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Abstract

Classical antiviral therapies target viral proteins and are consequently subject to resistance. To counteract this limitation,
alternative strategies have been developed that target cellular factors. We hypothesized that such an approach could also
be useful to identify broad-spectrum antivirals. The influenza A virus was used as a model for its viral diversity and because
of the need to develop therapies against unpredictable viruses as recently underlined by the H1N1 pandemic. We proposed
to identify a gene-expression signature associated with infection by different influenza A virus subtypes which would allow
the identification of potential antiviral drugs with a broad anti-influenza spectrum of activity. We analyzed the cellular gene
expression response to infection with five different human and avian influenza A virus strains and identified 300 genes as
differentially expressed between infected and non-infected samples. The most 20 dysregulated genes were used to screen
the connectivity map, a database of drug-associated gene expression profiles. Candidate antivirals were then identified by
their inverse correlation to the query signature. We hypothesized that such molecules would induce an unfavorable cellular
environment for influenza virus replication. Eight potential antivirals including ribavirin were identified and their effects
were tested in vitro on five influenza A strains. Six of the molecules inhibited influenza viral growth. The new pandemic
H1N1 virus, which was not used to define the gene expression signature of infection, was inhibited by five out of the eight
identified molecules, demonstrating that this strategy could contribute to identifying new broad anti-influenza agents
acting on cellular gene expression. The identified infection signature genes, the expression of which are modified upon
infection, could encode cellular proteins involved in the viral life cycle. This is the first study showing that gene expression-
based screening can be used to identify antivirals. Such an approach could accelerate drug discovery and be extended to
other pathogens.
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Introduction

Antiviral drug development is currently based on two

approaches: i) the conventional approach of inhibiting the activity

of a viral enzyme which often leads to the emergence of drug

resistant viruses due to viral genomic variability and ii) the more

recent approach of targeting cellular factors that are required for

viral replication. Indeed, coding for a limited number of proteins,

viruses hijack the cellular machinery and rely on many host

proteins for their replication. The major recognized advantage of

targeting a host factor is therefore to limit the development of

resistance as the virus cannot replace a missing cellular protein [1].

Such an approach has been used in antiretroviral therapy with the

development of a CCR5 antagonist showing promise as an anti-

HIV drug [2]. We have also demonstrated that this strategy is

efficient at inhibiting the replication of herpes viruses resistant to

conventional antivirals [3]. In influenza research, the effective in

vitro and in vivo inhibition of two different cellular pathways

without inducing resistance has been reported, and both are

currently undergoing preclinical trials (recently reviewed in [4]).

Targeting cellular proteins may provide another crucial

advantage: if a cellular pathway is critical to the viral cycle,

agents that target such a pathway should represent potential

broad-spectrum antivirals. The influenza virus represents a

constant threat to public health due to the emergence of new

viral strains and is therefore an ideal model on which to test this

hypothesis.

Belonging to the orthomyxoviridae family, influenza viruses

have genomes composed of single-stranded RNA and are classified

into three types: A, B and C according to their internal protein

sequences [5]. The influenza A viruses are further subtyped based

on the antigenicity of the two envelope glycoproteins hemagglu-

tinin (HA) [H1 to H16] and neuraminidase (NA) [N1 to N9]. All

influenza A subtypes are endemic in aquatic birds but only two,
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H1N1 and H3N2, are presently circulating among humans. Since

the influenza genome is segmented, two different viral strains

infecting the same cell are able to reassort their genomic segments.

Variability can also be due to the low fidelity of the viral RNA

polymerase, which causes yearly epidemics owing to an antigenic

drift in glycoproteins. Novel pathogenic strains of the influenza

virus have also emerged with antigenically different HA and/or

NA and have caused three pandemics in the 20th century: the

Spanish influenza (H1N1) in 1918, responsible for approximately

50 million deaths; the Asian influenza (H2N2) in 1957 during

which about 2–4 million people died; and the Hong Kong

influenza (H3N2) in 1968 responsible for 1–2 million deaths [6].

Considering this pandemic potential and with up to 500,000

annual deaths worldwide during usual winter outbreaks, influenza

A viruses represent a major public health concern [7]. Prevention

relies on vaccination which has several major limitations including

the lag time for vaccine preparation and the low vaccination

coverage rate. Once a patient becomes infected, the current

etiologic treatment of flu relies on M2 channel blockers or NA

inhibitors [8]. However, these existing therapies are inappropriate

for use in cases of severe infection and may be limited due to the

risk of rapid emergence of drug resistant viruses. Thus there is an

obvious need to complement existing therapies with new anti-

influenza drugs.

To search for new antivirals, we hypothesized that common

viral effects on cell metabolism should occur after infection with

different avian and human influenza viruses and that this pattern

should lead to the identification of drugs effective on all influenza

A viruses potentially. We first sought to identify a common gene

expression signature following the infection with different human

and avian influenza A viruses. While several microarray analyses

have already compared the pandemic 1918 H1N1 virus [9,10] or

some H5N1 strain [11,12] to other less pathogenic strains, our

study is the first to demonstrate that a global influenza-induced

gene-expression signature can be defined. This proof-of-concept

study was conducted on a home-made nylon array using a human

pulmonary epithelial cell line infected by five influenza A virus

subtypes (H1N1, H3N2, H5N1, H5N2 and H7N1). Using this

signature, we determined if molecules disturbing this pattern of

infection would have a broad-influenza antiviral effect. By

consulting the Connectivity Map, a database of drug-associated

gene expression profiles [13,14], we identified molecules that

induced gene expression changes after cell treatment that were

mainly opposite to those induced by infection. These molecules

were tested in vitro for their effect on the five different viruses. To

confirm our methodology, we took the opportunity of using the

new emerging pandemic H1N1 virus as a model to test the effect

of these molecules on a new unknown virus.

Materials and Methods

1 Cell lines and viruses
Cells of the human lung epithelial cell line A549 were grown as

monolayers in Dulbecco’s modified Eagle’s medium (DMEM)

supplemented with 10% fetal bovine serum, 2 mM L-glutamine,

100 U of penicillin/mL, and 100 mg of streptomycin sulfate/mL

at 37uC.

Influenza viruses A/New Caledonia/20/99 (H1N1), A/Mos-

cow/10/99 (H3N2), A/Lyon/969/09 (H1N1 SOIV), A/Turkey/

582/2006 (H5N1), A/Finch/England/2051/94 (H5N2), and A/

Chicken/Italy/2076/99 (H7N1) were produced in MDCK cells in

EMEM supplemented with 2 mM L-glutamine, 100U of penicil-

lin/mL, 100 mg of streptomycin sulfate/mL and 1 mg of trypsin/

mL. Viruses were titrated to determine tissue culture infection

dose 50% (TCID50) in MDCK cells as described in our previous

study [15].

For the microarray analysis, A549 cells were infected for 24 h at

37uC with influenza viruses at a multiplicity of infection (moi) of 1 in

DMEM supplemented with 2 mM L-glutamine, 100 U of penicil-

lin/mL, 100 mg of streptomycin sulfate/mL and 0.5 mg of trypsin/

mL (infection medium). This moi was chosen to ensure that 100% of

the cells were infected 24 h postinfection. The microarray

experiments were performed in five independent replicates.

For kinetics on A549 cells, confluent cells were infected with

influenza viruses at a moi of 0.1 or 2 for one hour under a minimal

volume of infection medium at 37uC. The cells were then overlaid

with fresh infection medium and incubated at 37uC. Samples of

supernatants were collected at defined time points and stored at

280uC until end point titration assays (TCID50) in MDCK cells.

2 RNA preparation and hybridization to the gene chip
Total RNA was extracted from cell pellets using an RNeasy

Mini Kit (Qiagen,Valencia,CA) for the BSL2 viruses. For H5N1

infections, total RNA was extracted with Trizol LS (Invitrogen).

mRNAs were labeled with 33P for the reverse transcription using

the Superscript III RT (Invitrogen), (a33P)dCTP and an

oligodT25. Generated cDNAs were hybridized on home-made

Nylon microarrays (HuSG9k) containing 9216 spotted IMAGE

human cDNA clones, representing 8682 genes and 434 control

clones [16]. Further details on the HuSG9k microarray are

available on the TAGC website (http://tagc.univ-mrs.fr/). All

membranes used in this study belonged to the same batch. After

hybridization and exposure on Micro Imager, arrays were scanned

in a Fuji BAS 5000 machine and hybridization signals quantified

using the BZ Scan Software [17]. Primary data, in accordance

with the proposed MIAME standards, are accessible through

GEO Series accession number GSE22319 (http://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc = GSE22319).

3 Data normalization and analysis
Data files were loaded and analyzed with R (v2.9.2) and

Bioconductor (v2.4.1) [18], using the NylonArray library developed

by the TAGC to support BZScan2 files (library available upon

request). Raw data were normalized by quantile normalization.

