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Abstract

Let T be an ergodic automorphism of the d-dimensional torus Td. In the spirit of Le Borgne [10], we
give conditions on the Fourier coefficients of a function f from T

d to R under which the partial sums
f ◦T+f ◦T 2+ · · ·+f ◦T n satisfies a strong invariance principle. Next, reinforcing the condition on the
Fourier coefficients in a natural way, we obtain explicit rates of convergence in the strong invariance
principle, up to n1/4 logn.

1 Introduction

We endow the d-dimensional torus T
d = R

d/Zd with the Lebesgue measure λ̄, and we denote by
E(·) the expectation with respect to λ̄. As usual, the L

p norm of a f from T
d to R is denoted by

‖f‖p = (E(|f |p))1/p.
For d ≥ 2, let T be an ergodic automorphism of Td, and let f be a function from T

d to R such
that E(f2) < ∞ and E(f) = 0. In [10], Le Borgne has proved that if the Fourier coefficients (ck)k∈Zd

of f are such that, for θ > 2 and every integer b > 1,

∑

|k|≥b

|ck|2 ≤ R log−θ(b) , where |k| = max
1≤i≤d

|ki| , (1.1)

then the partial sums process
{

[nt]
∑

i=1

f ◦ T i, t ∈ [0, 1]
}

(1.2)

properly normalized, satisfies both the weak and strong invariance principles. More precisely, Le
Borgne has introduced in [10] an appropriate σ-field F0 such that F0 ⊆ T−1(F0), for which the
quantities ‖E(f ◦ T k|F0)‖2 and ‖f ◦ T−k −E(f ◦ T−k|F0)‖2 can be controlled for any positive integer
k. The weak and strong invariance principles follow then, by applying Gordin’s result (see [8]) and
Heyde’s result (see [9]) respectively.

1Supported in part by the ANR project PERTURBATIONS

1



In Theorem 2.1 of this paper, we show that the weak and strong invariance principles still hold
for functions f satisfying (1.1) with θ > 1 only, and we give a multivariate version of these results.
For the weak invariance principle, this follows from an improvement of Gordin’s criterion, which was
already known in the univariate case (see [7]). For the strong invariance principle, this will follow
from a new criterion for stationary sequences, presented in Theorem 4.1 of the appendix. Note that
the condition (1.1) with θ > 1 is satisfied if, for a positive constant A,

|ck|2 ≤ A

d
∏

i=1

1

(1 + |ki|) log1+α(2 + |ki|)
for some α > 1, (1.3)

improving on the condition α > 2 given by Leonov in 1969 (see [11], Remark 1). Note that Leonov
has also given a condition in terms of the modulus of continuity of f in L

2.
The strong invariance principle means that, enlarging T

d if necessary, there exists a sequence of
independent identically distributed (iid) Gaussian random variables Zi such that

sup
1≤k≤n

∣

∣

∣

k
∑

i=1

f ◦ T i −
k
∑

i=1

Zi

∣

∣

∣
= o
(

n1/2(log logn)1/2
)

almost surely, as n → ∞. (1.4)

It is also possible to exhibit rates of convergence in (1.4), provided that we reinforce the assumption
(1.1). This has been done recently, thanks to a general result giving rates of convergence in the
strong invariance principle for partial sums of stationary sequences. More precisely, let p ∈]2, 4] and
q = p/(p − 1). We have proved in Theorem 2.1 of [6] that if there exists R > 0 such that for every
integer b > 1,

∑

|k|≥b

|ck|q ≤ R log−θ(b) for some θ >
p2 − 2

p(p− 1)
, (1.5)

and
∑

|k|≥b

|ck|2 ≤ R log−β(b) for some β >
3p− 4

p
, (1.6)

then the strong approximation (1.4) holds true with an error of order o
(

n1/p(logn)(t+1)/2
)

, for t > 2/p.
A condition on the ℓq norm of (ck)k∈Zd seems appropriate in this context, since this ℓq-norm dominates
the L

p norm of f , which is required to be finite to get the rate o(n1/p) in the iid situation.
If we assume that the Fourier coefficients of f are such that,

|ck|q ≤ A
d
∏

i=1

1

(1 + |ki|) log1+α(2 + |ki|)
, (1.7)

then the conditions (1.5) and (1.6) are both satisfied provided that α > (p2 − 2)/(p2 − p). Now,
considering (1.3), one can wonder if α > 1 in (1.7) is enough to get an approximation error of order
o(n1/pL(n)) in (1.4), where L(n) is a slowly varying function. The main result of this paper, Theorem
2.2 below, shows that the answer is positive.

2 Invariance principles for ergodic automorphisms of the torus

Let us first recall some probabilistic notations. A measurable function f : Td → R
m (with coordinates

f1, ..., fm) is said to be centered if every fi is integrable and centered. Such a function f is said to
be square integrable if every fi is square integrable. Now, for every centered and square integrable
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functions f, g : Td → R
m (with f = (f1, ..., fm) and g = (g1, ..., gm)), we define the covariance matrix

Cov(f, g) of f and g and the variance matrix Var(f) by

Cov(f, g) = (E(figj))i,j=1,...,m , and Var(f) = Cov(f, f) .

Let us now recall some facts about ergodic automorphisms of Td. A group automorphism T of Td

is the quotient map of a linear map T̃ : Rd → R
d given by T̃ (x) = S.x (. being the matrix product),

where S is a d × d-matrix with integer entries and with determinant ±1. Any automorphism T of
T
d preserves the Lebesgue measure λ̄. Therefore (Td,B(Td), T, λ̄) is a probability dynamical system

(where B(Td) stands for the Borel σ-algebra of Td).
This dynamical system is ergodic if and only if no root of the unity is an eigenvalue of the matrix

S associated to T . In this case, we say that T is an ergodic automorphism of Td.
An automorphism T of Td is said to be hyperbolic if the matrix S associated to T admits no

eigenvalue of modulus one. With the preceding characterization of ergodic automorphisms of Td, it is
clear that every hyperbolic automorphism of Td is ergodic. Ergodic automorphisms of Td are partially
hyperbolic but not necessarily hyperbolic (an example of a non-hyperbolic ergodic automorphism of
T
d can be found in [10]).

In the next Theorem, we give weak and strong invariance principles for the partial sum process
(1.2) of Rm-valued functions.

Theorem 2.1. Let T be an ergodic automorphism of Td. For any j ∈ {1, . . . ,m}, let fj : Td → R be
a centered function and assume that its Fourier coefficients (ck,j)k∈Zd satisfy the following condition:
there exists a positive constant R such that for every integer b > 1,

∑

|k|≥b

|ck,j|2 ≤ R log−θ(b) for some θ > 1 . (2.1)

Let f = (f1, . . . , fm) : Td → R
m. Then the series Σ =

∑

k∈Z
Cov(f, f ◦ T k) converges, and

lim
n→∞

1

n
Var
(

n
∑

i=1

f ◦ T i
)

= Σ . (2.2)

In addition,

1. The process {n−1/2
∑[nt]

i=1 f ◦ T i, t ∈ [0, 1]} converges in D([0, 1],Rm) equipped with the uniform
topology to a Wiener process {W (t), t ∈ [0, 1]} with variance matrix Var(W (1)) = Σ.

2. Enlarging T
d if necessary, there exists a sequence (Zi)i≥1 of iid R

m-valued Gaussian random
variables with zero mean and variance matrix Var(Z1) = Σ such that

sup
1≤k≤n

∣

∣

∣

k
∑

i=1

f ◦ T i −
k
∑

i=1

Zi

∣

∣

∣
= o
(

n1/2(log logn)1/2
)

almost surely, as n → ∞.

When m = 1, it is also possible to exhibit rates of convergence in (1.4) provided that we reinforce
Condition (2.1).

