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Super Poincaré and Nash-type inequalities for
Subordinated Semigroups

Ivan Gentil ∗, Patrick Maheux †
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Abstract

We prove that if super Poincaré inequality is satisfied by an infinitesimal generator −A
of a symmetric sub-markovian semigroup then it implies a corresponding super Poincaré
inequality for −g(A) with any Bernstein function g. We also study the converse statement.
We deduce similar results when the assumption of super Poincaré inequality is changed
by a Nash-type inequality. In particular, we prove that if D is a Nash function for A then
g ◦D is essentially a Nash function for g(A). Our results apply to fractional powers of A
and log(I + A) generalizing results of [B-M] and [W1]. We provide several examples and
settings of applications.
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6759 - 45067 Orléans cedex 2. France. patrick.maheux@univ-orleans.fr



5 Study of Ψ(A) with Ψ convex 18

6 Asymptotic behavior of g(A) 21

7 Functions of the Laplacian on Rn 21

8 Appendix on Legendre transform 23

1 Introduction and main results

Let (Tt)t>0 be a symmetric sub-markovian semigroup on L2(X,µ) with (X,µ) a σ-finite
measure space i.e (Tt)t>0 is a strongly continuous symmetric contraction semigroup on L2

such that for any t > 0 and f ∈ L2,

0 ≤ f ≤ 1⇒ 0 ≤ Ttf ≤ 1.

The semigroup (Tt)t>0 is said markovian if Tt(1) = 1. This semigroup extends as a
contraction semigroup on each Lp, 1 ≤ p ≤ +∞. The infinitesimal generator −A on
L2(µ) of (Tt)t>0 is defined by

−Af = lim
t→0+

Ttf − f
t

on the domain

D(A) := {f ∈ L2 : lim
t→0+

Ttf − f
t

exists in L2}.

The quadratic form (Af, f) associated to A is a Dirichlet form (see for instance [J]). The
operator A is self-adjoint and non-negative with dense domain in L2. Let us denote by
(., .) the inner product on L2(X,µ) and ||.||p the Lp-norm with respect to µ.

We shall say that A satisfies a super Poincaré inequality if, for any f ∈ D(A) ∩ L1,

||f ||22 ≤ r(Af, f) + β(r)||f ||21, r > 0, (1)

holds true for some function β : (0,+∞) → (0,+∞). More generally, we say that A
satisfies a (r0, r1)-super Poincaré inequality if (1) holds for r ∈ (r0, r1) with 0 ≤ r0 <
r1 ≤ +∞ (see examples below Theorem 1.2). Note that we can always assume that β is
non-increasing by considering what we shall call the super Poincaré profile βp (≤ β) of A
defined, for any r > 0, by

βp(r) := sup{||f ||22 − r(Af, f) : f ∈ D(A) ∩ L1, ||f ||1 ≤ 1}. (2)

See applications of this notion of profile below Proposition 2.1. The assumption β is non-
increasing is not essential for some of our results.

We shall say that A satisfies a Nash-type inequality if, for any f ∈ D(A) ∩ L1,

||f ||22D(||f ||22) ≤ (Af, f), ||f ||1 ≤ 1, (3)

holds true for some non-decreasing function D : [0,+∞) → [0,+∞). We shall call D a
Nash function for A. It is well known that the inequalities (1) and (3) are essentially
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equivalent (see Proposition 2.2).

We now briefly recall some definitions and some facts about the subordination of semi-
groups in the sense of Bochner.

A Bernstein function g is a smooth function g : (0,+∞) → (0,+∞) such that the
derivatives g(n) satisfy, for any n ∈ N, (−1)n−1g(n)(s) > 0, s > 0. There exists a convolu-
tion semigroup of sub-probability measures (νgt )t>0 on (0,+∞) with density (ηgt )t>0 with
respect to the Lebesgue measure ds such that the Laplace transform of νgt is given by:∫ +∞

0
e−sx dνgt (s) =

∫ +∞

0
e−sxηgt (s)ds = e−tg(x), x > 0. (4)

There is one-to-one correspondence between g and (ηgt )t>0, see ([J] p.177, [B-F]).