Supervised analysis (supervised methods aim at finding a set of genes

whose expression profiles best correlate with a known phenotype)

between groups Infected and Mock samples was conducted using the

Significance Analysis of Microarray algorithm (SAM) [19], using the

siggenes library (v1.18.0) [20]. All statistical analyses involved

corrections for multiple comparisons (Benjamini and Hochberg)

[21]. Agglomerative hierarchical clustering was performed by the

pairwise average-linkage method using the Pearson correlation

distance (Cluster 3.0, Eisen, Stanford University).

4 Quantitative real-time RT-PCR validation
To validate the microarray results with real-time RT-PCR

assay, another set of A549 cells were infected with influenza viruses

at a moi of 1 and total cell RNA was extracted at 24 hpi with

Trizol LS (Invitrogen). Five hundred ng of total RNA were reverse

transcribed using oligo(dT)18 and RevertAid M-MuLV (Fermen-

tas) according to the manufacturer’s instructions. One mL of

cDNA was then amplified and analyzed in the 7500 Real Time

PCR System (Applied Biosystems) using the Platinum(R) SYBR(R)

Green qPCR SuperMix-UDG kit (Invitrogen) according to the

manufacturer’s instructions. Six genes were chosen according to

their level of expression (Fold change in log2 . 2 or ,22) and the

availability of primers for the quantitative PCR (Table S1).

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA was
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used as an internal control. The reaction mix contained a total

volume of 20 mL and the thermal cycling consisted of UDG

incubation at 50uC for 2 min, 40 cycles of 95uC for 15 s and 60uC
for 33 s for amplification. All data were normalized to the internal

standard GAPDH mRNA. For each single-well amplification

reaction, a threshold cycle (Ct) was observed in the exponential

phase of amplification. Relative changes in gene expression were

determined using the 2DDCt method as previously described [22]

and reported as the n-fold difference relative to a control cDNA

(mock cells) prepared in parallel with the experimental cDNAs

(infected cells). Statistical significance was calculated using Welch’s

two sample t-test between mock and infected samples using R

software.

5 In silico experiment: query the Connectivity Map with
the infection signature

To select potential antivirals, an unbiased in silico search for

molecules that reverse the infection signature identified in the

present study was performed using the publicly available Connec-

tivity Map database (build 02) [13]. The Connectivity Map (also

known as CMAP) is a collection of genome-wide transcriptional

data from cultured human cells treated with different kinds of

molecules. The 20 most differentially expressed genes in the

infection state (Fold Change in log2 . 2 or ,22) were selected from

the initial 300 gene set identified by SAM. These were then mapped

to the U133A probe sets in order to query the Connectivity Map

database. In total, 28 U133A probe sets mapped to the selected

genes from this study. The connectivity scores and p-values were

obtained using the CMAP algorithm [13].

6 Molecules
2-aminobenzenesulfonamide (Sigma), calcium folinate (Sigma),

harmol hydrochloride (MP Biomedical), merbromine (Sigma),

midodrine (Sigma) and ribavirin (Valeant Pharmaceuticals) were

dissolved in sterile water to a stock concentration of 5 g/L, 5 g/L,

4 g/L, 3.4 g/L, 5 g/L and 10 mM respectively. Rilmenidine

(Sigma) was dissolved in dimethylsulfoxide (DMSO) to a stock

concentration of 13 g/L and brinzolamide was in suspension at

10 g/L in the collyrium AZOPT.

Sulfameter (Sigma), pyrvinium (Sigma), moxalactam (Sigma)

and methylbenzethoniumchloride (Sigma) were dissolved in sterile

water to a stock concentration of 50 g/L. Alvespimycin (Sigma)

was dissolved in sterile water to a concentration of 0.03 g/L.

Sulodictil (Sigma) and DL-Thiorphan (Sigma) were dissolved in

DMSO to a concentration of 50 g/L.

7 Viability assays
Cell viability was measured by the neutral red assay, an

indicator of cytotoxicity used in cultures of different cell lines [23]

with the same sensitivity as the MTT assay [24,25]. The neutral

red assay is based on the initial protocol described by Borenfreund

and Puerner (1984) and determines the accumulation of the

neutral red dye in the lysosomes of viable, uninjured cells. Cells

were seeded into 96-well plates and treated with molecules or

solvent. 72 h after treatment, cells were incubated for 3 h with

neutral red dye (100 mg/ml) dissolved in serum free medium

(DMEM). Cells were then washed with phosphate buffered saline

(PBS) and fixed in a formol/calcium mix (40%/10%) for 1 min

before being lysed with EtOH/AcCOOH, (50%/1%) followed by

gentle shaking for 15 min until complete dissolution was achieved.

Absorbance at 550 nm was measured using a microplate

spectrophotometer system (Microplate Reader 2001, BioWhit-

taker) and results were presented as a ratio of control values.

8 Neuraminidase assay
Standard fluorometric endpoint assays used to monitor NA

activity was recently shown to be suitable to quantify influenza

virus in a high-throughput screening test [26]. Briefly, cell

supernatants (25 ml) were transferred to a black 96-well plate

and 75 ml of 29-(4-methylumbelliferyl)-alpha-N-acetylneuraminic

acid (MUNANA, Sigma Chemical Co.) to a final concentration of

50 mM were added. After incubation of the plate at 37uC for 1 hr,

150 ml stop solution (0.05 M glycine, pH 10.4) was added to each

well and the fluorescence read on a FluoStar Opima (BMG

Labtech) with excitation and emission filters of 355 nm and

460 nm respectively. Relative fluorescence units (RFU) were

corrected by subtracting specific blanks, ie medium with or

without molecules.

For the NA activity test on L3 viruses (H5N1), viruses were

inactivated as previously described [27]. Cell supernatants were

mixed with freshly prepared Triton X-100 to a final concentration

of 1% (vol/vol) Triton X-100 and incubated for 1 h at room

temperature. The inactivated supernatants were then transported

out of the BSL3 to the BSL2 laboratory and used for NA assays as

described above.

Potential interference of test molecules on the NA enzymatic

activity was tested by incubating the A/Moscow/10/99 (H3N2)

viral stock diluted in DMEM (107.8 TCID50/mL final) with

increasing concentrations of the test molecule (or DMEM for

control) for 0.5 h at room temperature. Specific blanks were

measured for each molecule. 25 mL were used for the NA test as

described above and results were expressed as a ratio of corrected

RFU of the sample to RFU of controls. Two independent

experiments were performed in duplicate.

9 Viral growth assays in the presence of the molecules
For the viral growth assays in the presence of the molecules,

A549 cells were seeded into 96-well plates at 0.156105 cells per

well and cultured for 3 days to 100% confluence. Cells were then

washed with DMEM and incubated with various concentrations of

the different molecules diluted in infection medium (DMEM

supplemented with 2 mM L-glutamine, 100 U/mL penicillin,

100 mg/mL streptomycin, 20 mM HEPES and 0.5 mg/mL

trypsin). Six hours after treatment, cells were infected with

influenza viruses at a moi of 2 or 0.2 by adding 25 mL per well

of virus diluted in infection medium. Infection was allowed to

proceed for 65 h at 37uC, 5% CO2 after which 25 mL of

supernatant were collected for the NA activity test. Results are

expressed as a ratio of corrected RFU of the sample to RFU of

control (incubation with infection medium without test molecule).

To check for cytotoxicity, viability assays were performed in

parallel to each viral growth assay.

10 Test of infection efficiency after cell or virus
pre-incubation with the molecules

A549 cells were seeded into 96-well plates at 0.156105 cells per

well and cultured for 3 days to 100% confluence. For the ’Cell

Preincubation’ test, cells were washed with DMEM and incubated

with various concentrations of the different molecules diluted in

200 mL per well of infection medium for 14 h. After two washings

with DMEM, cells were infected with influenza A/Moscow/10/99

(H3N2) virus at a moi of 7 during 15 min and washed twice with

infection medium. Infection was allowed to proceed for 5 h at

37uC. For the ‘Virus Preincubation’ assay, the molecules were

diluted in infection medium and A/Moscow/10/99 (H3N2) viral

stock (108.8 TCID50/mL) was treated with increasing concentra-

tions of the molecules for 14 h. Cells were then washed with
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DMEM and incubated for 15 min with the virus and molecule

mix diluted 12 times. Infection was allowed to proceed for 5 h at

37uC. In both assays, the number of infected cells was estimated

with a NA test. Cells were washed with PBS and lysed by shaking

for 1 h with 25 mL per well of Triton 1X. The cell lysis extracts

were used for a neuraminidase test as described above. Results

were expressed as a ratio of corrected RFU of sample to RFU of

control (solvent treated infections). Statistical significance was

calculated in comparison to results for control cells using two tailed

Welch t test.

11 EC50 and CC50 calculations
Viability and antiviral data were analyzed using the following

three-parameter non linear logistic regression (l3) function [28]

y~Dz
D

1z
x

E

� �B

were y is the response, D is the upper limit (response when the

dose x is ‘infinite’), E is denoted EC50 or CC50 and is the dose

producing a response half-way between the upper limit and lower

limit (0), and B is the relative slope around E. This model is the

shortened form of the four parameter logistic function where the

lower limit is fixed to 0. Results were obtained by fitting the l3

function using the package drc [29] in the R Statistical Language

(version2.7.1). Parameters of the l3 model were estimated and

fitted curves were plotted only if the data set contained one

response ,D/2.