Theorem 2.2. Let T be an ergodic automorphism of T
d. Let p ∈]2, 4] and q := p/(p − 1). Let

f : Td → R be a centered function with Fourier coefficients (ck)k∈Zd satisfying the following conditions:
there exists a positive constant R such that for every integer b > 1,

∑

|k|≥b

|ck|q ≤ R log−θ(b) for some θ > 1 , (2.3)
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and
∑

|k|≥b

|ck|2 ≤ R b−ζ for some ζ > 0 . (2.4)

Then the series
σ2 =

∑

k∈Z

E(f.f ◦ T k) (2.5)

converges absolutely and, enlarging T
d if necessary, there exists a sequence (Zi)i≥1 of iid Gaussian

random variables with zero mean and variance σ2 such that

sup
1≤k≤n

∣

∣

∣

k
∑

i=1

f ◦ T i −
k
∑

i=1

Zi

∣

∣

∣
= o
(

n1/p logn
)

almost surely, as n → ∞. (2.6)

Observe that if (1.7) holds with α > 1 then (2.3) and (2.4) are both satisfied, so that the strong
approximation (2.6) holds. However Theorem 2.1 in [6] and Theorem 2.2 above have different ranges
of applicability. Indeed, let γ > 1, and define ck = ℓ−γ/q if k = (2ℓ, 0, . . . , 0), ck = −ℓ−γ/q if
k = (−2ℓ, 0, . . . , 0) for ℓ ∈ N, and ck = 0 otherwise. Let now b and r be positive integers such that
2r−1 < b ≤ 2r. Since

∑

|k|≥b

|ck|q = 2
∑

ℓ≥r

1

ℓγ
,

it follows that λ1(log b)
1−γ ≤

∑

|k|≥b |ck|q ≤ λ2(log b)
1−γ (where λ1 and λ2 are two positive constants).

Similarly λ1(log b)
1−2γ/q ≤∑|k|≥b |ck|2 ≤ λ2(log b)

1−2γ/q. In this situation, the conditions (1.5) and

(1.6) are both satisfied provided that γ > 1 + (p2 − 2)/(p2 − p) whereas condition (2.4) fails.

To prove Theorem 2.2, we shall still use martingale approximations as done in [6], but with the
following modifications: Condition (2.4) allows us to consider a non stationary sequence X∗

ℓ = fℓ ◦T ℓ,
where the functions fℓ are defined through a truncated series of the Fourier coefficients of f . For the
partial sums associated to this non stationary sequence, the approximation error by a non stationary
martingale can be suitably handled with the help of Condition (2.3).

3 Proofs of Theorems 2.1 and 2.2

As in [6], we consider the filtration as defined in [12, 10] that enables to suitably approximate the
partial sums

∑n
i=1 f ◦ T i by a martingale. To be more precise, given a finite partition P of Td, we

define the measurable partition P∞
0 by :

∀x̄ ∈ T
d, P∞

0 (x̄) :=
⋂

k≥0

T kP(T−k(x̄))

and, for every integer n, the σ-algebra Fn generated by

∀x̄ ∈ T
d, P∞

−n(x̄) :=
⋂

k≥−n

T kP(T−k(x̄)) = T−n(P∞
0 (T n(x̄)) .

These definitions coincide with the ones of [10] applied to the ergodic toral automorphism T−1. We
obviously have Fn ⊆ Fn+1 = T−1Fn. Note that the sequence (f ◦ T i)i≥1 is non adapted to (Fi)i≥1.

In what follows, we use the notation En(f) = E(f |Fn).
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3.1 Proof of Theorem 2.1

According to Theorem 4.1 and Remark 4.3 given in Appendix, it suffices to verify that condition
(4.35) is satisfied. Therefore, it suffices to verify that for any j ∈ {1, . . . ,m},
∑

n≥3

logn

n1/2(log logn)1/2
‖E0(fj ◦ T n)‖2 < ∞ and

∑

n≥3

logn

n1/2(log logn)1/2
‖fj − En(fj)‖2 < ∞ . (3.1)

But, according to the proof of Propositions 4.2 and 4.3 of [6] (see also [10]), for any fj satisfying (2.1),

‖E−n(fj)‖2 + ‖f − En(fj)‖2 ≪ n−θ/2 .

Since θ > 1, (3.1) is satisfied. �

3.2 Proof of Theorem 2.2

Let f : Td → R be a centered function with Fourier coefficients (ck)k∈Zd . For every nonnegative
integer m, we write

fm :=
∑

|k|≤m

cke
2iπ〈k,·〉 . (3.2)

Notice that if f satisfies (2.4), then

‖f − fm‖2 ≤ Rm−ζ/2 , (3.3)

and if f satisfies (2.3), then
‖f − fm‖p ≤ R(log(m))−θ(p−1)/p . (3.4)

According to the proofs of Propositions 4.2, 4.3 and 4.4 of [6], there exist c ≥ 1 and γ, λ ∈ (0, 1)
such that, setting b(n) := [γ−n], we have

sup
m≤b(n)

(‖E−n(fm)‖p + ‖fm − En(fm)‖p) ≪ λn (3.5)

(according to (4.50), (4.51) and (4.53) of [6]), and

sup
N≥cn

sup
m≤b(n)

sup
ℓ∈{0,...,n}

‖E−N(fmfm ◦ T ℓ)− E(fmfm ◦ T ℓ)‖p/2 ≪ λn (3.6)

(according to (4.61) and (4.62) of [6]). Moreover, according to the proof of Propositions 4.2 and 4.3
of [6], we have, for any f satisfying (2.3),

sup
m≥1

(‖E−n(fm)‖p + ‖fm − En(fm)‖p) ≪ n−θ(p−1)/p , (3.7)

and
‖E−n(f)‖p + ‖f − En(f)‖p ≪ n−θ(p−1)/p . (3.8)

In addition, according to the proof of Proposition 4.4 of [6], there exists a positive integer c, such that
for any f satisfying (2.3) and (2.4),

max
1≤k≤n

‖E−nc(S
2
k(f))− E(S2

k(f))‖p/2 ≪ n2−2θ(p−1)/p . (3.9)

For any f satisfying (2.4), using the arguments developed in the proofs of Propositions 4.2 and 4.3
of [6], we infer that there exists β ∈ (0, 1) such that

sup
m≥1

(‖E−n(fm)‖2 + ‖fm − En(fm)‖2) ≪ βn , (3.10)
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and
‖E−n(f)‖2 + ‖f − En(f)‖2 ≪ βn . (3.11)

Let us write Pℓ(·) = Eℓ(·) − Eℓ−1(·). Now, let α be a positive real such that αζ ≥ 3 − 2/p. We then
define

d∗1 :=
∑

k∈Z

P1

(

f1 ◦ T k
)

, X∗
1 := f1 ◦ T ,

and, for every j ≥ 0 and every ℓ ∈ {2j + 1, ..., 2j+1},

d∗ℓ :=
∑

k∈Z

Pℓ

(

f[2αj ] ◦ T k
)

, X∗
ℓ := f[2αj ] ◦ T ℓ.

For every positive integer n, we define

M∗
n(f) :=

n
∑

ℓ=1

d∗ℓ and S∗
n(f) :=

n
∑

ℓ=1

X∗
ℓ .

The conclusion of Theorem 2.2 comes from the three following lemmas.

Lemma 3.1. We have |Sn(f)− S∗
n(f)| = o(n1/p(logn)) almost surely.

Lemma 3.2. We have |S∗
n(f)−M∗

n(f)| = o(n1/p(logn)) almost surely.

Lemma 3.3. The conclusion of Theorem 2.2 holds with M∗
n(f) replacing Sn(f).

Proof of Lemma 3.1. For any nonnegative integer j, let

Dj := sup
1≤k≤2j

∣

∣

∣

k+2j
∑

ℓ=2j+1

(Xℓ −X∗
ℓ )
∣

∣

∣
.

Let N ∈ N
∗ and let k ∈]1, 2N ]. We first notice that Dj ≥ |∑2j+1

ℓ=2j+1(Xℓ −X∗
ℓ )|, so if K is the integer

such that 2K−1 < k ≤ 2K , then

∣

∣Sk − S∗
k

∣

∣ ≤ |X1 −X∗
1 |+

K−1
∑

j=0

Dj .