Despite the fact that we shall not use this representation, we recall that all Bernstein
functions g can be written by Lévy-Khintchine formula

g(x) = a+ bx+

∫ ∞
0

(1− e−λx)dν(λ) = a+ bx+ J(x) (5)

with a, b > 0 and ν a positive measure on (0,+∞) such that
∫∞

0
λ

1+λ dν(λ) < ∞. The
triplet (a, b, ν) is uniquely determined by g (See Theorem 3.9.4 in [J] p.174)). We have
a = g(0) = 0 if and only if νgt is a probability measure for any t > 0. For instance
with a = b = 0, the Lévy measure associated to g(x) = xα with α ∈ (0, 1) (resp.

g(x) = ln(1 + x)) is given by dν(λ) = α
Γ(1−α)λ

−1−α dλ (resp. dν(λ) = e−λ

λ dλ).

Now, let (Eλ)λ∈[0,+∞) be the spectral resolution of the non-negative self-adjoint oper-
ator A and Ψ : [0,+∞) −→ R any measurable function. The operator Ψ(A) is defined on
L2 by the formula

Ψ(A)f =

∫ +∞

0
Ψ(λ) dE(λ)f

with domain

D(Ψ(A)) = {f ∈ L2 :

∫ +∞

0
|Ψ(λ)|2 d(E(λ)f, f) <∞}.

We shall set (Ψ(A)f, f) = +∞ when f /∈ D(Ψ(A)). When Ψ has real non-negative
values, the operator Ψ(A) is non-negative and self-adjoint on L2. It defines a symmetric
semigroup of contractions on L2 by the spectral formula:

e−tΨ(A)f =

∫ +∞

0
e−tΨ(λ) dE(λ)f, f ∈ L2.

Let us denote e−tΨ(A) by TΨ
t for a fixed operator A. When Ψ = g is a Bernstein function,

it can be easily shown that the semigroup (T gt )t>0 satisfies also the so-called subordination
formula

T gt =

∫ +∞

0
Ts dν

g
t (s) =

∫ +∞

0
Ts η

g
t (s)ds. (6)

Among many examples of Bernstein functions, we are interested at least by the fol-
lowing ones:
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i. The fractional subordinator (one-sided α-stable process): g(x) = xα, x > 0, (0 <
α < 1). Then g(A) = Aα.

ii. The Gamma subordinator: g(x) = log(1 + x). Then g(A) = log(I + A) where I
denotes the identity operator on L2.

iii. The generalization of the previous example: g(x) = [log(1 + xα)]γ with 0 < α, γ ≤
1. So, g(A) = [log(I + Aα)]γ . When γ = 1, g is called the geometric α-stable
subordinator (see [S-S-V]).

iv. Elementary functions gλ(x) = 1− e−λx, λ > 0. Then gλ(A) = I − Tλ.

For a recent study of the case (ii): see [S-S-V].

We have the inclusion D(A) ⊂ D(g(A)) and, for any f ∈ D(A),

g(A)f = af + bAf +

∫ ∞
0

(f − Tλf)dν(λ). (7)

(see [Sc-S-V]. Example 11.6 where our A is their −A). We set J(A)f =
∫∞

0 (f−Tλf)dν(λ).

Throughout all the paper, we shall always assume implicitly that the functions f are
in the domain of the operator under consideration. If not, we set (g(A)f, f) = +∞.

We now state the main results of this paper.

The first main result says that if super Poincaré inequality is satisfied by an infinitesi-
mal generator −A of a symmetric sub-markovian semigroup then it implies a correspond-
ing super Poincaré inequality for −g(A) with any Bernstein function g. More precisely,
we have:

Theorem 1.1 Let (Tt)t>0 be a symmetric sub-markovian semigroup with −A as infinites-
imal generator. Assume that A satisfies the following super Poincaré inequality

||f ||22 ≤ r(Af, f) + β(r)||f ||21, r > 0, (8)

for some function β : (0,+∞) → (0,+∞). Then for any Bernstein function g, the
infinitesimal generator g(A) satisfies the following (r0, r1)-super Poincaré inequality

||f ||22 ≤ r(g(A)f, f) + βg(r)||f ||21, (9)

where βg(r) = β
(

1
g−1(1/r)

)
, r ∈ (r0, r1) with r0 = 1

g(+∞) and r1 = 1
g(0+)

.