Results

1 Global transcriptional signature of influenza A infection
To characterize the global cellular gene-expression response to

influenza A infection, human pulmonary epithelium A549 cells

were infected with human A/New Caledonia/20/99 (H1N1) and

A/Moscow/10/99 (H3N2) and avian A/Turkey/582/2006

(H5N1), A/Finch/England/2051/94 (H5N2), and A/Chicken/

Italy/2076/99 (H7N1) influenza viral strains. These viruses are

herein referred to as H1N1, H3N2, H5N1, H5N2 and H7N1. A549

cells express both sialic acid a2,6- and a2,3-galactose receptors

[30,31] and were shown to be infected by human, avian and swine

influenza viruses [32,33]. Infections were performed at 37uC, a

temperature at which both human and avian influenza viruses

efficiently infect cell cultures [34] and at a moi of 0.1. In these

conditions, there was evidence of productive viral replication of all

viruses but with some kinetic and yield differences between viruses,

as determined by infectious titers (TCID50) of supernatants of

influenza virus infected A549 cells (Figure 1). The H5N1 virus titers

peaked higher and earlier (24 hpi) compared to other viruses titers.

Avian H7N1 and H5N2 viruses replicated with correct efficiencies,

similar to the human H3N2 virus. In contrast, the human H1N1

virus strain replicated slower (titers peaked at 65 hpi) and grew to

lower titers than other viruses (p-value ,0.05 at 24 hpi).

To determine the host gene-response to infection, total cellular

RNA was extracted at 24 hpi and submitted to reverse

transcription in the presence of 33P. Each condition was performed

in 5 independent replicates. All labeled cDNAs provided a good

radioactive intensity and were hybridized onto home-made nylon

microarrays containing 8782 IMAGE cDNA clones. All hybrid-

izations were of good quality according to signals within

acceptable range, number of features present, and signals from

control spots.

Supervised analysis of normalized gene expression data was

conducted using the SAM algorithm. This algorithm was used to

identify genes whose expression levels were significantly altered by

influenza infection. We set the delta threshold in the SAM analysis

to allow an acceptable false discovery rate (FDR) of 10%. We

found that the expression levels for a total of 300 genes

(representing 3.4% of the genes considered present on the chip)

differed significantly between mock and infected samples (Table

S2). Using the DAVID Bioinformatics Resources database, we

annotated this signature using the gene ontology (GO) terms. This

Figure 1. Comparison of viral replication kinetics between influenza viruses in A549 cells. A. A549 cells were infected at a moi of 0.1 with
influenza virus A/New Caledonia/20/99 (H1N1), A/Moscow/10/99 (H3N2), A/Turkey/582/2006 (H5N1), A/Finch/England/2051/94 (H5N2), and A/
Chicken/Italy/2076/99 (H7N1) and supernatants were collected at 24, 41, 48 and 65 hpi for end point titration assays. B. Each bar represents the mean
of viral titers at 24 hpi for two independent experiments and titers were statistically analyzed by the one tailed Welch t-test; *: titers greater than
H1N1 titers (p-value ,0.05), #: titers lower than H5N1 titers (p-value ,0.05).
doi:10.1371/journal.pone.0013169.g001
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revealed an enrichment of genes related to various cellular

processes such as protein complex biogenesis, membrane and

microtubule organization, DNA metabolic and catabolic process-

es, cell proliferation regulation, cell cycle and cell death (Figure 2).

A subset of six genes with absolute fold changes in log2 (FCs)

above 2 was selected to validate the microarray analysis by

quantitative RT-PCR (RT-qPCR) analysis: DNMT1, NTE and

CAPN1 that were found downregulated in infected cells and G1P2,

Figure 2. Gene enrichment analysis of the 300 genes of the infection signature. Discriminatory genes were analyzed by DAVID for
associations with particular Gene Ontology terms. The negative Log10(P-values) of enriched terms (plotted in bar) refer to how significant an
association a particular ontology term has with the gene list. The 30 most significant biological process are grouped according to their biological
meaning.
doi:10.1371/journal.pone.0013169.g002
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OAS1 and ICAM1 that were upregulated. The 6 genes were chosen

at random among the most 20 dysregulated genes upon infection.

This quantification was performed on new samples equivalent to

those used for the microarray analysis. Figure 3 shows the

confirmation by RT-qPCR of the microarray data. For each gene

and each strain, microarray FCs are presented as a black boxplot

and RT-qPCR results are depicted as a gray histogram. Results

from RT-qPCR were in good agreement with the cDNA

microarray analyses for five out of six genes tested. Indeed, except

for CAPN1 (p-value = 0.1), significant difference between infected

and non infected cells was also observed in quantitative RT-PCR

analysis (p-value ,0.05, Welch t-test), similar to DNA microarray

analysis. This result was acceptable considering that samples

analyzed by RT-qPCR were different from those used in the

microarray analysis.

To visually compare the changes in mRNA abundance for the

300 genes found to be influenced by influenza infection,

hierarchical clustering analysis in both dimensions was performed.

Results are depicted in the heatmap representation of Figure 4.

Dendrograms indicate the correlation between samples and genes.

We verified that mock samples were sorted together vs infected

ones. The H1N1 samples co-clustered with the mock samples

suggesting that infection with this strain induced few gene

expression changes. We verified this result by conducting a

virus-specific SAM analysis on the mock vs one virus samples. For

a FDR of 10%, only 36 genes were found to be regulated by H1N1

infection in comparison to 2298 genes by H3N2, 1510 by H5N2,

3020 by H7N1 and 1455 by H5N1. The main difference between

H1N1 and other viruses lay in the number of down-regulated

genes during infection. Whereas H3N2, H5N1, H5N2 and H7N1

influenza viruses induced a down-regulation of most of the genes

tested, a similar number of genes were down- and up-regulated by

H1N1 (highlighted by the blue vertical line in the heatmap

Figure 4). As H1N1 viral titer was lower at 24 hpi than titers of

other viruses (Figure 1B), the scope of gene-expression changes

induced upon infection correlated, at least partially, to the viral

replication efficiency of the virus-cell system used in this study.

Interestingly, out of the 300 genes of the global infection

signature, only 16 were upregulated in all infected cells. These 16

genes were associated to three GO biological process, including

two related terms, ‘‘viral reproductive process’’ and ‘‘viral

reproduction’’, that annotate genes encoding proteins involved

in the virus life cycle. Two genes were associated to these terms:

ICAM1, which is the major receptor for human rhinovirus [35],

and IRF7, which activates the expression of Epstein-Barr Virus

Latent Membrane Protein 1 [36] (p-value = 0.07 and 0.08,

respectively). While IRF7 has not been directly involved in

influenza virus life cycle yet, ICAM1 was recently identified as a

proviral factor that may be co-opted by influenza virus [37]. The

third associated biological process was the term ‘‘immune

response’’ (p-value = 0.04) annotating 4 genes (ICAM1, OASL,

OAS1 and CFD). Therefore, the upregulated genes were mostly

associated with the immunological response. Besides, seven of the

16 genes were interferon stimulated genes (ISGs): IFITM1,

Figure 3. Validation of microarray results by real-time quantitative RT-PCR analysis. Expression of 6 genes from DNA microarray analysis
(black cross) is compared with real-time quantitative PCR data (grey bar). Cross represent fold changes (mean 6 S.D.) given by the microarray analysis =
Log2 (normalized amount of target gene in infected samples) - Log2 (normalized amount of target gene in mock samples) (right). The formula used to
determine the amount of target gene in infected cells by RT-qPCR, normalized to GAPDH and relative to mock is: 22DDCt where Ct is the threshold cycle
and DDCt = (Ct target infected – Ct gapdh infected) – (Ct target mock – Ct gapdh mock). Bar represented Log2 expression level (mean6S.D.) of target
genes in two independent quantitative RT-PCR analysis (left).
doi:10.1371/journal.pone.0013169.g003
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ICAM1, IFIT3, OAS1, G1P2 (or ISG15), IRF7 and OASL. These

results were in accordance with previous studies showing the

upregulation of immune response associated genes in samples

infected in vitro and in vivo with various influenza viruses

[9,11,12,37,38,39,40]. Gene expression levels in each group of

samples are depicted in Figure S1. All ISGs were markedly more

up-regulated in H5N1 infected cells than in other samples. This

hyperstimulation has been described in other transcriptional

studies [11,40,41] reinforcing the validity of the experimental

cell-virus system developed in the present study.

2 In silico drug screening of the Connectivity Map
The Connectivity Map is a collection of genome-wide

transcriptional expression data from cultured human cells treated

with bioactive small molecules [13]. The associated website

provides tools to find molecules connected to the query signature

i.e. any list of genes associated with a biological test. The similarity

of the query signature to each of the reference expression profiles is

assessed and quantified by a normalized score, from -1 for a

molecule that reverses the signature to +1 for a molecule which

induces gene expression changes similar to the query signature.

Our strategy was to query the Connectivity Map with a list of

genes differentially expressed in infected cells to find molecules

that induced the opposite gene expression changes. We hypoth-

esized that such molecules may influence host cell metabolism in

such a way that effective viral replication would be altered.