Consequently, since K ≤ N ,

max
1≤k≤2N

|Sk − S∗
k | ≤ |X1 −X∗

1 |+
N−1
∑

j=0

Dj . (3.12)

Therefore, by standard arguments, Lemma 3.1 will follow if we can prove that Dj = o
(

j 2j/p
)

almost
surely. This will hold true as soon as

∑

j≥1

‖Dj‖qq
2jq/p jq

< ∞ for some q ∈ [1, p] . (3.13)

We shall verify (3.13) for q = 2. Notice that

‖Dj‖2 =
∥

∥

∥
sup

1≤k≤2j

∣

∣

∣

k+2j
∑

ℓ=2j+1

(f − f[2αj]) ◦ T ℓ
∣

∣

∣

∥

∥

∥

2
≤ 2j‖f − f[2αj ]‖2 .
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Hence, by using (2.4), ‖Dj‖22 ≪ 22j2−ζαj , which together with the fact that αζ ≥ 2 − 2/p implies
(3.13) with q = 2, and then Lemma 3.1. �

Proof of Lemma 3.2. Without loss of generality, we assume that θ < (p2− 2)/(p(p− 1)). Following
the beginning of the proof of Lemma 3.1, Lemma 3.2 will be proven if (3.13) holds with Dj defined
by

Dj = sup
1≤k≤2j

∣

∣

∣

k+2j
∑

ℓ=2j+1

(X∗
ℓ − d∗ℓ )

∣

∣

∣
. (3.14)

With this aim, setting, for every k ∈ {1, ..., 2j},

Rj,k =

k
∑

ℓ=1

(

f[2αj] ◦ T ℓ −
∑

m∈Z

Pℓ

(

f[2αj ] ◦ Tm
)

)

=

k+2j
∑

ℓ=2j+1

(X∗
ℓ − d∗ℓ ) ◦ T−2j ,

we first observe that

‖Dj‖p =
∥

∥

∥
sup

1≤k≤2j
|Rj,k|

∥

∥

∥

p
≪ 2j/p

j
∑

k=0

2−k/p‖Rj,2k‖p , (3.15)

(where for the inequality we have used inequality (6) in [15]). Now, according to the proof of Propo-
sition 5.1 in [6] with Xℓ = f[2αj ] ◦ T ℓ and using again stationarity, we get that for any integer k ≥ 0

and any integer N ≥ 2k,

max
1≤m≤2k

‖Rj,m‖p ≪
N
∑

ℓ=1

‖E−ℓ(f[2αj ])‖p +
N−1
∑

ℓ=0

‖f[2αj] − Eℓ(f[2αj ])‖p

+
(

2k
∑

m=1

∥

∥

∑

ℓ≥m+N

P−ℓ(f[2αj]) ◦ T ℓ
∥

∥

2

p

)1/2

+
(

2k
∑

m=1

∥

∥

∑

ℓ≥m+N

Pℓ(f[2αj]) ◦ T−ℓ
∥

∥

2

p

)1/2

. (3.16)

Let us first consider the case where [2αj ] ≤ b(2k). Starting from (3.16) with N = 2k and using the fact
that ‖P−ℓ(f[2αj ])‖p ≤ 2‖E−ℓ(f[2αj ])‖p and that ‖Pℓ(f[2αj ])‖p ≤ ‖f[2αj] − Eℓ−1(f[2αj ])‖p, we get that

max
1≤m≤2k

‖Rj,m‖p ≪
2k
∑

ℓ=1

‖E−ℓ(f[2αj ])‖p +
2k−1
∑

ℓ=0

‖f[2αj] − Eℓ(f[2αj ])‖p

+ 2k/2
∑

ℓ≥2k+1

‖E−ℓ(f[2αj ])‖p + 2k/2
∑

ℓ≥2k

‖f[2αj] − Eℓ(f[2αj])‖p .

Therefore, taking into account the upper bound (3.7) for the two first terms in the right hand side,
and the upper bound (3.5) to handle the two last terms (since [2αj ] ≤ b(2k)), we derive that

max
1≤m≤2k

‖Rj,m‖p ≪ 2k(1−θ(p−1)/p) (3.17)

(recall that θ(p − 1)/p < 1). On the other hand, starting from (3.16) with N = 2[2kp/2] and using
Lemma 5.1 in [6], we get that

max
1≤m≤2k

‖Rj,m‖p ≪
2[2kp/2]
∑

ℓ=1

‖E−ℓ(f[2αj ])‖p +
2[2kp/2]
∑

ℓ=0

‖f[2αj] − Eℓ(f[2αj ])‖p

+ 2k/2
∑

ℓ≥[2kp/2]

‖E−ℓ(f[2αj ])‖p
ℓ1/p

+ 2k/2
∑

ℓ≥[2kp/2]

‖f[2αj] − Eℓ(f[2αj])‖p
ℓ1/p

.
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Therefore, it follows from (3.7) that

max
1≤m≤2k

‖Rj,m‖p ≪ 2(kp(1−θ(p−1)/p))/2 . (3.18)

Let
C = [α−1(log(γ−1))/(log 2)] and j0 = (log 2)−1(log j − logC) . (3.19)

Clearly, if j0 ≤ k then [2αj] ≤ b(2k). Therefore using the upper bound (3.18) when k < j0 and the
upper bound (3.17) when k ≥ j0, we get that for any positive integer j

j
∑

k=0

2−k/p‖Rj,2k‖p ≪ jp/2

j1/pjθ(p−1)/2
,

since θ < (p2 − 2)/(p(p− 1)). Now, since θ > 1, it follows that

∑

j≥1

j−p
(

j
∑

k=0

2−k/p‖Rj,2k‖p
)p

< ∞ .

From (3.15), this implies that (3.13) holds with Dj defined by (3.14) and q = p. This ends the proof
of lemma 3.2. �

Proof of Lemma 3.3. Let Mn =
∑n

ℓ=1 dℓ where dℓ = d0 ◦ T ℓ with d0 =
∑

i∈Z
P0(f ◦ T i). Notice

that the upper bound (3.8) and the fact that θ > 1 imply in particular that

∑

n>1

n−1/p‖E−n(f)‖p < ∞ and
∑

n>1

n−1/p‖f − En(f)‖p < ∞ ,

and then that
∑

k∈Z
‖P0(Xk)‖p < ∞ (use for instance Lemma 5.1 in [6] to see this). Therefore

∑

k∈Z
‖P0(Xk)‖2 < ∞. Using (4.2) of Lemma 4.1, we get that

‖Sn(f)−Mn‖2 = o(
√
n) . (3.20)

From (2.2) of Theorem 2.1, we know that n−1‖Sn(f)‖22 converges to σ2. It follows from (3.20) that
σ2 = n−1

E(M2
n) = E(d20).

We shall prove now that
‖M∗

n −Mn‖2 = O
(

n1/p
)

. (3.21)

Let N be the positive integer such that 2N−1 < n ≤ 2N . Since M∗
n −Mn, is a martingale, we have

that

‖M∗
n −Mn‖22 =

n
∑

ℓ=1

E((d∗ℓ − dℓ)
2) ≤ E((d∗1 − d1)

2) +
N−1
∑

j=0

2j+1

∑

ℓ=2j+1

E((d∗ℓ − dℓ)
2) . (3.22)

By stationarity, for any ℓ ∈ [2j + 1, 2j+1] ∩ N we get that

‖d∗ℓ − dℓ‖2 = ‖
∑

i∈Z

P0((f − f[2αj ]) ◦ T i)‖2

≤ 2j+3‖f − f[2αj ]‖2 +
∑

i≥2j+1

‖P−i(f − f[2αj])‖2 +
∑

i≥2j+1

‖Pi(f − f[2αj])‖2 .

According to (3.3)
‖f − f[2αj ]‖2 ≤ R2−ζαj/2 . (3.23)
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On the other hand, by Lemma 5.1 in [6],

∑

i≥2j+1

‖P−i(f − f[2αj])‖2 ≪
∑

k≥2j

k−1/2‖E−k(f − f[2αj])‖2

and
∑

i≥2j+1

‖Pi(f − f[2αj])‖2 ≪
∑

k≥2j

k−1/2‖f − f[2αj] + Ek(f − f[2αj])‖2 .

Using the estimate (3.10) and (3.11), it follows that

∑

i≥2j+1

(

‖P−i(f − f[2αj])‖2 + ‖P−i(f − f[2αj ])‖2
)

= O(β2j ) . (3.24)

Combining the upper bounds (3.23) and (3.24) with the fact that αζ ≥ 3− 2/p, it follows that

‖d∗ℓ − dℓ‖2 ≪ 2−j(p−2)/(2p) .

