1 
descendents we obtain a set of histories that is representative for the cell population. 2 
The fact that the population of cells grows does not play any role in this respect. 3 
Compared with other studies in which the event of cell division and cell population 4 
dynamics are also included (e.g. Olofsson and Kimmel, 1999) our choice makes the 5 
model slightly less realistic. However, the advantage of this approach is that we 6 
concentrate more on the mechanism of shortening itself. Instead of making the 7 
assumption that length-dependent shortening is the result of some active control 8 
mechanism that enhances DNA repair at shorter length (Karlseder et al., 2002), we 9 
consider a passive process in which damage occurs at some rate due to external 10 
conditions. Proctor and Kirkwood (2002b) gave a detailed description on the possible 11 
effect of single strand breaks. In some cases full repair is likely, while in other partial 12 
repair or no repair at all may occur leading to shortening of telomeres in daughter cells. 13 
Since our modeling is based on realized shortening as accounted for in the data we only 14 
consider the end result. 15 

A fixed length at the end of the telomere is lost at the moment of replication 16 
(Okazaki fragments), see e.g. Olovnikov (1996) for more about the end replication 17 
problem. It is modeled by the fixed rate c of shortening.  Base pairs form a string: if one 18 
base pair is taken out, then the free end part will also be lost. Since we do not have 19 
much information how the break of a strand from e.g. oxidative stress takes place, we 20 
take the Poisson process as starting point of our model formulation, see Nitecki and 21 
Hoffman (1987) and Wilkinson (2006) for general in formation on the prominent place 22 
of Poisson processes in biology.  23 

Let us consider a time interval (t, t + Δt) and compute the change of the telomere 24 
length Δx over that time interval. The constant decrease of length due to the end 25 
replication problem is then cΔt. Given that it was shown that the risk of a double strand 26 
break is uniformly distributed (Petersen et al,. 1998; Von Zglinicki, 2000; Sitte et al., 27 
2001), we can model the probability that a double strand break occurs by a Poisson 28 
distribution with parameter ttax Δ=μ )( . In fact we have a two dimensional Poisson 29 
process: the risk of a break is assumed to be proportional with the length x(t) of the 30 
telomere as well as with the length Δt of the time interval. For Δt sufficiently small the 31 
event of two or more breaks can be neglected. The probability of a break follows from a 32 
stochastic variable P(t) having a standard uniform distribution:  P(t) ~ Uniform(0, 1). 33 

  34 
If    P(t) ≤  μ     then     x(t + Δt) = R(t) x(t)  35 

 36 
with again  R(t) ~ Uniform(0, 1). In the Appendix we show that for 0→Δt  the 37 
expected value of the length satisfies the differential equation 38 
 39 

 2)(
2
1)( taxctx −−=′ .        (1) 40 

 41 
The above model only accounts for length decrease. It is well known from various 42 
studies, see e.g. Jaskelioff et al. (2011), that there are processes in the cellular system 43 
that cause an increase of the length of telomeres (telomerase). From the 75 cases of our 44 
study 17 showed a slight mean increase of the telomere length over the 25 days. It is 45 
also noted that in a small number of cases length decrease speeded up at shorter 46 
telomere lengths, see Figure 3. Both phenomena are not taken up in our model. As 47 
mentioned above, the data are rather noisy and it is not clear whether either biological 48 
forces or measurement errors are responsible for this strong variation. This restriction 49 
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only allows us to introduce a model with a small number of parameters if we also want 1 
to produce a reliable estimate for the parameters from the available data. 2 
 3 
Parameter estimation 4 
The differential equation (1) with initial value x(0) = x5 has an exact solution 5 
 6 
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 8 
For t = 25 the variable x denotes the telomere length at day 30. As a matter of fact in the 9 
computations needed for doing the parameter estimation a numerical solution of (1) is 10 
used because for q close to zero the accuracy of the solution produced by formula 11 
manipulation software breaks down; a problem that does not show up in the numerical 12 
integration of (1). 13 