A critical step in this screening was to define the query

signature. As the number of upregulated genes was very low

(5.3%) in the list of 300 genes defined by the analysis, a lack of

specificity resulting from a loss of information for up-regulated

genes could be introduced in drug selection if the signature was not

corrected for this bias. By selecting genes with the most drastic

changes in level of expression (fold change in log2 . 2 or ,22),

we were able to define a signature of 20 genes for influenza A virus

infection with similar amounts of those up and down regulated

(Figure 5A, Table 1).

By querying the connectivity map with this concise signature, we

obtained c-scores for 6100 instances, representing more than 1000

molecules in various conditions [14]. We selected those associated

with the most strongly anticorrelated signatures (negative enrich-

ment) and which had a p-value less than 0.5% (Figure 5B and 5C).

Applying this filtering step left us with eight candidate molecules:

harmol, rilmenidine, brinzolamide, ribavirin, calcium folinate,

2-aminobenzenesulfonamide, merbromin and midodrine (from

the most negatively correlated to the least negatively correlated

drug). The relevance of our selection was supported by the fact that

ribavirin, an already known influenza virus inhibitor, was identified

with a negative enrichment of -0.83 and a pvalue of 0.00157. Except

for the topical antiseptic merbromin, the other selected molecules

have various therapeutic indications (depicted in Table S3) but are

not referenced as antivirals.

Graphs in Figure 5C report how the different genes of the

infection signature behave in the expression profile of the selected

molecules. Although the genes down-regulated during infection are

generally up-regulated in response to the molecule and conversely

the up-regulated genes of the signature are globally down-regulated

by the molecule, none of the molecules available in this data bank

were able to completely reverse the infection signature.

3 Evaluation of the antiviral potency of the selected
drugs on H3N2 viral growth

We assessed the effect of the eight selected molecules on influenza

replication in vitro. Cell viability, as assessed by the neutral red

assay, and viral growth, as quantified by a neuraminidase (NA)

activity test, were conducted in parallel. Before using the NA activity

test as an indirect measurement for viral impairment, we checked

firstly that the different influenza viruses used in this study had

sufficient neuraminidase activities to be quantified using this method

(Figure S2A). For all tested viruses and for a signal to background

ratio between 2 and 70, the fluorescence was proportional to the

amount of virus present (TCID50/mL). During the evaluation of the

drug panel, all signal to background ratios were included between 2

and 70. Secondly, we controlled that the different molecules did not

inhibit the enzymatic activity of NA to be sure that a drop in RFU

would only reflect a drop of viral titer. While concentrations of

merbromin above 50 mM and harmol above 500 mM inhibited NA

activity, incubation of the virus with increasing concentrations of the

molecules otherwise resulted in no inhibition (Figure S2B).

Therefore, for these two molecules below these concentrations

and for other molecules of the drug panel, viral growth can be

assessed by a neuraminidase test.

Evaluation of the drug panel was first conducted on influenza

A/Moscow/10/99 (H3N2) virus. A549 cells were incubated with

increasing concentrations of the molecule for 6 h before infection.

This time was chosen based on the duration of treatment indicated

in the Connectivity Map to obtain similar cellular response before

infection [14]. Infection was allowed to proceed for 65 h which

represents multiple cycles of infection, however similar results were

observed at 24 and 48 hpi (Figure S3).

The viability data of five independent experiments are given in

Figure S4. The 50% cytotoxic concentrations (CC50) were

determined by regression analysis. The CC50 of calcium folinate,

2-aminobenzenesulfonamide and midodrine could not be deter-

mined since none of these molecules was cytotoxic at the highest

tested dose.

The effect of each of the molecules on viral growth was tested

using the H3N2 virus at a moi of 0.2 and 2. Dose-response curves

were fitted by regression analysis (Figure S5) and used to

determine the 50% effective concentration (EC50) of each

molecule if at least one response was inferior to 50%. Selective

indexes (SI) were calculated as CC50/EC50 and used to classify

selected molecules as inactive (SI,2), weak inhibitors (2,SI,10),

moderate inhibitors (10,SI,50) and strong inhibitors (SI.50)

(Figure 5). In agreement with previous observations [42], we noted

that SI were dependent on the moi, since molecules are more

effective at lower moi. In our conditions, at a moi of 0.2, two

molecules (calcium folinate and 2-aminobenzenesulfonamide)

were ineffective, two (harmol and merbromin) were weak

inhibitors, two (brinzolamide and midodrine) were moderate

inhibitors and one (ribavirin) was a strong inhibitor. At a moi of 2,

whereas brinzolamide was reclassified as a weak inhibitor, the

other molecules remained in the same class despite their SI being

Figure 4. Hierarchical clustering and heatmap of the 300 genes that discriminate mock and infected samples. Heatmap representing
the expression levels of the 300 genes differentially expressed between infected and mock cells. Red squares indicate the expression levels above the
median of the gene abundance across the sample and green squares the expression levels below. The median values were clustered hierarchically in
both dimensions. Dendograms indicate the correlation between groups of samples (horizontal) and genes (vertical). Vertical lines in the right portion
indicate the 2 distinct gene expression patterns: up and down-regulated genes during infection. The blue line stands for the genes down-regulated in
samples infected with H1N1 influenza virus. Gene expression data for the 300 genes are reproduced in table S2.
doi:10.1371/journal.pone.0013169.g004

Influenza Signature Inversion

PLoS ONE | www.plosone.org 8 October 2010 | Volume 5 | Issue 10 | e13169



Influenza Signature Inversion

PLoS ONE | www.plosone.org 9 October 2010 | Volume 5 | Issue 10 | e13169



weaker. As an example, the CC50 for midodrine was superior to

4250 mM and EC50 was comprised between 322 mM (moi of 0.2)

and 532 mM (moi of 2). Concerning rilmenidine, which was

dissolved in DMSO, it was not possible to conclude on an effect.

DMSO has previously been shown to be cytotoxic and to inhibit

influenza infection above 4% (vol/vol) [43] however it is still used

as a major solvent for molecules in high-throughput screening. In

this study, the CC50 for DMSO was 2.9% (v/v) - the concentration

used to obtain 1550.7 mM of rilmenidine- and the EC50 was

comprised between 1.0% (moi of 0.2) and 1.8% (moi of 2). The

EC50 of rilmenidine was significantly different from that of DMSO

at a moi of 2 (p = 2e24) but not at a moi of 0.2 (p = 0.85).

However, even if this molecule is considered ineffective against

the H3N2 influenza virus, we did obtain a very high confirmation

rate (62.5%) in comparison with the hit rate of classical high-

throughput screening (3.2% in [43]). This clearly indicates that

Figure 5. Gene expression-based screening identifies eight potential antiviral molecules. A. List of cellular genes chosen to query the
Connectivity Map. A circumscribed signature of infection was derived from the 300 genes discriminating mock and infected samples by selecting
genes with a fold change . 2 or ,22. The fold change is defined as the ratio of the mean gene expression in infected samples to the mean for the
corresponding mock infection in log2. This selection resulted in a list of 20 genes, 12 being up-regulated during infection and 8 down-regulated (see
Table 1). These genes constituted the signature used to query the online database Connectivity Map. B. Drugs with significant enrichment to
influenza virus infections in the Connectivity Map. Significance cut-off was set at p-value ,0.005. The permutation p-value estimates the likelihood
that the results would be observed by random chance. Mean: the arithmetic mean of the connectivity scores for the post-dose changes (or instances)
by the given molecule; n: the number of instances of a given molecule in the CMAP database; Enrichment: a measure of the enrichment of those
instances in the order list of all instances, Positive enrichment scores are of interest if perturbagens inducing the biological state represented by the
signature used to produce the result are sought. Likewise, if reversal or repression of the biological state encoded in the query signature is required,
perturbagens with negative enrichment scores are of interest. The specificity value is defined as the frequency at which the enrichment of a set of
instances equals or exceeds that of the same set of instances in queries executed on 312 published, experimentally derived signatures using the
Molecular Signatures Database. Lower values are associated with a greater specificity; the non null percentage represents a measure of the support
for the connection between a set of instances and a signature of interest based on the behavior of the individual instances in that set. C. 8 molecules
are negatively connected to influenza virus infection (p-value ,0.005). A graphical representation of the location of the signature of infection is
depicted for each molecule, taking the instance with the most negative connectivity score of each molecule. The x-axis represents the genes of the
expression profile of the molecule, rank ordered according to their differential expression relative to the control. The location of each gene of the
infection signature is appreciated along the x-axis.
doi:10.1371/journal.pone.0013169.g005

Table 1. Genes of the circumscribed signature of infection.