Using this estimate in (3.22), we obtain that ‖M∗
n −Mn‖22 ≪ n2/p, proving (3.21).

Now, let us recall Theorem 2.1 in [13] (used with an = n2/p(log n)): if there exists a finite constant
K such that

sup
k≥1

‖d∗k‖p ≤ K , (3.25)

and if
n
∑

i=1

(

E((d∗i )
2|Fi−1)− E((d∗i )

2)
)

= o
(

n2/p(logn)
)

a.s. , (3.26)

then, since E((M∗
n)

2) ∼ nσ2, enlarging T
d if necessary, there exists a sequence (Z∗

ℓ )ℓ≥1 of independent
Gaussian random variables with zero mean and variance E(Z∗

ℓ )
2 = E(d∗ℓ )

2 = (σ∗
ℓ )

2 such that

sup
1≤k≤n

∣

∣

∣
M∗

k −
k
∑

ℓ=1

Z∗
ℓ

∣

∣

∣
= o
(

n1/p(logn)
)

almost surely, as n → ∞. (3.27)

Let (δk)k≥1 be a sequence of iid Gaussian random variables with mean zero and variance σ2, inde-
pendent of the sequence (Z∗

ℓ )ℓ≥1. We now construct a sequence (Zℓ)ℓ≥1 as follows. If σ∗
ℓ = 0, then

Zℓ = δℓ, else Zℓ = (σ/σ∗
ℓ )Z

∗
ℓ . By construction, the Zℓ’s are iid Gaussian random variables with mean

zero and variance σ2. Let Gℓ = Zℓ−Z∗
ℓ and note that (Gℓ)ℓ≥1 is a sequence of independent Gaussian

random variables with mean zero and variances Var(Gℓ) = (σ − σ∗
ℓ )

2. Notice now that

v2n = Var
(

n
∑

i=1

Gi

)

=

n
∑

i=1

(

‖di‖2 − ‖d∗i ‖2
)2 ≤ ‖Mn −M∗

n‖22 .

From the basic inequality

P

(

max
1≤k≤n

∣

∣

∣

k
∑

i=1

Gi

∣

∣

∣
> x

)

≤ 2 exp
(

− x2

2v2n

)

,

and the fact that by (3.21), v2n ≪ n2/p, it follows that for any ε > 0,

∑

n>1

n−1
P

(

max
1≤k≤n

∣

∣

∣

k
∑

i=1

Gi

∣

∣

∣
> εn1/p(logn)

)

< ∞ ,
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showing that max1≤k≤n |∑k
i=1 Gi| = o(n1/p(logn)) almost surely. Therefore starting from (3.27), we

conclude that if (3.25) and (3.26) hold then Lemma 3.3 does; namely, enlarging T
d if necessary, there

exists a sequence (Zℓ)ℓ≥1 of iid Gaussian random variables with zero mean and variance σ2 such that

sup
1≤k≤n

∣

∣

∣
M∗

k −
k
∑

ℓ=1

Zℓ

∣

∣

∣
= o(n1/p(log n)) almost surely, as n → ∞.

It remains to show that (3.25) and (3.26) are satisfied. We start with (3.25). Notice that ‖d∗1‖p ≤
∑

k∈Z
‖P−k (f1) ‖p and that, for every j ≥ 0 and every ℓ ∈ {2j + 1, ..., 2j+1},

‖d∗ℓ‖p ≤
∑

k∈Z

‖P−k(f[2αj ])‖p .

By Lemma 5.1 in [6],
∑

k∈Z

‖P−k(g)‖p ≪
∑

k≥1

k−1/p‖E−k(g)‖p +
∑

k≥1

k−1/p‖g − Ek(g)‖p ,

with constants non depending on g. Hence, using the estimate (3.7) and the fact that θ > 1, we get
that, for every j ≥ 0 and every ℓ ∈ {2j + 1, ..., 2j+1}, there exists a constant K non depending on j
such that ‖d∗ℓ‖p ≤ K. This ends the proof of (3.25).

To prove (3.26), we proceed as follows. Following the beginning of the proof of Lemma 3.1, we
infer that (3.26) will be proven if we can show that

Dj := sup
1≤ℓ≤2j

∣

∣

∣

2j+ℓ
∑

i=2j+1

(E((d∗i )
2|Fi−1)− E((d∗i )

2))
∣

∣

∣
= o
(

j 22j/p
)

a.s. . (3.28)

This will hold true as soon as
∑

j≥1

‖Dj‖p/2p/2

2j jp/2
< ∞ . (3.29)

For any j fixed and any i ∈ Z, let dj,i =
∑

k∈Z
Pi

(

f[2αj ] ◦ T k
)

. By stationarity

‖Dj‖p/2 :=
∥

∥

∥
sup

1≤ℓ≤2j

∣

∣

∣

ℓ
∑

i=1

(E(d2j,i|Fi−1)− E(d2j,i))
∣

∣

∣

∥

∥

∥

p/2
.

Observe now that, for any j fixed, (dj,i)i∈Z is a stationary sequence of martingale differences in L
p.

Let

Mj,n :=

n
∑

i=1

dj,i .

Applying Theorem 3 in [16] (since 1 < p/2 ≤ 2) and using the martingale property of the sequence
(Mj,n)n≥1, we get that

E

(

sup
1≤ℓ≤2j

∣

∣

ℓ
∑

i=1

(E(d2j,i|Fi−1)−E(d2j,i))
∣

∣

∣

∣

∣

p/2)

≪ 2j‖d2j,1‖
p/2
p/2+2j

(

j−1
∑

k=0

‖E(M2
j,2k |F0)− E(M2

j,2k)‖p/2
22k/p

)p/2

.

Using the fact that ‖d2j,1‖p/2 = ‖dj,1‖2p ≤ K where K does not depend on j, the convergence (3.29)
will be then proven if we can show that

∑

j≥1

1

jp/2

(

j−1
∑

k=0

2−2k/p‖E0(M
2
j,2k)− E(M2

j,2k)‖p/2
)p/2

< ∞ .
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According to the arguments developed in the proof of Theorems 3.1 and 3.2 in [6] (see (3.19) and
(3.20) of [6]), since (Mj,k)k≥1 is a sequence of martingales, we infer that this last convergence will be
satisfied as soon as there exists a positive integer c such that

∑

j≥1

1

jp/2

(

j
∑

k=0

2−2k/p
∥

∥E−c2k(M
2
j,2k)− E(M2

j,2k)
∥

∥

p/2

)p/2

< ∞ . (3.30)

We shall prove in what follows that this convergence holds as soon as c is chosen in such a way that
(3.9) holds true.

For any positive integer n, let

Sj,n =
n
∑

ℓ=1

f[2αj] ◦ T ℓ and Rj,n = Sj,n −Mj,n .

We first write that

‖E−c2k(M
2
j,2k)− E(M2

j,2k)‖p/2 ≤ ‖E−c2k(S
2
j,2k)− E(S2

j,2k)‖p/2
+ 4‖E−c2k(Sj,2kRj,2k)‖p/2 + 2‖Rj,2k‖2p . (3.31)

Let j0 be defined as in (3.19). Using the upper bound (3.18) when k < j0 and the upper bound (3.17)
when k ≥ j0, we get that for any positive integer j,

j
∑

k=0

2−2k/p max
1≤m≤2k

‖Rj,m‖2p ≪ jp

j2/pjθ(p−1)
,

since we can assume without loss of generality that θ < (p2 − 1)/(p(p − 1)). Now, since θ > 1, it
follows that

∑

j≥1

1

jp/2

(

j
∑

k=0

2−2k/p max
1≤m≤2k

‖Rj,m‖2p
)p/2

< ∞ . (3.32)

On an other hand, c being chosen such that (3.9) holds true, the upper bound in (3.9) together with
the fact that θ > 1, implies that

j
∑

k=0

2−2k/p max
1≤m≤2k

‖E−c2k(S
2
j,m)− E(S2

j,m)
∥

∥

p/2
≪

j
∑

k=0

2−2k/p22k(1−θ(p−1)/p) = O(1) .