In a deterministic model of type (1) different chromosomes remain in time in the 14 
same order with respect to their length. The model can be used to predict the length at 15 
day 30 of a given percentile using the initial length of the same percentile at day 5. A 16 
comparison of the outcome at day 30 with the observation will lead to an estimate of the 17 
parameters a and c by minimizing the sum of the squared differences for percentiles 18 
10(5)90 of all 75 cases (Table I). Moreover, we give an estimate f(a) of the size of the 19 
quadratic term of the right hand side of (1) by substituting x = (x5 + x30)/2 averaged over 20 
all runs needed for computing the residual sum of squares for a given choice of the 21 
parameters. A similar estimate is made for the other term giving f(c). The estimate for the 22 
1-parameter model (a = 0) is given as well. We see that for the 2-parameter model the 23 
contribution to the length decrease is about equally distributed over the Poisson process 24 
and the replication process (Table 1). It is noted that the difference in the residual sum 25 
of squares is small. This is related to a rather high level of collinearity in the 2-26 
parameter model meaning that a fraction of the contribution f(a) could be attributed to f(c) 27 
and vice versa. 28 
 29 
 30 
4. Stochastic modelling of the process 31 
 32 
For given values of the parameters a and c a stochastic simulation of the process can be 33 
carried out. At discrete times (stepsize Δt) a fixed length cΔt is subtracted as well as a 34 
randomly chosen part ax(t)2R(t)Δt with R(t) ~ Uniform(0, 1). The result depends on the 35 
order in which these operations are carried out. For Δt sufficiently small the difference 36 
between the two will become negligibly small. However, estimating parameters with 37 
this stochastic simulation fails because of lack of convergence of the Monte Carlo 38 
process in which simulation runs are repeated until the average of some penalty function 39 
stabilizes. The stochastic process can also be described by a Fokker-Planck equation 40 
being a linear diffusion equation for the probability density function p(t, x) at time t. In 41 
the Appendix we describe a numerical simulation process based on a stochastic 42 
differential equation which offers an alternative; it is called a Brownian motion. Using 43 
(A7)-(A8) and the percentiles at day 5 of one specific nestling with parameter values 44 
estimated for this case from (1),  45 
 46 

)7.5,1073.0(),( 6−×=ca ,       (3) 47 
 48 
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we generate 1000 starting values and run the simulation over a time interval of 25 days. 1 
The so obtained 1000 length values at day 30 are reordered and the percentiles 10(5)90 2 
are read off (Fig. 4a). It is noted that this is only one realization of the process. If it is 3 
repeated, slightly different values will be found.   4 
 5 
Parameter estimation 6 
We may estimate the parameters using the above Brownian motion process. Again a 7 
penalty function is specified for the difference between the observation and the outcome 8 
for some choice of the parameters a and c. One has to take the average penalty over a 9 
number n of runs. In this so-called Monte Carlo simulation the penalty converges to its 10 
limit value at a rate n-1/2 for increasing n. In the present problem one has to take 25≥n  11 
to obtain satisfactory results. Then the averaged penalty is at its minimum for 12 
 13 
 )5.7,1041.0(),( 6−×=ca        (4) 14 
 15 
In Figure 4a we also give the outcome of one run for these parameter values. It is 16 
anticipated that the result is better than that for parameter values (3) based on the 17 
deterministic model. This is due to the fact that with (4) also the second order statistical 18 
moment is taken in account. Figure 4b gives the outcome based on the Poisson process 19 
itself. The resulting values are close to those of the Brownian motion. As already 20 
remarked we did not succeed in estimating parameters based on a stochastic Poisson 21 
type of simulation. The present result makes it likely that the best fitting parameter 22 
values for the Poisson process are close to the ones of the Brownian motion model.  23 
 24 
 25 
5. Conclusions 26 
 27 
Telomere length and telomere shortening can be seen as biomarkers of ageing in that 28 
they have repeatedly been shown to predict survival probabilities in humans and birds 29 
(e.g. Cawthon et al., 2003; Hausmann et al.,2008; Bize et al., 2009; Salomons et al., 30 
2009). With the availability of detailed longitudinal data it has become possible to fit 31 
new dynamical models to these data to develop insights in the mechanisms underlying 32 
the shortening process. We explored possible physical processes for the terms of this 33 
expansion that significantly may contribute to the decrease of telomere length in time. 34 
We focused our attention upon two such mechanisms: a decrease at a fixed rate from the 35 
replication process and random strand breaks. The replication of the DNA sequence 36 
during cell division is incomplete due to the end-replication problem. As long as this 37 
part consists of telomere base pairs only no essential information is lost. However, 38 
eventually the telomere chain will become sufficiently short to induce cell death. 39 
Processes acting in a cell, such as DNA repair and telomerase, may prevent or reverse 40 
telomere shortening. These processes may still fall short in counterbalancing telomere 41 
shortening or have harmful side-effects such as an increase in the risk of developing 42 
cancer. In this study we did not consider these processes and attributed the net 43 
shortening fully to the two physical processes of length decrease we incorporated.  44 