Gene Gene symbol I.M.A.G.E. CloneID Fold Change

Transcription Regulation

Ets variant gene 3 ETV3 1473929 7.24

Myocyte enhancer factor 2D MEF2D 4209 5.13

FBJ murine osteosarcoma viral oncogene homolog B FOSB 79022 22.69

DNA (cytosine-5-)-methyltransferase 1 DNMT1 768241 22.06

Ankyrin repeat and BTB (POZ) domain containing 2 ABTB2 204456 2.28

Immune response

ISG15 ubiquitin-like modifier, G1P2 ISG15 742132 3.48

29,59-oligoadenylate synthetase 1, 40/46kDa OAS1 666703 2.07

Complement factor D (adipsin), DF CFD 666128 2.99

Cell surface protein

Patatin-like phospholipase domain containing 6, NTE PNPLA6 431990 22.01

Heparan sulfate proteoglycan 2 HSPG2 3339 22.23

Solute carrier family 2 (facilitated glucose transporter) SLC2A2 207963 2.23

PTPRF interacting protein, binding protein 1 (liprin beta 1) PPFIBP1 263094 2.04

Intercellular adhesion molecule 1 (CD54) ICAM1 3383 3.36

Lysophosphatidic acid receptor 1 LPAR1 505524 3.63

Enzyme

Hyaluronoglucosaminidase 4 HYAL4 668088 2.90

Asparagine-linked glycosylation 2 homolog ALG2 150443 2.35

Calpain 1, (mu/I) large subunit CAPN1 70555 22.20

Protein phosphatase 1, PP1 PPP1R14D 140525 23.13

Nuclear protein

Karyopherin (importin) alpha 6 KPNA6 16650 22.21

Hypothetical protein HSPC111 NOP16 505242 22.08

Fold Change = log2(Inf/Mock).
doi:10.1371/journal.pone.0013169.t001
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our in silico screening was effective and strongly supports its power

at selecting the antivirals: harmol, merbromin, brinzolamide,

midodrine and ribavirin.

4 Antiviral effects of most of the molecules are due to an
action on cells rather than on viruses

Molecules selected by the in silico screening were chosen from

the Connectivity Map based on the gene expression changes they

induce in treated cells. To check that the antiviral properties of the

five efficient molecules were actually mediated by an action on

cells and not by an indirect effect on the virus, we conducted two

assays in parallel in which either the cells or the H3N2 virus

were preincubated with a series of concentration of the molecules.

The efficiencies of infection were estimated by measuring the

neuraminidase activity associated to cells at an early time of

infection. In the preincubated cells assay, cells were in contact with

molecules for 14 hours before being infected with H3N2 virus

without any drugs. As the cells were washed twice before infection,

we assumed that the virus should not be in contact with the

molecules during infection. Thus the molecules should not alter

the viral structure nor change parameters playing a direct role on

viral entry (as the extracellular pH for example). Consequently an

inhibition of infection in this assay would mean that the molecule

had an effect on cells. In contrast, in the preincubated virus test,

the viral stock was treated with the molecules during 14 hours

while the cells were in contact with molecules though after dilution

and for only 15 minutes during infection. We assumed that this

exposure time and molecule concentrations were too low to induce

any effect on the cells. If a molecule should inhibit viral growth by

altering the functional properties of the virus (viral structure or

surface glycoprotein), infection would be inhibited in the

preincubated virus condition but not in the preincubated cells one.

Results of both tests for the five efficient molecules are depicted

in Figure 6. After preincubating the viral stock with the molecules,

a few infection efficiencies were significantly different of the

control (p-value ,0.05, two tailed Welch t-test). However, except

for merbromin, infection efficiencies after virus preincubation

were included between 64% (for ribavirin c = 400 mM) and 110%

of the control (for rilmenidine c = 8 mM). Therefore, the different

drugs exerted very limited effects on the virus. In contrast,

statistically significant inhibitions of infection efficiency were noted

after cells preincubation with each molecule at higher concentra-

tions (above 10 mM for brinzolamide, 40 mM for harmol, 1 mM for

merbromin, 140 mM for midodrine, 160 mM for ribavirin and

80 mM for rilmenidine). Infection efficiency decreased to 23% for

brinzolamide (100 mM), 5% for harmol (800 mM), 2% for

merbromin (250 mM), 40% for midodrine (1400 and 4250 mM),

26% for ribavirin (800 mM) and 23%3 for rilmenidine (1600 mM).

We concluded from these tests that the antiviral effect of these

molecules is due to an action on cells rather than on the virus.

Merbromin on the other hand inhibited viral infection in both

assays. This was not surprising since this molecule is a topical

antiseptic known to inactivate influenza viruses [44]. However, our

results indicate that this molecule may also inhibit viral replication

through a cellular effect.

5 None of the molecules which are positively correlated
to the infection signature, impaired H3N2 influenza viral
growth

In order to control that the antiviral effect of the molecules is

specifically associated with inversion of the infection signature, we

assessed the effect of some molecules positively correlated to the

signature. Seven drugs, alvespimycin, DL-Thiorphan, latamoxef,

methylbenzethonium chloride, pyrvinium, sulfameter (or sulfame-

toxydiazine) and sulodictil, were chosen according to the following

criterion: p-value ,0.5%, mean . 0.35 and a specificity ,0.1

(Figure 5B).

Viability and viral growth assays were performed on A549 cells

infected with H3N2 virus at a moi of 0.2 and 2, as described for

negatively correlated drugs. Dose-response curves (Figure S6 and

S7) were used to determine CC50 and inhibitory EC50 (Table S4).

In these conditions, inhibitory SI were lower than 2, or than SI of

DMSO for DL-Thiorphan and Sulodictil. Thus none of the

positively correlated drugs inhibited viral replication at both moi.

In contrast, four drugs (alvespimycin, methylbenzethoniumchlor-

ide, pyrvinium and sulodictil) enhanced viral production at a moi

of 0.2. Increase of viral titers (TCID50/mL) was up to 2 log10 and

was statistically significant for alvespimycin, methylbenzetho-

niumchloride, and sulodictil 40 mM (p-value ,0.05, two tailed

Welch t-test). Therefore, these results strengthen our hypothesis

that modulation of host cell transcription may have an impact on

viral replication.

6 Some antivirals are effective against a broad range of
influenza A virus strains, including the pandemic H1N1
influenza virus

We hypothesized that one advantage of our gene-expression

based screening is that the selected molecules would have an

activity against various influenza A viruses. Indeed, since we

selected a gene signature of infection common to different human

and avian strains, we assumed this as a prevailing cellular response

to many influenza viruses. Therefore, we tested the effect of the

selected molecules on the viral growth of the different strains used

for the initial microarray analysis, i.e A/New Caledonia/20/99

(H1N1), A/Turkey/582/2006 (H5N1), A/Finch/England/2051/

94 (H5N2), and A/Chicken/Italy/2076/99 (H7N1). Two inde-

pendent assays in duplicate (4 replicates in total) for each virus

were conducted in the conditions previously defined for the H3N2

virus. EC50 and SI were determined for each molecule and are

summarized in Table 2, Table 3 and Figure 7. Molecules that

inefficiently inhibited growth of the H3N2 strain (2-aminobenze-

nesulfonamide and calcium folinate) were also inefficient against

other tested viruses. Conversely, the strongest H3N2 inhibitor,

ribavirin, was also classified as a strong inhibitor of all viruses

tested. However, ribavirin obtained different SI depending on the

viral strain tested, allowing the viruses to be classified according to

their sensitivities to this molecule: H3N2 . H5N2 and H1N1 .

H7N1 . H5N1. Other drug screening tests carried out previously

on MDCK cells (with an moi of 0.001) had already reported a

higher sensitivity of H3N2 viral strains compared to H1N1

[42,45]. In our tests, ribavirin EC50 was comprised between 6 mM

(for H1N1 and H3N2 with an moi of 0.2) and 632 mM (for H5N1

with an moi of 2) in concordance with previously published results

[42,45]. Midodrine, the second most active molecule against the

H3N2 strain, also showed an antiviral effect against both H1N1

(SI .2.7 for moi 2 and SI .142.5 for moi 0.2) and H5N2 (SI .2.5

for moi 2 and SI .8.9 for moi 0.2) viral strains. Brinzolamide was

a moderate inhibitor of human H3N2 and H1N1 influenza viruses

and a weak inhibitor of avian H5N2 and H7N1 influenza viruses.

Harmol weakly inhibited all viruses tested, as did merbromin the

EC50 for which were near to 50 mM, a concentration noted to

interfere with the neuraminidase activity test. Finally, rilmenidine

had an obvious antiviral effect on the H1N1 strain. Some of the

molecules identified by our approach were therefore able to inhibit

viral growth of all the viruses used to define the gene expression

signature of infection.
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To determine if this strategy identified broadly effective

influenza antivirals which could be active against emerging

influenza viruses, we tested their effect on the viral growth of the

recent pandemic H1N1 virus (referred to as H1N1 SOIV) (Figure

S8). Interestingly, in comparison with A/New Caledonia/20/99

(H1N1) virus, a weak to moderate antiviral effect was observed for

2-aminobenzenesulfonamide whereas rilmenidine was ineffective.

The other molecules had comparable effects on the two H1N1

virus strains, with brinzolamide, midodrine and ribavirin being the

most effective antivirals. The EC50 of ribavirin were comprised

between 61 mM (for an moi of 0.2) and 292 mM (moi of 2)

revealing a resistance to this molecule that was 4 (moi 2) to 10 (moi

0.2) times more in the H1N1 SOIV strain compared to the H1N1

strain (pvalue = 3.6e26 and 0.0012 respectively).