Therefore,
∑

j≥1

1

jp/2

(

j
∑

k=0

2−2k/p max
1≤m≤2k

‖E−c2k(S
2
j,m)− E(S2

j,m)
∥

∥

p/2

)p/2

< ∞ . (3.33)

Starting from (3.31), and taking into account (3.32) and (3.33), we then infer that (3.30) will hold
true if we can show that

∑

j≥1

1

jp/2

(

j
∑

k=0

2−2k/p‖E−c2k(Sj,2kRj,2k)
∥

∥

p/2

)p/2

< ∞ . (3.34)

With this aim, we use Inequality (3.24) in [6] (taking n = 2k, un = [2k/2], r = c2k). Therefore,

‖E−c2k(Sj,2kRj,2k)
∥

∥

p/2
≪ 2k/4

(

‖E0(Sj,2k)‖2 + ‖Sj,2k − E2k(Sj,2k)‖2
)

+ max
m={2k,2k−[2k/2]}

‖Rj,m‖2p + 2k/2
(

‖E−[2k/2](Sj,2k)‖2 + ‖Sj,2k − E2k+[2k/2](Sj,2k)‖2
)

+ max
m={2k,[2k/2]}

‖E−c2k(S
2
j,m)− E(S2

j,m)‖p/2 + 2k
∑

|ℓ|≥2k

‖P0(f[2jα] ◦ T ℓ)‖2 . (3.35)
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By stationarity,

‖E0(Sj,2k)‖2 + ‖Sj,2k − E2k(Sj,2k)‖2 ≤
2k
∑

ℓ=1

‖E−ℓ(f[2jα])‖2 +
2k−1
∑

ℓ=0

‖f[2jα] − Eℓ(f[2jα])‖2 .

Hence by using (3.10),

2k/4
(

‖E0(Sj,2k)‖2 + ‖Sj,2k − E2k(Sj,2k)‖2
)

≪ 2k/4 . (3.36)

Using again (3.10) and the stationarity, we get that

‖E−[2k/2](Sj,2k)‖2 + ‖Sj,2k − E2k+[2k/2](Sj,2k)‖2

≤
2k
∑

ℓ=1

‖E−([2k/2]+ℓ)(f[2jα])‖2 +
2k−1
∑

ℓ=0

‖f[2jα] − E[2k/2]+ℓ(f[2jα])‖2 ≪ β2k/2

.

Therefore
2k/2

(

‖E−[2k/2](Sj,2k)‖2 + ‖Sj,2k − E2k+[2k/2](Sj,2k)‖2
)

= O(1) . (3.37)

On an other hand, using again (3.10) and the stationarity,

∑

|ℓ|≥2k

‖P0(f[2jα] ◦ T ℓ)‖2 ≤
∑

ℓ≥2k

(

‖E−ℓ(f[2jα])‖2 + ‖f[2jα] − Eℓ−1(f[2jα])‖2
)

≪ β2k ,

which implies that

2k
∑

|ℓ|≥2k

‖P0(f[2jα] ◦ T ℓ)‖2 = O(1) . (3.38)

Starting from (3.35) and taking into account the convergence (3.32) and (3.33), and the upper bounds
(3.36), (3.37) and (3.38), we then derive that (3.34) holds. This ends the proof of (3.26) and therefore
of Lemma 3.3. �

4 Appendix

Let (Ω,A,P) be a probability space, and T : Ω 7→ Ω be a bijective bimeasurable transformation
preserving the probability P. Let us denote by | · |m the euclidean norm on R

m and by < ·, · >m the
associated scalar product. For a σ-algebra F0 satisfying F0 ⊆ T−1(F0), we define the nondecreasing
filtration (Fi)i∈Z by Fi = T−i(F0). Let F−∞ =

⋂

k∈Z
Fk and F∞ =

∨

k∈Z
Fk. For a random variable

X with values in R
m, we denote by ‖X‖p,m = (E(|X |pm))1/p its norm in L

p(Rm).
In what follows X0 is a random variable with values in R

m, and we define the stationary sequence
(Xi)i∈Z by Xi = X0 ◦ T i. We shall use the notations Ek(X) = E(X |Fk), E∞(X) = E(X |F∞),
E−∞(X) = E(X |F−∞), and Pk(X) = Ek(X)− Ek−1(X).

The aim of this section is to collect some results about invariance principles for stationary se-
quences that are non necessarily adapted to the underlying filtration. We start with a martingale
approximation result. The estimate (4.2) of Proposition 4.1 below is a generalization of Item 2 of
Theorem 1 in [15] to the multidimensional case and to the case where the variables are non necessarily
adapted to the filtration under consideration. The convergence (4.3) is new. Notice that the proof
of the next lemma is based on algebraic computations and on Burkholder’s inequality. Burkholder’s
inequality being also valid in Hilbert spaces (see [2]), the approximation lemma below is then also
valid for variables taking values in a separable Hilbert space, H, by replacing the norm | · |m by the
norm on H, let say | · |H.
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Proposition 4.1. Let p ∈ [1,∞[ and p′ = min(2, p). Assume that E−∞(X0) = 0 almost surely, that
E∞(X0) = X0 almost surely, and that

∑

i∈Z

‖P0(Xi)‖p,m < ∞ . (4.1)

Let d0 =
∑

i∈Z
P0(Xi), Mn :=

∑n
i=1 d0 ◦ T i and Rn := Sn −Mn. For any positive integer n,

‖Rn‖p
′

p,m ≪
n
∑

k=1

(

∑

|ℓ|≥k

‖Pℓ(X0)‖p,m
)p′

. (4.2)

In addition,
∥

∥

∥
max

1≤k≤n
|Rk|m

∥

∥

∥

p
= o(n1/p′

) as n → ∞. (4.3)

Remark 4.1. The constant appearing in (4.2) depends only on p and not on (Ω,A,P, T,X0,F0).

Proof of Proposition 4.1. It will be useful to note that Pi(Xj) = Pi−j(X0) ◦ T j = P0(Xj−i) ◦ T i

almost surely. The following decomposition is valid:

Rn =

n
∑

k=1

(

Xk −
n
∑

j=1

Pj(Xk)
)

−
n
∑

k=1

∑

j≥n+1

Pk(Xj)−
n
∑

k=1

∞
∑

j=0

Pk(X−j)

= E0(Sn)−
n
∑

k=1

∑

j≥n+1

Pk(Xj) + Sn − En(Sn)−
n
∑

k=1

∞
∑

j=0

Pk(X−j) . (4.4)

Applying Burkholder’s inequality for multivariate martingales, and using the stationarity, we obtain
that there exists a positive constant cp such that, for any positive integer n,

∥

∥

∥

n
∑

k=1

∑

j≥n+1

Pk(Xj)
∥

∥

∥

p′

p,m
≤ cp

n
∑

k=1

∥

∥

∥

∑

j≥n+1

Pk(Xj)
∥

∥

∥

p′

p,m
≤ cp

n
∑

k=1

(

∑

j≥k

‖P0(Xj)‖p,m
)p′

, (4.5)

and

∥

∥

∥

n
∑

k=1

∑

j≥0

Pk(X−j)
∥

∥

∥

p′

p,m
≤ cp

n
∑

k=1

∥

∥

∥

∑

j≥0

Pk(X−j)
∥

∥

∥

p′

p,m
= cp

n
∑

k=1

(

∑

j≥k

‖P0(X−j)‖p,m
)p′

. (4.6)

On an other hand, since E−∞(X0) = 0 almost surely, we have E0(Sn) =
∑

k≥0 P−k(Sn) almost
surely. Hence by Burkholder’s inequality for multivariate martingales together with stationarity, there
exists a positive constant cp depending only on p such that

‖E0(Sn)‖p
′

p,m ≤ cp
∑

k≥0

‖P−k(Sn)‖p
′

p,m ≤ cp
∑

k≥0

(

n
∑

ℓ=1

‖P−k(Xℓ)‖p,m
)p′

≤ cp

n−1
∑

k=0

(

∑

ℓ≥k+1

‖P−ℓ(X0)‖p,m
)p′

+ cp
∑

k≥n

(

k+n
∑

ℓ=k+1

‖P−ℓ(X0)‖p,m
)p′

≤ cp

n−1
∑

k=0

(

∑

ℓ≥k+1

‖P−ℓ(X0)‖p,m
)p′

+ cp

(

∑

i≥n+1

‖P−i(X0)‖p,m
)p′−1∑

k≥n

k+n
∑

ℓ=k+1

‖P−ℓ(X0)‖p,m

≤ cp

n−1
∑

k=0

(

∑

ℓ≥k+1

‖P−ℓ(X0)‖p,m
)p′

+ cpn
(

∑

ℓ≥n+1

‖P−ℓ(X0)‖p,m
)p′

.
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Therefore

‖E0(Sn)‖p
′

p,m ≤ 2cp

n
∑

k=1

(

∑

ℓ≥k

‖P−ℓ(X0)‖p,m
)p′

. (4.7)