Note that by (5), g is either strictly increasing and g−1 is defined from (g(0+), g(+∞))
into (0,+∞) or g is constant and (r0, r1) is empty. The Bernstein function g is bounded
if and only if b = 0 and ν is a bounded measure (see [J] p.174). If g is not bounded i.e.
g(+∞) = +∞ then we have r0 = 0. If g(0+) = a = 0 then r1 = +∞. But if a = g(0+) > 0
then we have the obvious spectral gap inequality:

||f ||22 ≤
1

a
(g(A)f, f).

In other words,

||f ||22 ≤ r(g(A)f, f) + βg(r)||f ||21 with βg(r) = 0, r ∈ [1/a,+∞).
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So, in any case we can consider that r1 = +∞.

The second main result is similar with Nash-type inequality assumption. Moreover,
we prove that if D is a Nash function for A then g ◦D is essentially a Nash function for
g(A). More precisely, we have:

Theorem 1.2 Let (Tt)t>0 be a symmetric sub-markovian semigroup with −A as infinites-
imal generator and g be any Bernstein function. Let D be a function from [0,+∞) to
[0,+∞) and set

β(r) = sup
x>0

(x− rxD(x)) ∈ (−∞,+∞].

Assume that β(r) is finite for any r > 0. If the following Nash-type inequality holds true
for A,

||f ||22D(||f ||22) ≤ (Af, f), ||f ||1 ≤ 1. (10)

i. Then g(A) satisfies a Nash-type inequality of the form

||f ||22Dg(||f ||22) ≤ (g(A)f, f), ||f ||1 ≤ 1, (11)

where Dg(x) = supr∈(r0,r1)

(
1
r −

1
rxβ

(
1

g−1( 1
r

)

))
, x > 0 and (r0, r1) =

(
1

g(+∞) ,
1

g(0+)

)
.

ii. Moreover, assume that g is a bijection from [0,+∞) to itself and β : (0,+∞) →
(0,+∞) is a decreasing differentiable bijection. Then we have

||f ||22 sup
ρ>1

(1− ρ−1) ( g ◦D )(ρ−1||f ||22) ≤ (g(A)f, f), ||f ||1 ≤ 1, (12)

and, for any x > 0,

sup
ρ>1

(1− ρ−1) ( g ◦D )(ρ−1x) ≤ Dg(x) ≤ g ◦D(x),

where g ◦D denotes the composition of the functions g and D.

For a discussion of properties of D as a function of β and conversely β as a function
of D, independently of the operator A: see Appendix (Section 8).

Our approach simplifies and generalizes the proofs of the main results of [B-M] and
[W1]. The inequality (12) also clarifies the constants obtained in [B-M] for the fractional
powers Aα. With the same arguments of proof, we can replace ||f ||1 in Theorem 1.1 and
1.2 by any non-negative functional Φ(f) satisfying Φ(Ttf) ≤ Φ(f), t > 0. We can also gen-
eralize our results in Hilbert spaces as in Wang’s paper [W1]. But we shall not give details.

In particular, our results apply to several important examples. We provide a short list
of couples (g(A), βg) just below:

i. Fractional powers. If g(A) = Aα with 0 < α < 1 then βα(r) = β(r
1
α ), r > 0,

(improving constants given in [W1]).

ii. Gamma subordinator. If g(A) = log(I +A) then βlog(r) = β
(
(e1/r − 1)−1

)
, r > 0.

iii. Generalized geometric stable subordinators. If g(A) = [log(I+Aα)]γ with 0 < α, γ ≤
1 then

βg(r) = β

([
e( 1
r

)
1
γ − 1

]−1
α

)
, r > 0.
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iv. Random walks. If g(A) = I − Tλ = I − e−λA with λ > 0 then

β(λ)(r) = β

(
λ

log(1 + 1
r−1)

)
, r > 1.

The same super Poincaré inequality for the generator Bλ = I −Tλ (λ > 0) can also be
deduced by a different route: see (iii) of Proposition 2.1 below.

Many others Bernstein functions can be considered. For instance, g(x) = x
x+λ , g(x) =

√
x arctan( λ√

x
) with λ > 0 (See p.204 of [J]). Already with theses functions, we can con-

struct infinitely many Bernstein functions because if g and h are Bernstein functions then
g ◦ h is a Bernstein function (Cor. 3.9.36 of [J]). For instance, g1(x) = [log(1 + x)]α,

g2(x) = log(1 + xα), g3(x) = [log(1 + xα)]α
′

with α, α′ ∈ (0, 1) (see Chapter 15 of the
recent book [Sc-S-V] for a long list of examples of Bernstein functions).