Our main result is that the Poisson model for strand breaks shows that length-45 
dependent decrease of telomere length can be explained without requiring a feedback 46 
mechanism that protects short telomeres. In our analysis we compared the result for the 47 
2-parameter model with the minimal model allowing only a length decrease at a 48 
constant rate (a = 0). Although the approximation error went down only slightly the 49 
contribution to the length decrease changed strongly in such a way that the two 50 
mechanisms contribute about equally to the length shortening (Table I). In literature 51 
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several studies on the stochasticity of telomere shortening appeared. In some cases the 1 
mathematical analysis dealt only with the behavior in the mean or telomere length 2 
distributions at different times were presented without a formulation of the dynamical 3 
process. In some other cases data of experiments were fitted to a dynamical model. Von 4 
Zglinicki (2002) has demonstrated that oxidative stress increases the speed of telomere 5 
shortening. Given a certain stress level we have shown that this process causes a length 6 
dependent decrease. Op den Buijs et al. (2004) describe a type of feedback mechanism 7 
for this length dependency based on the observation that the distribution of lengths is 8 
close to a Weibull distribution.    9 

It is noted that a stochastic model based on the Poisson process itself, instead of 10 
the Brownian motion we introduced in Section 5, did not lead to successful parameter 11 
estimation. The large influence of the higher statistical moments in such model requires 12 
data with a lower external noise level. Finally, it is remarked that it might very well be 13 
possible to analyze a differential equation model that describes length-dependent 14 
telomere shortening as a process in which the cell actively decreases the shortening rate 15 
by some negative feedback. More parameters are then needed and so in comparison it 16 
should result in a much better fit in order to serve as a useful alternative. A same 17 
argument applies to a model in which, next to telomerase, also a break in a specified end 18 
part of the 3’ strand is allowed (Rodriguez-Brenes and Peskin, 2010). As in our model 19 
the risk of such a break is supposed to be uniformly distributed.       20 
 21 
 22 
Appendix  23 
 24 
The stochastic model of telomere length decrease contains two stochastic variables: the 25 
event of a possible break within a time interval (t, t + Δt) and the position of such a 26 
break within the telomere chain. Furthermore there is the constant length decrease from 27 
replication. The expected value of the change Δx of  the length over the time interval is 28 
computed as follows with K the stochastic variable denoting the event of a break ( K = 29 
1) and the realisation X(t) = x:   30 
 31 

 ∑
=
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0
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 34 
Since the break position is uniformly distributed over the interval (0, x), its expected 35 
value equals x/2 and its variance is x2/12. This leads to the following expression for the 36 
expected change  37 

 taxcx Δ+−=Δ )
2
1( 2 .        (A2) 38 

Letting 0→Δt  we arrive at the deterministic differential equation for the mean change 39 
in the telomere length 40 
 41 

 2)(
2
1)( taxctx −−=′  .                             (A3) 42 

 43 
For the variance of XΔ we obtain in a similar manner 44 
 45 
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 4 
For a further description of the stochastic process of telomere shortening including a 5 
constant decrease from the end replication one may switch to a linear diffusion 6 
equation, the so-called Fokker-Planck equation (Gardiner, 1990). Let p(t, x) be the 7 
probability density function for the length X at time t. This function then satisfies the 8 
partial differential equation 9 
 10 

 })
3
1{(

2
1})

2
1{( 3

2

2
2 pax

x
paxc

xt
p

∂
∂

++
∂
∂

=
∂
∂ .     (A5) 11 

 12 
Together with a starting distribution at the initial time this equation yields the 13 
distribution at any time t. The stochastic process itself can be simulated by using the so-14 
called Langevin equation to which the Ito calculus applies 15 
 16 
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 18 
see Gardiner (1990). In this stochastic differential equation dW(t) denotes a Wiener 19 
increment (Gardiner, 1990). Using a forward Euler scheme with step size tΔ  (Grasman 20 
and Van Herwaarden, 1999) a realization of the process can be derived from 21 
 22 
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 24 
with stochastic variable Z(t) having a standard normal distribution N(0, 1) and X0 having 25 
some prescribed distribution. If we have an approximation of the corresponding 26 
cumulative distribution function F(x0) e.g. by means of a set of percentiles, we can 27 
easily generate starting values using the standard uniform distribution. Let R be 28 
Uniform(0,1), then 29 
  30 