We handle now the quantity ‖Sn−En(Sn)‖p
′

p,m. Since E∞(X0) = X0 almost surely, we first write that
Sn−En(Sn) =

∑

k≥n+1 Pk(Sn). Hence, applying Burkholder’s inequality for multivariate martingales
and using the stationarity, we infer that there exists a positive constant cp depending only on p such
that

‖Sn − En(Sn)‖p
′

p,m ≤ cp
∑

k≥n+1

‖Pk(Sn)‖p
′

p,m ≤ cp
∑

k≥n+1

(

n
∑

ℓ=1

‖Pk(Xℓ)‖p,m
)p′

≤ cp

2n
∑

k=n+1

(

k−1
∑

ℓ=k−n

‖Pℓ(X0)‖p,m
)p′

+ cp
∑

k≥2n+1

(

k−1
∑

ℓ=k−n

‖Pℓ(X0)‖p,m
)p′

≤ cp

n
∑

k=1

(

∑

ℓ≥k

‖Pℓ(X0)‖p,m
)p′

+ cp

(

∑

i≥n+1

‖Pi(X0)‖p,m
)p′−1 ∑

k≥2n+1

k−1
∑

ℓ=k−n

‖Pℓ(X0)‖p,m

≤ cp

n
∑

k=1

(

∑

ℓ≥k

‖Pℓ(X0)‖p,m
)p′

+ cpn
(

∑

ℓ≥n+1

‖Pℓ(X0)‖p,m
)p′

.

Therefore

‖Sn − En(Sn)‖p
′

p,m ≤ 2cp

n
∑

k=1

(

∑

ℓ≥k

‖Pℓ(X0)‖p,m
)p′

. (4.8)

Starting from (4.4) and taking into account the upper bounds (4.5), (4.6), (4.7) and (4.8), the in-
equality (4.2) follows.

We turn now to the proof of (4.3). Let r be some fixed positive integer. Since Mk =
∑k

i=1 d0 ◦ T i

and d0 ◦ T i =
∑

j∈Z
Pi(Xj), the following decomposition holds:

Rk =

k
∑

i=1

Xi −
k
∑

i=1

r+i
∑

ℓ=−r−i

Pi(Xℓ)−
k
∑

i=1

∑

ℓ≥r+i+1

Pi(Xℓ)−
k
∑

i=1

∑

ℓ≥r+i+1

Pi(X−ℓ) . (4.9)

Applying Burkholder’s inequality for multivariate martingales and using the stationarity, we infer that
there exists a positive constant cp depending only on p such that, for any positive integer n,

∥

∥

∥
max

r≤k≤n

∣

∣

∣

k
∑

i=1

∑

ℓ≥r+i+1

Pi(Xℓ)
∣

∣

∣

m

∥

∥

∥

p′

p
≤ cp

n
∑

i=1

∥

∥

∥

∑

ℓ≥r+i+1

Pi(Xℓ)
∥

∥

∥

p′

p,m
≤ cpn

(

∑

j≥r+1

‖P0(Xj)‖p,m
)p′

, (4.10)

since Pi(Xℓ) = P0(Xℓ−i) ◦ T i. Similarly

∥

∥

∥
max

r≤k≤n

∣

∣

∣

k
∑

i=1

∑

ℓ≥r+i+1

Pi(X−ℓ)
∣

∣

∣

m

∥

∥

∥

p′

p
≤ cpn

(

∑

j≥r+1

‖P0(X−j)‖p,m
)p′

. (4.11)

We write now that

k
∑

i=1

Xi −
k
∑

i=1

r+i
∑

ℓ=−r−i

Pi(Xℓ) =
k
∑

i=1

Xi −
k
∑

i=1

r+i
∑

ℓ=1

Pi(Xℓ)−
k
∑

i=1

r+i
∑

ℓ=0

Pi(X−ℓ) . (4.12)
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The following decomposition holds

k
∑

i=1

r+i
∑

ℓ=1

Pi(Xℓ) =

k−r
∑

i=1

r+i
∑

ℓ=1

Pi(Xℓ) +

k
∑

i=k−r+1

r+i
∑

ℓ=1

Pi(Xℓ)

=
k
∑

ℓ=1

k−r
∑

i=1

1i≥ℓ−rPi(Xℓ) +
k+r
∑

ℓ=1

k
∑

i=k−r+1

1i≥ℓ−rPi(Xℓ) . (4.13)

Now,

k
∑

ℓ=1

k−r
∑

i=1

1i≥ℓ−rPi(Xℓ) =
r
∑

ℓ=1

k−r
∑

i=1

Pi(Xℓ) +
k
∑

ℓ=r+1

k−r
∑

i=ℓ−r

Pi(Xℓ)

= Ek−r(Sr)− E0(Sr) + Ek−r(Sk − Sr)−
k
∑

ℓ=r+1

Eℓ−r−1(Xℓ)

= Ek−r(Sk)− E0(Sr)−
k
∑

ℓ=r+1

Eℓ−r−1(Xℓ) , (4.14)

and

k+r
∑

ℓ=1

k
∑

i=k−r+1

1i≥ℓ−rPi(Xℓ) =
k
∑

ℓ=1

k
∑

i=k−r+1

Pi(Xℓ) +
k+r
∑

ℓ=k+1

k
∑

i=ℓ−r

Pi(Xℓ)

= Ek(Sk)− Ek−r(Sk) + Ek(Sk+r − Sk)−
k+r
∑

ℓ=k+1

Eℓ−r−1(Xℓ)

= Ek(Sk+r)− Ek−r(Sk)−
k+r
∑

ℓ=k+1

Eℓ−r−1(Xℓ) . (4.15)

Therefore starting from (4.12), and considering the decompositions (4.13), (4.14) and (4.15), we get
that

k
∑

i=1

Xi −
k
∑

i=1

r+i
∑

ℓ=−r−i

Pi(Xℓ) = Sk −Ek(Sk+r) +E0(Sr) +

k+r
∑

ℓ=r+1

Eℓ−r−1(Xℓ)−
k
∑

i=1

r+i
∑

ℓ=0

Pi(X−ℓ) . (4.16)

The decomposition (4.9) together with the upper bounds (4.10), (4.11) and (4.16) imply that

∥

∥

∥
max

r≤k≤n
|Rk|m

∥

∥

∥

p′

p
≪ n

(

∑

|j|≥r+1

‖P0(Xj)‖p,m
)p′

+
∥

∥ max
r≤k≤n

∣

∣Sk − Ek(Sk+r)
∣

∣

m

∥

∥

p′

p
+ ‖E0(Sr)‖p

′

p,m

+
∥

∥

∥
max
r≤k≤n

∣

∣

∣

k+r
∑

ℓ=r+1

Eℓ−r−1(Xℓ)
∣

∣

∣

m

∥

∥

∥

p′

p
+
∥

∥

∥
max

r≤k≤n

∣

∣

∣

k
∑

i=1

r+i
∑

ℓ=0

Pi(X−ℓ)
∣

∣

∣

∥

∥

∥

p′

p
. (4.17)

Applying Burkholder’s inequality for multivariate martingales and using the stationarity, there exists
a positive constant cp depending only on p such that, for any positive integer n,

∥

∥

∥
max

r≤k≤n

∣

∣

∣

k
∑

i=1

r+i
∑

ℓ=0

Pi(X−ℓ)
∣

∣

∣

∥

∥

∥

p′

p
≤ cp

n
∑

i=1

∥

∥

∥

r+i
∑

ℓ=0

Pi(X−ℓ)
∥

∥

∥

p′

p,m
≤ cp

n
∑

i=1

(

∑

j≥i

‖P0(X−j)‖p,m
)p′

. (4.18)
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To handle the fourth term in the right-hand side of (4.17) we proceed as follows. Since E−∞(Xℓ) = 0
almost surely, we first write that

Eℓ−r−1(Xℓ) =

∞
∑

j=r+1

Pℓ−j(Xℓ) .