The paper is organized as follows:

In Section 1, we describe the setting of our study and we state the main theorems.

In Section 2, we prove the main theorems of Section 1. More precisely:
In Section 2.1, we first recall that the super Poincaré inequality for A is equivalent to

the decay for the corresponding semigroup (Tt)t>0. We also show with (iii) of Proposition
2.1 that the decay of the semigroup is nothing else than the super Poincaré inequality for
I − Tt. This is exactly the inequality obtained by Theorem 1.1 for elementary functions
g(x) = 1− e−tx. We apply this fact to determine the super Poincaré profile of the gener-
ator I − e−λ∆ with ∆ the Laplacian on Rn.

Also in Section 2.1, we recall that a Nash-type inequality is essentially an optimized
version of a super Poincaré inequality. This allows us to deduce Theorem 1.2 from Theo-
rem 1.1.

Sections 2.2 and 2.3 are devoted respectively to the proof of Theorem 1.1 and 1.2 for
g(A) with g a Bernstein function using the preparatory Section 2.1.

In Section 3, we briefly apply our results to study the eventual ultracontractivity prop-
erty of subordinated semigroups.

In Section 4, we provide several examples of settings where our results apply: 1) the
Laplacian on the Euclidean space, 2) the Laplace-Beltrami operator on some complete
Riemannian manifolds, 3) some hypoelliptic operators on Lie groups and 4) the Ornstein-
Uhlenbeck operator on the Euclidean space.

In Section 5, we study the same results as in Theorem 1.1 and 1.2 concerning Nash-
type and super Poincaré inequalities but for Ψ(A) with Ψ convex. For these two type
of inequalities, we use spectral representation of the generator. From these results, we
deduce converse implications of Theorem 1.1 and 1.2 by noting that the inverse of a Bern-
stein function is a convex function.

In Section 6, we revisit the spectral gap in Lp for g(A) using the approach by subor-
dination as in Theorem 1.1.
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In Section 7, we prove super Poincaré inequalities for g(∆) with ∆ the Laplacian on
Rn for a larger class of functions than Bernstein functions. Our tool is Fourier analysis
as used in the original paper by J.Nash [N]. The afferent Nash-type inequalities can be
deduced. The results are similar to Theorem 1.1 and 1.2 .

We conclude this paper by an Appendix in Section 8. It concerns the Legendre trans-
form which is underlying in the equivalence between Nash-type inequalities and super
Poincaré inequalities through the functions β and D. We weaken the usual conditions on
β and D of the N-functions theory, (see [R-R] p.13), more adapted to our situation. We
provide examples used in Section 4.

2 Proof of main Theorems

2.1 Super Poincaré inequality versus semigroup decay and
Nash-type inequality

We recall some known result used in the proof of Theorem 1.1 and 1.2.

For the proof of Theorem 1.1, we use in a crucial way the following result of F-Y. Wang
namely the equivalence between Super Poincaré inequality for A and the exponential decay
of the associated semigroup (Tt)t>0 (see [W2] p.230 or [W4] Lemma 3.3.5, see also [W3]
p.3 and [W4] p.50 for extended results). This is the analogue of the equivalence between
the usual exponential decay of a semigroup and Poincaré inequality. We recall the proof
of this proposition for completeness and, additionally, we show (iii) that is the exponential
decay of Tt turns out to be the super Poincaré inequality for the operator I − Tt. This
operator is related to the elementary Bernstein function gt(x) = 1− e−tx.

Proposition 2.1 Let (Tt)t>0 be a symmetric sub-markovian semigroup with infinitesimal
generator −A. Let β : (0,+∞) → (0,+∞) be some function. Then the three following
inequalities are equivalent:

i. For any f ∈ D(A) ∩ L1 and r > 0,

||f ||22 ≤ r(Af, f) + β(r)||f ||21. (13)

ii. For any f ∈ L2 ∩ L1, t > 0 and r > 0,

||Ttf ||22 ≤ e−2t/r||f ||22 + (1− e−2t/r)β(r) ||f ||21. (14)

iii. For any f ∈ L2 ∩ L1, t > 0 and r > 1,

||f ||22 ≤ r((I − Tt)f, f) + β

(
t

log(1 + 1
r−1)

)
||f ||21. (15)

The exponential e−2t/r in (14) is suitable to deal with Laplace transforms (4) and this
is the key point of our paper. This allows us to easily transfer (14) from A to g(A).