X0 = F -1(R)          (A8) 31 
 32 
has the required distribution. In simulation one may as well take a large number of 33 
values for R being equally distributed over the interval (0, 1). 34 
 35 
 36 
 37 
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Figure captions 1 
 2 
Figure 1:  Histogram of mean change of telomere length between day 5 and day 30 in 3 
blood cell samples of 75 jackdaws.   4 
 5 
Figure 2: Data of one individual: (a) length percentiles at day 5 and day 30 6 
approximating the cumulative distribution functions. (b) approximation of the 7 
probability density function using (a). 8 
 9 
Figure 3: From all 75 jackdaws the change of length of the population of telomeres from 10 
day 5 to day 30 is represented in a graph. From each of the length percentiles p = 11 
10(5)90 at both days the change of length )5()30( ppp −=Δ  is given as a function of 12 
the mean of the lengths at both days, 2/))30()5(( ppp += , and represented as a graph 13 

connecting the percentiles 10(5)90. It is noted that at day 30 an interval between to 14 
consecutive percentiles may be composed out of cells different from the ones in the 15 
same interval at day 5. 16 
 17 
Figure 4. A comparison of model results with the observation of the telomere length 18 
percentiles at day 30 for one specific nestling. (a) The deterministic model is given by 19 
(1) with parameter values (3): the computed lengths at day 30 are connected by a curve. 20 
For the same parameter values the Brownian motion (A7)-(A8) gives the result 21 
indicated by (+).  For the parameter values (4) obtained from a parameter estimation, 22 
based on the Brownian motion model, one run of that model gives percentiles indicated 23 
by (× ). (b) The simulation result obtained by a Poisson process with values (4) is 24 
indicated by (O). 25 
 26 

27 
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Figure 1:  Histogram of mean change of telomere length between day 5 and day 30 in 1 
blood cell samples of 75 jackdaws.   2 
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Figure 2: Data of one individual: (a) length percentiles at day 5 and day 30 1 
approximating the cumulative distribution functions. (b) approximation of the 2 
probability density function using (a). 3 
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Figure 3: From all 75 jackdaws the change of length of the population of telomeres from 1 
day 5 to day 30 is represented in a graph. From each of the length percentiles p = 2 
10(5)90 at both days the change of length )5()30( ppp −=Δ  is given as a function of 3 
the mean of the lengths at both days, 2/))30()5(( ppp += , and represented as a graph 4 

connecting the percentiles 10(5)90. It is noted that at day 30 an interval between to 5 
consecutive percentiles may be composed out of cells different from the ones in the 6 
same interval at day 5.  7 
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Figure 4. A comparison of model results with the observation of the telomere length 1 
percentiles at day 30 for one specific nestling. (a) The deterministic model is given by 2 
(1) with parameter values (3): the computed lengths at day 30 are connected by a curve. 3 
For the same parameter values the Brownian motion (A7)-(A8) gives the result 4 
indicated by (+).  For the parameter values (4) obtained from a parameter estimation, 5 
based on the Brownian motion model, one run of that model gives percentiles indicated 6 
by (× ). (b) The simulation result obtained by a Poisson process with values (4) is 7 
indicated by (O).  8 
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Table I. Estimates of the parameters a and c of the 2-parameter model and the 1 
contribution of the corresponding two terms to the length decrease. In the text it is 2 
explained how these contributions are computed. The estimate for the 1-parameter 3 
model is given as well.  4 
 5 

# parameters a c *SSR (·108) f(a) f(c)
1 0 9.3 2.14 0 9.3 
2 0.22×10-6 4.5 2.08 4.4 4.5 

* Sum of Squared Residuals 6 
7 
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>Data from juvenile Corvids shows length dependent telomere shortening. 1 
>Telomere shortening from oxidative stress is modelled by a Poisson process. 2 
>The 2-parameter telomere model covers shortening from replication and stress.   3 
 4 