Then

max
r≤k≤n

∣

∣

∣

k+r
∑

ℓ=r+1

Eℓ−r−1(Xℓ)
∣

∣

∣

m
≤

∞
∑

j=r+1

max
r≤k≤n

∣

∣

∣

k+r
∑

ℓ=r+1

Pℓ−j(Xℓ)
∣

∣

∣

m
.

Let now
ui = ‖P0(Xi)‖p,m , Cr =

∑

i≥r+1

ui and αi = C−1
r ui .

By using the facts that for any p ≥ 1, x 7→ xp is convex and that αi ≥ 0 with
∑

i≥r+1 αi = 1 and
writing

∑

j aj =
∑

j αj(aj/αj), we obtain that

∥

∥

∥
max
r≤k≤n

∣

∣

∣

k+r
∑

ℓ=r+1

Eℓ−r−1(Xℓ)
∣

∣

∣

m

∥

∥

∥

p

p
≤

∞
∑

j=r+1

α1−p
j E

(

max
r≤k≤n

∣

∣

∣

k+r
∑

ℓ=r+1

Pℓ−j(Xℓ)
∣

∣

∣

p

m

)

.

Applying Burkholder’s inequality for multivariate martingales and using the stationarity, we infer that
there exists a positive constant cp depending only on p such that, for any positive integer n,

∥

∥

∥
max

r≤k≤n

∣

∣

∣

k+r
∑

ℓ=r+1

Pℓ−j(Xℓ)
∣

∣

∣

m

∥

∥

∥

p′

p
≤ cp

n+r
∑

ℓ=r+1

‖Pℓ−j(Xℓ)‖p
′

p,m ≤ cp n ‖P0(Xj)‖p
′

p,m .

So, overall

∥

∥

∥
max

r≤k≤n

∣

∣

∣

k+r
∑

ℓ=r+1

Eℓ−r−1(Xℓ)
∣

∣

∣

m

∥

∥

∥

p

p
≤ (cpn)

p/p′

∞
∑

j=r+1

α1−p
j up

j = (cpn)
p/p′

(

∞
∑

j=r+1

‖P0(Xj)‖p
)p

. (4.19)

We handle now the second term in the right-hand side of (4.17). We first write that

Sk − Ek(Sk+r) = Sk − Sk−r − Ek(Sk+r − Sk−r) + Sk−r − Ek(Sk−r) . (4.20)

Let

Yr =
0
∑

i=−(r−1)

Xi −
r
∑

i=−(r−1)

E0(Xi) .

With this notation,
Sk − Sk−r − Ek(Sk+r − Sk−r) = Yr ◦ T k .

Hence, for any positive real A,

∥

∥

∥
max

r≤k≤n

∣

∣Sk − Sk−r − Ek(Sk+r − Sk−r)
∣

∣

m

∥

∥

∥

p

p
≤ 2pAp + 2p

∥

∥ max
r≤k≤n

|Yr1|Yr|m>A ◦ T k|m
∥

∥

p

p

≤ 2pAp + 2p n ‖Yr1|Yr|m>A‖pp,m .

Since ‖Yr‖p,m ≤ Kr where Kr is a constant depending on r, we get that

lim
A→∞

lim sup
n→∞

1

n

∥

∥

∥
max

r≤k≤n

∣

∣Sk − Sk−r − Ek(Sk+r − Sk−r)
∣

∣

m

∥

∥

∥

p′

p
= 0 . (4.21)
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We deal now with the term ‖maxr≤k≤n |Sk−r −Ek(Sk−r)|m‖p. Since E∞(X0) = X0 almost surely, we
have that, almost surely

Sk−r − Ek(Sk−r) =

k−r
∑

ℓ=1

ℓ−k−1
∑

j=−∞

Pℓ−j(Xℓ) =

−k
∑

j=−∞

k−r
∑

ℓ=1

Pℓ−j(Xℓ) +

−r−1
∑

j=−k+1

k−r
∑

ℓ=k+j+1

Pℓ−j(Xℓ) .

Therefore

max
r≤k≤n

|Sk−r − Ek(Sk−r)|m ≤
−r
∑

j=−∞

max
r≤k≤n

∣

∣

∣

k−r
∑

ℓ=1

Pℓ−j(Xℓ)
∣

∣

∣

m
+

−r−1
∑

j=−n+1

max
r≤k≤n

∣

∣

∣

k−r
∑

ℓ=k+j+1

Pℓ−j(Xℓ)
∣

∣

∣

m

≤
−r
∑

j=−∞

max
r≤k≤n

∣

∣

∣

k−r
∑

ℓ=1

Pℓ−j(Xℓ)
∣

∣

∣

m
+

−r−1
∑

j=−n+1

max
r≤k≤n

∣

∣

∣

k−r
∑

ℓ=r−n

Pℓ−j(Xℓ)
∣

∣

∣

m

+

−r−1
∑

j=−n+1

max
r≤k≤n

∣

∣

∣

k+j
∑

ℓ=r−n

Pℓ−j(Xℓ)
∣

∣

∣

m
. (4.22)

Let ui = ‖P0(Xi)‖p,m, Cr =
∑−r

i=−∞ ui and αi = C−1
r ui. As before, using the facts that for any p ≥ 1,

x 7→ xp is convex and that αi ≥ 0 with
∑−r

i=−∞ αi = 1, we obtain that

∥

∥

∥

−r
∑

j=−∞

max
r≤k≤n

∣

∣

∣

k−r
∑

ℓ=1

Pℓ−j(Xℓ)
∣

∣

∣

m

∥

∥

∥

p

p
≤

−r
∑

j=−∞

α1−p
j E

(

max
r≤k≤n

∣

∣

∣

k−r
∑

ℓ=1

Pℓ−j(Xℓ)
∣

∣

∣

p

m

)

.

Applying Burkholder’s inequality for multivariate martingales and using the stationarity, we infer that
there exists a positive constant cp depending only on p such that, for any positive integer n,

∥

∥

∥

−r
∑

j=−∞

max
r≤k≤n

∣

∣

∣

k−r
∑

ℓ=1

Pℓ−j(Xℓ)
∣

∣

∣

m

∥

∥

∥

p

p
≤ (cpn)

p/p′

(

∑

i≥r

‖P0(X−i)‖p
)p

. (4.23)

With similar arguments, we derive that

∥

∥

∥

−r−1
∑

j=−n+1

max
r≤k≤n

∣

∣

∣

k−r
∑

ℓ=r−n

Pℓ−j(Xℓ)
∣

∣

∣

m

∥

∥

∥

p

p
+
∥

∥

∥

−r−1
∑

j=−n+1

max
r≤k≤n

∣

∣

∣

k+j
∑

ℓ=r−n

Pℓ−j(Xℓ)
∣

∣

∣

m

∥

∥

∥

p

p

≤ 2(2cpn)
p/p′

(

n−1
∑

i=r+1

‖P0(X−i)‖p
)p

. (4.24)

Starting from (4.22) and considering the upper bounds (4.23) and (4.24), we get that
∥

∥

∥
max

r≤k≤n
|Sk−r − Ek(Sk−r)|m

∥

∥

∥

p
≤ n1/p′

∑

i≥r

‖P0(X−i)‖p . (4.25)

From the decomposition (4.20) together with (4.21) and (4.25), it follows that
∥

∥

∥
max

r≤k≤n
|Sk − Ek(Sk+r)|m

∥

∥

∥

p
≤ n1/p′

∑

i≥r

‖P0(X−i)‖p + o(n1/p′

) . (4.26)

Starting from (4.17) and considering (4.18), (4.19), (4.26) and the condition (4.1), we derive that
∥

∥

∥
max
r≤k≤n

|Rk|m
∥

∥

∥

p
≪ n1/p′

∑

|j|≥r

‖P0(Xj)‖p,m + o(n1/p′

) + r1/p
′

,
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(with the decomposition of (4.18) in
∑r

i=1 +
∑n

i=r+1) which, combined with (4.2) and Condition (4.1),
implies that

∥

∥

∥
max

1≤k≤n
|Rk|m

∥

∥

∥

p
≤
∥

∥

∥
max
1≤k≤r

|Rk|m
∥

∥

∥

p
+
∥

∥

∥
max

r≤k≤n
|Rk|m

∥

∥

∥

p
≪ r2 + n1/p′

∑

|j|≥r

‖P0(Xj)‖p,m + o(n1/p′

) .