We compared drug sensitivities to viral growth curves of

different viruses after infection of A549 cells at two moi (Figure

S9). Viruses with good replication efficiencies and the faster

kinetics (H5N1 and H7N1) were the most resistant to the drug

panel. In contrast, selected antivirals had a better effect on delayed

replication viruses (H1N1 and H1N1 SOIV). Drug sensitivities

Figure 6. Antiviral effects of most of the molecules are due to an action on cells rather than on the virus. In the ‘Cell Preincubation’
assay, A549 cells were treated with increasing concentrations of the molecules or solvent for 14 h and washed twice before incubation with H3N2
influenza A virus at an moi of 7 during 15 min and infection for 5 h in medium without drug. In the ‘Virus Preincubation’ assay, H3N2 viral stock was
treated with increasing concentrations of molecules or solvent for 14 h and diluted 12 times before incubation with cells during 5 min and infection
for 5 h. In both assays, the number of infected cells was estimated with a neuraminidase test after cell lysis with Triton 1X. The normalized infection
efficiency was calculated as RFU in treated cells/RFU in control cells. Values represent the mean of two independent experiments (+/2 standard
deviation). Results of the preincubated cell test are plotted with colored dots and results of the virus preincubated assay are depicted with grey
bars. * and # indicate statistically significant differences of infection efficiency in comparison to untreated control cells (Welch two-sample t test,
pvalue ,0.05), for the preincubated cell test and for the preincubated virus test, respectively.
doi:10.1371/journal.pone.0013169.g006
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therefore partially correlated with viral growth kinetics. However,

some strain specificity may also account for drug sensitivities.

Indeed, H3N2 virus was one of the most drug sensitive virus, while

replicating as efficiently than H7N1 virus (but a bit slower).

To conclude, five molecules out of the eight potential molecules

selected by our in silico screening inhibited viral growth of the

H1N1 SOIV, a virus that was unknown when we first defined the

signature of infection and queried the Connectivity Map. These

results are promising and strongly indicate that this approach

identifies molecules with a broad anti-influenza spectrum of activity.

Discussion

The virally induced gene-expression signature
Influenza infection induces various intracellular signaling

cascades and important downstream gene expression host-cell

modifications [46]. Despite their host-range restriction that may

reflect the better adaptation to host factors [47], all influenza A

viruses can infect the same cells in vitro, prompting us to assume

that they may hijack common cellular proteins for their own

replication. This is the first study to compare the cellular gene

expression modifications induced by five different influenza A

virus subtypes. As already described in previous transcriptional in

vitro [40] and in vivo studies [11,12], we found that H5N1

infection induced a strong upregulation of interferon response

genes. This sustained hyperinduction has been correlated with the

high virulence of this virus in animal models [11,12]. In patients,

H5N1 infection results in a massive production of cytokines and

chemokines, referred to as the cytokine storm, which could be

responsible for the severity of the disease [48]. Here we observed

that H5N1 induced the expression of more, and to a greater

extent, inflammatory/immune response genes than any of the

other subtypes. Molecular mechanisms supporting the higher

activation of interferon signaling by H5N1 in comparison with

other subtypes remain undetermined. In contrast, we found that

A/New Caledonia/20/99 (H1N1) infection leads to the smallest

change in gene expression at 24 hpi. One could speculate that

H1N1 virus, as a human influenza virus, would be well adapted to

Table 2. Potency of the inhibitors against human influenza A viruses in A549 cells.

H1N1 moi 2 H1N1 moi 0.2 SOIV moi 2 SOIV moi 0.2 H3N2 moi 2 H3N2 moi 0.2

CC50 (mM) EC50 (mM) EC50 (mM) EC50 (mM) EC50 (mM) EC50 (mM) EC50 (mM)

2-Aminobenzenesulfonamide .6900 .690 .690 1821.67 533.83 .6900 6020

Brinzolamide 665.51 435.06 28.95 166.65 21.55 131.14 23.00

Calcium Folinate .2400 .800 .800 .2400 .2400 .2400 .2400

Harmol 94.98 60.36 20.53 53.74 6.76 20.07 11.68

Merbromin 103.80 29.55 61.98 37.53 .50 32.38 42.87

Midodrine .4250 1566.7 29.82 929.96 108.79 321.99 531.53

Ribavirin 29528 73.79 6.63 291.52 61.08 12.53 5.79

Rilmenidine 1125.3 506.22 24.22 1073 864.48 475.55 489.87

DMSO 1550.7 .1600 173.63 606.40 344.03 957.2 554.39

p-value (Rilmenidine, DMSO) p = 0.0026 p = ND p = 7e204 p = 0.6128 p = 0.3552 p = 2e24 p = 0.88

CC50: molecule concentration of 50% cytotoxicity; EC50: molecule concentration of 50% inhibition of viral replication; p-value: t-statistic for testing Rilmenidine values
equal to DMSO values.
doi:10.1371/journal.pone.0013169.t002

Table 3. Potency of the inhibitors against avian influenza A viruses in A549 cells.

H5N1 moi 2 H5N1 moi 0.2 H5N2 moi 2 H5N2 moi 0.2 H7N1 moi 2 H7N1 moi 0.2

CC50 (mM) EC50 (mM) EC50 (mM) EC50 (mM) EC50 (mM) EC50 (mM) EC50 (mM)

2-Aminobenzenesulfonamide .6900 .690 .690 .690 .690 .690 .690

Brinzolamide 665.51 .500 .500 232.40 145.61 551.05 139.19

Calcium Folinate .2400 .800 .800 .800 .800 .800 .800

Harmol 94.98 77.49 43.36 4.06 13.45 49.35 27.96

Merbromin 103.80 44.99 45.98 36.45 21.93 43.70 46.74

Midodrine .4250 .4250 3896.3 1670.7 475.58 .4250 .4250

Ribavirin 29528 632.27 48.36 16.40 6.71 32.39 12.47

Rilmenidine 1125.3 2037.7 1466.8 514.32 358.69 1050.4 777.85

DMSO 1550.7 .1600 1829.6 733.6 564.1 1109.3 801.08

p-value (Rilmenidine, DMSO) p = 0.0026 p = ND p = 0.40 p = 2e204 p = 0.1881 p = 0.53 p = 0.9

CC50: molecule concentration of 50% cytotoxicity; EC50: molecule concentration of 50% inhibition of viral replication; p-value: t-statistic for testing Rilmenidine values
equal to DMSO values.
doi:10.1371/journal.pone.0013169.t003

Influenza Signature Inversion

PLoS ONE | www.plosone.org 13 October 2010 | Volume 5 | Issue 10 | e13169



human A549 cells and could replicate in these cells with basal level

of proteins, thus without having to induce much gene-expression

changes. However a well adapted virus would efficiently replicate

in these cells. We performed replication kinetics in A549 cells with

the different viruses and observed that H1N1 virus grew to lower

titers than other viruses. Two hypothesis can be formulated to

explain the correlation between the weak growth of H1N1 virus

and the few changes of host transcription. Either the reduced virus

replication efficiency of H1N1 virus is responsible for the lower

host response. This is supported by previous study where the

replication efficiency of the virus-cell system accounts for the level

of the host innate immune response [49]. Or it is also possible that

H1N1 viral replication is impaired because of its inability to

modulate the host response, especially to induce proviral

pathways. This hypothesis is based upon previous demonstration

that stronger virus-induced MAPK activation resulted in higher

viral replication efficiency [50].

Nevertheless, beyond these subtype-specific profiles, we were

able to identify a list of 300 genes differentially expressed in both

mock and infected samples. Strikingly, only about 5% of these

genes were upregulated. A similar imbalance has previously been

observed in other transcriptional profiles of infected cell lines

[40,51]. One could hypothesize that this may reflect the virally-

induced cellular arrest of protein expression and could be due to

the 59cap snatching and subsequent degradation of cellular mRNA

[52] and/or the inhibition of processing and export of cellular

mRNA by NS1 [53]. Nevertheless these downregulated genes

represented only 3.3% of the total number of genes detected,

suggesting that a selective inhibition of their expression may occur

during infection. The downregulated genes are implicated in

different cellular processes such as ATP binding, regulation of

translation, cellular protein complex assembly, glucose metabolic

processes, cell cycle and apoptotic mitochondrial changes. On the

other hand, the 16 genes found upregulated are specifically

associated with innate cellular immunity. Seven of these are

induced by interferon: OAS1, ISG15, IRF7, OASL, ICAM1,

IFITM1, and IFIT3. These 7 ISGs have already been found

upregulated together with other interferon genes upon H1N1 PR8

endothelial primary cell cultures infection [37] (Table S5). We also

found an upregulation of CFD, a gene coding for a component of

the alternative complement pathway. Complement is an impor-

tant player in immunity and is induced by influenza infection

[11,54,55]. Other induced genes of the infection signature

determined in this study have never before been associated with

influenza infection. They include ETV3 which encodes a

transcriptional repressor [56] that could be partially responsible

for the downregulation of other genes belonging to the signature.