During the proof, we can notice that the equivalence between (13) and (14) holds for
any fixed a = r > 0 and fixed b = β(r) > 0. In particular, if (13) holds on some interval
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(r0, r1) then (14) also holds on the same interval (r0, r1) and conversely.
The inequality (15) corresponds exactly to (9) for the elementary functions gλ(x) =

1 − e−λx (t = λ) for any λ > 0. The equivalence between (13) and (15) is particularly
interesting in terms of relationships between the super Poincaré profiles for the generators
A and Bλ = I − Tλ for any fixed λ > 0 (see (2) above for the definition of the profile).

If βp(s), s > 0 is the super Poincaré profile of A and γ
(λ)
p (r), r > 1 is the super Poincaré

profile of Bλ then they correspond by the formulas

γ(λ)
p (r) = βp

(
λ

log(1 + 1
r−1)

)
, r > 1

or equivalently

βp(s) = γ(λ)
p

(
1 + (eλ/s − 1)−1

)
, s > 0.

For instance in the Euclidean setting, the optimal Nash inequality (21) below provides
the super Poincaré profile for the Laplacian ∆, namely βp(s) = Cn s

−n/2 with the best
constant Cn given by (22). Thus, the super Poincaré profile of Bλ is explicit and given by

γ(λ)
p (r) = Cn λ

−n/2
(

log

[
1 +

1

r − 1

])n/2
, r > 1.

We have the following interpretation in terms of random walks.
For fixed λ > 0, the kernel hλ of the operator Tλ can be seen as a probability transition
of a discrete random walk (Xk)k on Rn given by P(Xk+1 = x,Xk = y) = hλ(x − y) =

1
(4πλ)n/2

exp(− |x−y|
2

4λ ), x, y ∈ Rn and k ∈ N∪{0}. The operator Bλ = I−Tλ is the generator

of the continuous-time Markov semigroup Q
(λ)
t = e−tBλ = e−t

∑
k>0

tk

k!Tkλ obtained by
convolution with the following probability transition

q
(λ)
t = e−t

∑
k>0

tk

k!
hkλ

where h0 = δ0 (δa is the Dirac mass at a ∈ [0,+∞)). This semigroup Q
(λ)
t is subordinated

to the heat semigroup e−t∆ by the Poisson semigroup with jumps of size λ defined on
[0,+∞) by νt =

∑
k>0

tk

k! e
−t δkλ in (6) (see [J] p.180).

Proof: Equivalence between (i) and (ii). Let H(t) = e2t/r||Ttf ||22 for t > 0, fixed r > 0
and f ∈ D(A) ∩ L1. We have

H(t)−H(0) =

∫ t

0
H ′(u)du =

∫ t

0
2 e2u/r

(
1

r
||Tuf ||22 − (ATuf, Tuf)

)
du.

By applying (13) to Tuf and because Tu is a contraction on L1, we deduce

H(t)−H(0) ≤ 2

r
β(r)||f ||21

(∫ t

0
e2u/r du

)
.

This proves (14) for f ∈ D(A)∩L1. For the general case, let f ∈ L2∩L1 then there exists
fu (u > 0) such that fu ∈ D(A) and fu converges to f in L1 and L2 as u → 0+ (e.g.
fu = 1

u

∫ u
0 Tsf ds).
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Conversely, let r > 0 be fixed and f ∈ D(A)∩L1. The inequality (14) can be rewritten
as

||Ttf ||22 − ||f ||22
2t

≤

(
e−2t/r − 1

2t

)
||f ||22 + β(r) ||f ||21

(
1− e−2t/r

2t

)
.

We conclude (13) by taking the limit as t goes to 0.

Equivalence between (ii) and (iii). Assume that (ii) holds i.e.

(Ttf, f) = ||Tt/2f ||22 ≤ e−t/r||f ||22 + (1− e−t/r)β(r) ||f ||21

for any t, r > 0. It is equivalent to

(1− e−t/r)||f ||22 ≤ (f − Ttf, f) + (1− e−t/r)β(r) ||f ||21.

Let g(x) = gt(x) = 1− e−tx. The last inequality reads as

||f ||22 ≤
1

gt(1/r)
(gt(A)f, f) + β(r) ||f ||21.