Letting first n tend to infinity and next r tend to infinity, (4.3) follows. �

Starting from Proposition 4.1 one can prove the following theorem concerning the weak and strong
invariance principles for non-adapted sequences.

Theorem 4.1. Let X0 be a zero mean random variable in L
2(Rm) and F0 a σ-algebra satisfying

F0 ⊆ T−1(F0). For any i ∈ Z, let Xi = X0 ◦T i and Fi = T−i(F0). Let Sn = X1 + · · ·+Xn. Assume
that T is ergodic, that E−∞(X0) = 0 almost surely, and that E∞(X0) = X0 almost surely.

1. Assume that
∑

n∈Z

‖P0(Xn)‖2,m < ∞ . (4.27)

Then n−1Var(Sn) converges to

C =
∑

k∈Z

Cov
(

X0, Xk

)

. (4.28)

In addition the process {n−1/2S[nt], t ∈ [0, 1]} converges in D([0, 1],Rm) equipped with the uni-
form topology to a Wiener process {W (t), t ∈ [0, 1]} with variance matrix Var(W (1)) = C.

2. Assume that
∑

n≥3

logn(‖P0(Xn)‖2,m + ‖P0(X−n)‖2,m)

(log logn)1/2
< ∞ . (4.29)

Then, enlarging the probability space if necessary, there exists a sequence (Zi)i≥1 of iid Gaussian
random variables in R

m with zero mean and variance matrix Var(Zi) = C given by (4.28), such
that

sup
1≤k≤n

∣

∣

∣

k
∑

i=1

X0 ◦ T i −
k
∑

i=1

Zi

∣

∣

∣

m
= o
(

(n log log n)1/2
)

almost surely, as n → ∞. (4.30)

Remark 4.2. The weak invariance principle (Item 1 of Theorem 4.1) still holds if T is not ergodic,
but in that case the limiting distribution is a mixture of Brownian motion (this has been proved in [7]
when m = 1). This weak invariance principle can be also extended to separable Hilbert spaces, with
the appropriate covariance operator. In the adapted case (i.e. X0 is F0-measurable), the non ergodic
Hilbert-valued version of Item 1 has been proved in [4].

Proof of Theorem 4.1. Let Sm,1 = {x ∈ R
m : |x|m = 1}. For a matrix A from R

m to R
m, let

|A|m = supx∈Sm,1
|Ax|m. By stationarity n−1Var(Sn) = n−1

∑

|k|<n(n − |k|)Cov(X0, Xk). Hence

n−1Cov(Sn) converges to C provided that
∑

k∈Z
|Cov(X0, Xk)|m < ∞. Since E−∞(Xk) = 0 almost

surely and E∞(Xk) = Xk almost surely, it follows that Xk =
∑

i∈Z
Pi(Xk) almost surely. Moreover

Cov(Pi(X0), Pj(Xk)) = 0 for i 6= j. Hence,

Cov(X0, Xk) =
∑

i∈Z

Cov(Pi(X0), Pi(Xk)) ,
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and consequently |Cov(X0, Xk)|m ≤∑i∈Z
‖Pi(X0)‖2,m‖Pi(Xk)‖2,m . By (4.27) it follows that

∑

k∈Z

|Cov(X0, Xk)|m ≤
∑

k∈Z

∑

i∈Z

‖Pi(X0)‖2,m‖Pi(Xk)‖2,m =
(

∑

i∈Z

‖P0(Xi)‖2,m
)2

< ∞ ,

which proves the convergence of n−1Var(Sn) to C.
Let now d0 :=

∑

j∈Z
P0(Xj). Since (4.27) is assumed, d0 belongs to L

2(Rm). In addition

E(d0|F−1) = 0 almost surely. Let di := d0 ◦ T i for all i ∈ Z. Then (di)i∈Z is a stationary ergodic
sequence of martingale differences in L

2(Rm). Let

Mn :=

n
∑

i=1

di and Rn := Sn −Mn .

Using (4.27), it follows from (4.3) of Lemma 4.1 that

∥

∥

∥
max

1≤k≤n
|Rk|m

∥

∥

∥

2

2
= o(n) . (4.31)

Since n−1Var(Sn) converges to C, it follows that Var(d0) = C. Therefore, Item 1 of Theorem 4.1
follows from the weak invariance principle for partial sums of stationary multivariate martingale
differences in L

2(Rm) (see [4] for the non ergodic Hilbert-valued version) together with the maximal
martingale approximation given in (4.31).

We turn now to the proof of Item 2. According to Theorem 3.1 in [1] (that is the generalization of
the Strassen’s invariance principle [14] for real martingales with ergodic increments to the multivariate
case), enlarging the probability space if necessary, there exists a sequence (Zi)i≥1 of iid Gaussian
random variables in R

m with zero mean and covariance Var(Z1) = C such that

sup
1≤k≤n

∣

∣

∣

k
∑

i=1

d0 ◦ T i −
k
∑

i=1

Zi

∣

∣

∣

m
= o
(

(n log log n)1/2
)

almost surely, as n → ∞.

Therefore the strong approximation result (4.30) will follow if we can show that

|Rn|m = o
(

(n log logn)1/2
)

almost surely, as n → ∞. (4.32)

Since Rn =
∑n

i=1(f − d0) ◦ T i, (4.32) will follow by Theorem 4.7 in [3] if we can prove that

∑

n>3

‖Rn‖2
n3/2(log logn)1/2

< ∞ .

Using (4.2) of Lemma 4.1, this last convergence will hold provided that

∑

n>3

(

∑n
k=1

(

∑

|ℓ|≥k ‖Pℓ(X0)‖2,m
)2)1/2

n3/2(log logn)1/2
< ∞ . (4.33)
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Notice that

∑

n>3

(

∑n
k=1

(

∑

|ℓ|≥k ‖Pℓ(X0)‖2,m
)2)1/2

n3/2(log logn)1/2

≪
∑

k>2

2−k/2(log k)−1/2
(

2k
∑

j=1

(

∑

ℓ≥j

(‖P0(Xℓ)‖2,m + ‖P0(X−ℓ)‖2,m)
)2)1/2

≪
∑

k≥0

2−k/2(log k)−1/2
(

k
∑

j=0

2j
(

∑

ℓ≥2j

(‖P0(Xℓ)‖2,m + ‖P0(X−ℓ)‖2,m)
)2)1/2

.

Now, using the subadditivity of x 7→ x1/2, it follows that (4.33) will be satisfied as soon as

∑

k>2

2−k/2(log k)−1/2
k
∑

j=0

2j/2
∑

ℓ≥2j

(‖P0(Xℓ)‖2,m + ‖P0(X−ℓ)‖2,m) < ∞ ,

which holds as soon as (4.29) does (changing the order of summation in
∑

ℓ

∑

j

∑

k). This ends the
proof of Item 2 of Theorem 4.1. �

For the sake of applications, we now give sufficient conditions for (4.27) and (4.29) to hold.

Remark 4.3. The condition (4.27) is satisfied if we assume that

∑

n≥1

1

n1/2
‖E0(Xn)‖2,m < ∞ and

∑

n≥1

1

n1/2
‖X−n − E0(X−n)‖2,m < ∞ , (4.34)

and the condition (4.29) holds if we assume that

∑

n≥3

log n

n1/2(log logn)1/2
‖E0(Xn)‖2,m < ∞ and

∑

n≥3

logn

n1/2(log logn)1/2
‖X−n − E0(X−n)‖2,m < ∞ .

(4.35)

The proof of the remark above is omitted since it uses exactly the arguments developed to prove
Remarks 3.3 and 3.6 in [5] (see Section 5.5 of [5]). Notice that the conditions (4.34) or (4.35) imply
clearly that E−∞(X0) = 0 almost surely and that E∞(X0) = X0 almost surely.
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[3] Cuny, C. and Merlevède, F. On martingale approximations and the quenched weak invariance
principle. (2012). arXiv:1202.2964
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