Signature use for drug screening
Here we identified a list of genes whose expression is

significantly altered during infection with different human and

avian influenza virus subtypes. Since the outcome of infection

appeared successful in our experimental conditions, it can be

concluded that such a virally-induced cellular environment is

favorable for virus replication. We therefore hypothesized that any

molecule able to inverse the infection signature should be harmful

to influenza virus replication. In contrast to many published

transcriptomic studies [1,11], we did not focus on a particular gene

with a known function or large annotation that can be assumed to

have a link with viral infection. To conduct the in silico screening,

we filtered the infection signature genes according to their level of

expression and selected the twenty most differentially expressed

(with statistical significance) between mock and infected cells. We

therefore took into account all of the information retrieved from

the transcriptional analysis, which was a major advantage when

using the Connectivity map. We selected eight molecules which

induced gene expression modifications which anti-correlated with

the infection signature. The hit-rate for this in silico screening was

0.53%.

Our experimental strategy presented several limitations: (i) we

used a nylon microarray containing only 8000 genes thus meaning

that the transcriptional profile of infected cells is incomplete; (ii)

Figure 7. Antiviral potency of the 8 negatively correlated molecules on different influenza A viruses (moi 0.2 and moi 2). Selective
indexes (SI) were calculated as CC50/EC50 (Tables 2 and 3) and used to classify molecules as inactive (SI,2), weak inhibitors (2,SI,10), moderate
inhibitors (10,SI,50) and strong inhibitors (SI.50).
doi:10.1371/journal.pone.0013169.g007
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this profile was assessed for an established cell line, A549, which is

different from those used in the Connectivity Map (MCF7, HL60

and PC3); (iii) the Connectivity Map contains data for only 1000

molecules and none of the molecules we identified was able to

induce a full inversion of the infection signature (Figure 5C).

Despite these limitations, seven molecules out of the eight selected

by the in silico screening presented an antiviral effect on at least

one of the tested viruses (87.5% of molecules confirmed). 2-

aminobenzenesulfonamide and rilmenidine had only a modest

antiviral effect on one specific virus (respectively H1N1 SOIV and

H1N1 New Caledonia). Harmol and merbromin were weak

inhibitors of most of the tested viruses. Brinzolamide and

midodrine were weak to moderate inhibitors of most of the tested

viruses. As expected, ribavirin was a strong inhibitor of all tested

viruses. In light of these results, we conclude that we have

identified a common signature whose partial inversion is strong

enough to inhibit viral replication.

Hypothesis on the mechanisms supporting a molecule’s
antiviral effect

We cannot rule out that some in silico selected drugs exert a

possible direct effect on a viral activity or on a cellular pathway

exploited by the virus. Among the seven molecules, three in

particular could have such an effect: ribavirin and merbromin

which could both directly inhibit a viral function, and harmol

which could inhibit a proviral pathway. Harmol is a beta-carboline

alkaloid of the medicinal plant, Perganum harmala L. (Zygophyla-

ceae). Few specific effects are described for harmol except that it

exerts a psychoactive effect by inhibiting monoamine oxydase

[57], moderately inhibits platelet aggregation by inhibiting PLCc2

[58] and induces apoptosis in some cell lines by activating caspase

8 [59]. PLCc2 is implicated in the protein kinase C (PKC)

activation pathway, the activity of which is crucial for influenza

virus entry [60]. Therefore its inhibition by harmol could in part

be responsible for the antiviral effect shown by this molecule.

Likewise, activation of apoptosis could limit viral replication [61].

However, three types of evidence support our hypothesis that

the selected molecules have an antiviral effect by modifying the

host cell gene expression. First, the results of our test of infection

efficiencies demonstrate that none of the molecules except for

merbromin had an effect on viral structure or function before

infection (Figure 6). Second, the high confirmation rate of the in

silico selected drug panel validate the rational of the selection.

Last, some molecules that regulated the host cell transcription in

the same way that influenza virus infection enhanced viral

production.

To our knowledge, modulation of the cell gene expression has

never been described to support the effects of the in silico selected

drug, except for ribavirin. This antiviral drug with in vitro activity

against both DNA and RNA viruses [62], has several mechanisms

of action proposed to support its antiviral effect (reviewed in [63]:

i) the depletion of the intracellular GTP-pool by inhibition of

inosine monophosphate dehydrogenase compromises the synthesis

of progeny viral RNA; ii) the inhibition of viral RNA-dependent

RNA polymerase activity has been shown for hepatitis C and

influenza viruses; and iii) it could act as a RNA virus mutagen

causing error catastrophe). Which mechanisms contribute to its

anti-influenza effect in vivo remains undetermined. In this study,

we selected ribavirin because it inversed the gene expression

signature of infection, which could highlight a new potential

antiviral mechanism of this molecule. An effect of ribavirin on the

cellular gene expression has been reported to contribute to its

antiviral effect on the respiratory syncytial virus (RSV) [64] and

the hepatitis C virus (HCV) [65]. In these studies, ribavirin

enhanced the expression of ISG in infected cells. It was concluded

that ribavirin potentiates the interferon response induced by

peginterferon (during treatment of HCV) [65] or induced by RSV

infection [64]. However, ribavirin has also been shown to alter the

expression of many genes implicated in various other cellular

pathways such as apoptosis [66], cell cycle control or intracellular

signaling [64]. We propose that these modifications contribute to

its antiviral effect.

Does this study now allow us to define co-factors and
antiviral proteins?

None of the selected molecules fully inversed the infection

signature. Therefore to try to identify anti or proviral factors, we

first searched for genes whose expression could be inverted by all

effective molecules. This was the case for only one gene, calpain 1,

which was up-regulated by all the selected molecules and down-

regulated during infection. The calpains, or calcium-regulated

non-lysosomal thiol-proteases, are ubiquitous enzymes which

catalyze limited proteolysis of substrates involved in cytoskeletal

remodeling and signal transduction. We found no data in the

literature describing any antiviral role for calpain 1. Such potential

activity remains to be tested in the future.

It is also possible that each different molecule exerts its antiviral

effect through different mechanisms and different combinations of

gene expression modifications could be implied. These changes are

listed in the Connectivity Map but except for midodrine and

ribavirin, have yet to be confirmed by other studies. Midodrine is

the prodrug of desglymidodrine, which is an alpha1-adrenergic

receptor agonist used in the clinical management of patients with

orthostatic hypotension [67]. Its effect on cellular gene expression

can be derived from several microarray studies [68,69] showing

many transcriptional changes after stimulation of the alpha1

adrenoreceptor, involving for example genes encoding integrin-

mediated cell adhesion proteins and proteins involved in

hyaluronan signaling [70]. These observations are consistent with

the observed midodrine-induced downregulation of ICAM1 and

HYAL4 reported in the Connectivity Map. Both of these genes

were up-regulated during infection. Their potential role in the

influenza cell cycle remains to be determined.

Recently, several human RNAi screens identified host cell

factors which are required for influenza virus replication

[37,71,72,73]. We wondered if the 20 genes of the concise

infection signature were found to be important for the influenza

virus in any of these screens (Table S5). Notably, the concise

infection signature is specifically more enriched in regulators of

influenza infection than random chance (compared to 8676 genes

of the array, p-value = 0.0072 with Fisher’s exact test). Four genes

(SLC2A2, ICAM1, OAS1, ISG15) out of the 12 up-regulated genes

were defined as proviral factors in these screens [37,71,72]. Three

genes are ISGs: ICAM1, OAS1 and ISG15 that may be co-opted by

the virus. Their down-regulation by the drugs could support

partially their antiviral activity. On the other hand, none antiviral

factor was identified in the list of 8 genes down-regulated during

infection. This could be due to the low number of antiviral factors

found by published screens (180 in total [37,71], compared to 875

(unique) proviral factors [37,71,72,73]). Therefore, the down-

regulated genes of the infection signature can be considered as

potential antiviral factors, which should be further tested.

Outcomes and perspectives
To conclude, our investigation of transcriptional profiles of cells

infected with different strains of influenza A viruses highlights virus

specificity but, above all, has allowed us to define a universal

influenza A virus-induced gene expression signature. Here we
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proposed to correlate this signature to gene expression profiles of

cells treated by different molecules. This is the first study using the

Connectivity Map to identify antivirals thought to act at the

genomic level. One considerable advantage of some of these

antivirals is their potential broad spectrum of action against all

influenza A viruses, including novel pandemic viruses such as the

H1N1 SOIV.

Except for harmol, all the antiviral molecules tested in this assay

are approved for various different therapeutic indications. Our

drug repositioning strategy should therefore contribute to the

discovery of new alternative antivirals with accelerated regulatory

registration. In the event of an unknown emerging virus, this

approach may be of great interest to relatively quickly identify all

available commercialized drugs with potential antiviral effects.

This study conducted in vitro in an established human cell line

and with a nylon microarray represents a first proof of principle

study. To identify effective anti-influenza molecules for use in

clinical practice, we will now study the transcriptional response of

patients to infection using a pan-genome microarray. Gene

response to infection within a tissue in vivo should be more

complex, with many cell types being implicated and with those

infected being influenced by cytokines and the surrounding tissue.