Fix t > 0. Let ρ > 1, choose r > 0 such that ρ = 1
gt(1/r)

i.e. r = 1
g−1
t (1/ρ)

= t
log(1+ 1

ρ−1
)
.

This yields (1,∞)-super Poincaré (15) for the operator I − Tt as expected. The converse
is clear.

Now we recall that super Poincaré and Nash-type inequalities are essentially equivalent
under natural conditions on β in (1) and on D in (3). This result is more or less well
known but we formulate the relations between β and D implicitly in terms of Legendre
transforms (for a detailed discussion: see appendix Section 8).

Proposition 2.2 Let A be a non-negative self-ajoint operator on L2.

i. Assume that the following super Poincaré inequality holds true

||f ||22 ≤ r(Af, f) + β(r)||f ||21, f ∈ D(A), r > 0. (16)

for some function β : (0,+∞)→ (0,+∞). Then

||f ||22D(||f ||22) ≤ (Af, f), f ∈ D(A), f 6= 0 ||f ||1 ≤ 1 (17)

where D(x) = supt>0

(
t− tβ(1/t)

x

)
∈ (−∞,+∞], x > 0. The function D is non-

decreasing, finite on the set (0, supF) where F = {||f ||22, f ∈ D(A) ∩ L1, ||f ||1 ≤ 1}
and D(+∞) = +∞.

ii. Conversely, suppose Nash-type inequality (17) holds true for A and for some function
D : [0,+∞)→ R. Set

β(r) = sup
x>0

(x− rxD(x)) ∈ (−∞,+∞]. (18)

Then super Poincaré inequality (16) is satisfied.
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This proposition is in the spirit of Theorem 3.1 and Section 5 of [W2], see also Proposition
3.3.16 of [W4]. A much closer formulation can be found in [Bi-M], Proposition 2.1.

Note that if F of Proposition 2.2 is unbounded above as a subset of R then D(x) is
finite for any x > 0. For many examples, β is a non-negative non-increasing function
and satisfies β(0+) = +∞, limt→0+ tβ(1/t) = 0 which implies that D(x) is finite for any
x > 0, non-negative, continuous and non-decreasing (see appendix Section 8 for details).
Note also that we can always consider in (17) that D is non-negative by replacing D by
D+ = sup(0, D) because A is a non-negative operator.

Remark 2.3 i. Usually Nash-type inequality is written in the following form

Θ(||f ||22) ≤ (Af, f), , ||f ||1 ≤ 1

(see [C]) but the equivalent expression (17) is more appropriate to deal with the
Bernstein functions g(x) = xα, α ∈ (0, 1) as shown in [B-M] and more generally for
any Bernstein functions by Theorem 1.2 above.

ii. In the second statement, the assumption on the functional (Af, f) can certainly be
relaxed because only the existence of the function β (which depends of this functional)
is crucial for the proof.

iii. In some cases, it appears that we can pass from D to β and β to D with no loss (up to
multiplicative constants). For instance with the classical example D(x) = cxγ , γ > 0
(see appendix Section 8). In general, this is not the case.

Proof: (i) Assume super Poincaré inequality (16) holds true. For any ||f ||1 ≤ 1, f 6= 0,
f ∈ D(A) and any r > 0, we easily deduce

||f ||22
(

1

r
− β(r)

r||f ||22

)
≤ (Af, f).

Taking the supremum over r > 0, we conclude (17). Note that D is automatically finite on
the subset F \ {0} of R since in that case (Af, f) < +∞ for any f ∈ D(A). On one hand,
the set F is not empty since it contains 0. On the other hand, if f ∈ F and λ ∈ (0, 1)
then λf ∈ F . Hence (0, supF) ⊂ F and D is finite on (0, supF). It is easily proved that
D is non-decreasing using the fact that β > 0. Moreover, for any x, t > 0, we have

D(x) > t− tβ(1/t)

x
.

Therefore, lim inf
x→+∞

D(x) > t for any t > 0 that implies lim
x→+∞

D(x) = +∞.

(ii) By definition of β, one has for any x, r > 0,

x

r
− β(r)

r
≤ xD(x)

Let x = ||f ||22 (with f 6= 0). So, for fixed r > 0,

||f ||22
r
− 1

r
β(r) ≤ ||f ||22D(||f ||22).