Importantly, our dual experimental approach associating

transcriptional study and in silico screening could be transferred

to other pathogens. We are interested in identifying common

gene-expression signatures of different viruses causing the same

clinical disease to find useful therapies before etiologic diagnosis.

Supporting Information

Figure S1 Boxplots for the 7 interferon stimulated genes (ISGs)

upregulated during infection. These boxplots show the averaged

normalized expression values of the 7 ISGs in each group of

samples. The bottom edge of the box represents the 25th

percentile of the data while the top edge of the boxplot represents

the 75th percentile. The line inside the box represents the 50th

percentile of the data or the median.

Found at: doi:10.1371/journal.pone.0013169.s001 (0.13 MB TIF)

Figure S2 Neuraminidase assay is suitable for evaluation of the

drug panel. A. Neuraminidase activity can be used to quantify

virus. Different influenza viral stocks (A/New Caledonia/20/99

(H1N1), A/Moscow/10/99 (H3N2), A/Lyon/969/09 (H1N1

SOIV), A/Turkey/582/2006 (H5N1), A/Finch/England/2051/

94 (H5N2), and A/Chicken/Italy/2076/99 (H7N1)) were serially

diluted in DMEM. 25 ml of the viral dilutions were incubated with

75 mL of 20 mM MU-NANA for 1 hour at 37uC. Stop solution

was added before reading the fluorescence. The signal to

background ratio at each TCID50 is shown. Under these

conditions, the signal to background ratio was proportional to

the amount of virus between 2 and 70. At hightest titer, the

enzyme activity reaches a plateau due to limiting substrate. Triton

X-100 treatment of H5N1 viral stock enhanced NA activities, as

previously described [27]. B. Molecules did not inhibit the

neuraminidase activity of the influenza virus. A/Moscow/10/99

(H3N2) viral stock diluted in DMEM (107,8 TICD50/mL final)

was incubated with increasing concentration of molecule (or

DMEM for controls) for 0.5 h at room temperature before testing

the neuraminidase activity as described in materials and methods.

Found at: doi:10.1371/journal.pone.0013169.s002 (0.52 MB TIF)

Figure S3 Effective molecules inhibit H3N2 viral growth at early

and later times of infection. A. A549 cells were treated with

increasing concentrations of the molecule or solvent for 6 h and

were subsequently infected with A/Moscow/10/99 (H3N2)

influenza virus at a moi of 2. A neuraminidase test was performed

at 24, 42 and 65 hpi to assess influenza viral growth. Values

represent the mean of two independent experiments performed in

duplicate. B. Potency of the inhibitors against A/Moscow/10/99

(H3N2) according to different times of infection. CC50: molecule

concentration of 50% cytotoxicity; EC50: molecule concentration

of 50% inhibition of viral replication; SI: selective index.

Found at: doi:10.1371/journal.pone.0013169.s003 (0.89 MB TIF)

Figure S4 Concentration-viability curves of the eight molecules.

A549 cells were treated with increasing concentrations of each

molecule or solvent for 72 h and their viability was measured using

Neutral Red dye (as described in materials and methods). Data are

presented as a ratio of absorbance at 550 nm of treated cells to

control cells. Values represent the mean of six independent

experiments performed in duplicate, and error bars show the

standard deviation of the mean. (+/2 standard deviation).

Horizontal lines are drawn to show the scatter of the control

values (mean +/2 standard deviation).

Found at: doi:10.1371/journal.pone.0013169.s004 (0.34 MB TIF)

Figure S5 Six molecules inhibited H3N2 influenza viral growth.

A549 cells were treated with increasing concentrations of the

molecule or solvent for 6 h and were subsequently infected with

A/Moscow/10/99 (H3N2) influenza A virus at a moi of 0.2 (Panel

A) or 2 (Panel B). Viral titers were determined at 65 hpi using a

neuraminidase test as described in materials and methods. Results

in A and B are representative of three independent determinations

in duplicate. Data are presented as a ratio of RFU (relative

fluorescence unit) in supernatants of treated cells to RFU in control

cells (mean +/2 standard deviation). The dose-response curves are

the results of a fit with a 3-parameter logistic equation (if at least one

normalized response was less than 0.5). Horizontal lines are drawn

to show the scatter of the control values (mean +/2 standard

deviation).

Found at: doi:10.1371/journal.pone.0013169.s005 (0.68 MB TIF)

Figure S6 Concentration-viability curves of the seven positively

correlated molecules. A549 cells were treated with increasing

concentrations of each molecule or solvent for 72 h and their

viability was measured using Neutral Red dye (as described in

materials and methods). Data are presented as a ratio of

absorbance at 550 nm of treated cells to control cells. Values

represent the mean of three independent experiments performed

in duplicate, and error bars show the standard deviation of the

mean. (+/2 standard deviation). Horizontal lines are drawn to

show the scatter of the control values (mean +/2 standard

deviation).

Found at: doi:10.1371/journal.pone.0013169.s006 (0.30 MB TIF)

Figure S7 Three molecules enhanced H3N2 influenza viral

growth at a moi of 0.2. A549 cells were treated with increasing

concentrations of the molecule or solvent for 6 h and were

subsequently infected with A/Moscow/10/99 (H3N2) influenza A

virus at a moi of 0.2 (Panel A) or 2 (Panel B). Viral titers were

determined at 65 hpi using a neuraminidase test as described in

materials and methods. Results in A and B are representative of

two independent determinations in duplicate. Data are presented

as a ratio of RFU (relative fluorescence unit) in supernatants of

treated cells to RFU in control cells (mean +/2 standard

deviation). The dose-response curves are the results of a fit with

a 3-parameter logistic equation (if at least one normalized response

was less than 0.5). Horizontal lines are drawn to show the scatter of

the control values (mean +/2 standard deviation). Enhancement

of H3N2 virus replication was verified by measuring viral titers at

65 hpi by end point titration assays in MDCK cells (TCID50/mL).
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For these assays, sample supernatants of duplicate were harvested

at 65 hpi and stored at 280uC until analysis. Increase of viral titers

were statistically significant for alvespimycin, methylbenzetho-

niumchloride, and sulodictil 40 mM (p-value ,0.05, two tailed

Welch t-test).

Found at: doi:10.1371/journal.pone.0013169.s007 (0.64 MB TIF)

Figure S8 Five molecules inhibit H1N1 SOIV influenza viral

growth. A549 cells were treated with increasing concentrations of

the molecule or solvent for 6 h and were subsequently infected

with A/Lyon/969/09 (H1N1 SOIV) influenza virus at a moi of

0.2 (Panel A) or 2 (Panel B). Viral titers were determined at 65 hpi

using a neuraminidase test as described in materials and methods.

This assay was performed in duplicate. Data are presented as the

ratio of RFU in the supernatant of treated cells to RFU in control

cells (mean +/2 standard deviation). The dose-response curves are

the results of a fit with 3-parameter logistic equation (if at least one

normalized response was less than 0.5). Horizontal lines are drawn

to show the scatter of the control values (mean +/2 standard

deviation).

Found at: doi:10.1371/journal.pone.0013169.s008 (0.69 MB TIF)

Figure S9 Comparison of viral replication kinetics between

different influenza A viruses in A549 cells. A549 cells were infected

at a moi of 0.1 (Panel A) or at a moi of 2 (Panel B) with influenza

virus A/New Caledonia/20/99 (H1N1), A/Lyon/969/09 (H1N1

SOIV), A/Moscow/10/99 (H3N2), A/Turkey/582/2006 (H5N1),

A/Finch/England/2051/94 (H5N2), and A/Chicken/Italy/2076/

99 (H7N1).

Found at: doi:10.1371/journal.pone.0013169.s009 (0.45 MB TIF)

Table S1 Specific primers used for real-time quantitative RT-

PCR.

Found at: doi:10.1371/journal.pone.0013169.s010 (0.01 MB

XLS)

Table S2 Gene expression data for 300 influenza virus regulated

genes identified in our experiments. Values are log2 normalized

gene expression intensities (see Experimental Procedures).

Found at: doi:10.1371/journal.pone.0013169.s011 (0.28 MB

XLS)

Table S3 Approved indications of the eight potential antivirals.

Found at: doi:10.1371/journal.pone.0013169.s012 (0.01 MB

XLS)

Table S4 Potency of the positively correlated drugs against A/

Moscow/10/99 (H3N2). CC50: molecule concentration of 50%

cytotoxicity; EC50: molecule concentration of 50% inhibition of

viral replication; SI: selective index.

Found at: doi:10.1371/journal.pone.0013169.s013 (0.01 MB

XLS)

Table S5 Comparison between the 300 regulated genes in our

experiment and identified factors required for influenza replication

in published human RNAi screens. Genes belonging to the concise

signature used to query connectivity map in our study are

highlighted in grey. Negative regulators of influenza replication

(antiviral) are genes whose depletion enhance viral infection.

Positive regulators (proviral) knock-out decrease viral infection.

Antiviral factors were identified in Shapira et al and Brass et al

studies.

Found at: doi:10.1371/journal.pone.0013169.s014 (0.03 MB

XLS)
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