By (17), the last term is bounded by (Af, f) when ||f ||1 ≤ 1. Hence,

||f ||22
r
− 1

r
β(r) ≤ (Af, f).

10



which is super Poincaré inequality (16). This concludes the proof of the proposition.

Note that when β(r) = +∞ for some r > 0 then (16) is trivially satisfied and the proof
is also valid. For properties of β defined by (18): see appendix Section 8.

2.2 Proof of Theorem 1.1

We suppose that g is non-constant (if not there is nothing to prove since (r0, r1) = ∅).
Assume super Poincaré inequality (8) holds true. By Proposition 2.1, the inequality (14)
is satisfied. Now by symmetry and semigroup property of (Tt)t>0, this inequality (14) can
be written as

||Ttf ||22 = (T2tf, f) ≤ e−2t/r||f ||22 + β(r) ||f ||21 (1− e−2t/r), t > 0.

Let s > 0 and set t = s/2. We deduce for any r > 0 and s > 0,

(Tsf, f)||22 ≤ e−s/r||f ||22 + β(r) ||f ||21 (1− e−s/r).

By the subordination formula (6) and Fubini, we get for any t, r > 0, f ∈ L1 ∩ L2 and
any Bernstein function g,

(T gt f, f) =

∫ +∞

0
(Tsf, f) dνgt (s) ≤

(∫ +∞

0
e−s/r dνgt (s)

)
||f ||22

+ β(r) ||f ||21
(∫ +∞

0
(1− e−s/r) dνgt (s)

)
.

By the Laplace transform of the sub-probability νgt , we get

(T gt f, f) ≤ e−tg(1/r)||f ||22 + β(r) ||f ||21(1− e−tg(1/r)), t > 0, r > 0.

Changing t by 2t and using symmetry and semigroup properties of (T gt ), we obtain

||T gt f ||22 ≤ e−2tg(1/r)||f ||22 + β(r) ||f ||21(1− e−2tg(1/r)), t > 0, r > 0.

Now let ρ ∈ (r0, r1) := ( 1
g(+∞) ,

1
g(0+)

). Since r −→ 1
g(1/r) is a bijection from (0,+∞) onto

(r0, r1), there exists a (unique) r > 0 such that ρ = 1
g(1/r) i.e. r = 1

g−1(1/ρ)
and

||T gt f ||22 ≤ e−2t/ρ||f ||22 + β

(
1

g−1 (1/ρ)

)
||f ||21(1− e−2t/ρ).

We conclude (9) by applying (ii) ⇒ (i) of Proposition 2.1 with g(A). Theorem 1.1 is
proved.

Note that we do not need the existence of the density of the measures νgt nor additional
properties of the function β.

An attempt have been made by the authors to use Lévy-Khintchine formula (7) with
(iii) of Proposition 2.1 to proved Theorem 1.1 and 1.2. But the authors fails in this task.
Furthermore, our method shows that this approach can be avoided by direct subordination.

11



2.3 Proof of Theorem 1.2

Proof of (i). We assume that A satisfies Nash-type inequality (10). By (ii) of Proposition
2.2 and the definition of β, we get super Poincaré inequality: for any f ∈ D(A) ∩ L1,

||f ||22 ≤ r(Af, f) + β(r)||f ||21, r > 0,

We now apply Theorem 1.1 and deduce super Poincaré inequality (9) for g(A) i.e.

||f ||22 ≤ r(g(A)f, f) + βg(r)||f ||21,

with βg(r) = β
(

1
g−1(1/r)

)
, r ∈ (r0, r1) = ( 1

g(+∞) ,
1

g(0+)
). Now, we conclude by applying (i)

of Proposition 2.2.

Proof of (ii).
From the next lemma which compares Dg and g ◦D and (i), we immediately deduce

the inequality (12).

Lemme 2.1 Let g : (0,+∞) → (0,+∞) be a bijective continuous increasing concave
function (e.g. bijective Bernstein function), D and Dg defined as in Theorem 1.2 with β
a decreasing differentiable bijection from (0,+∞) to itself. Then for any x > 0 and ρ > 1,

(1− ρ−1)(g ◦D)(ρ−1x) ≤ Dg(x) ≤ g ◦D(x).

Proof: To simplify our discussion, we set V (t) := β(1/t), Vg(t) := βg(1/t) = β( 1
g−1(t)

)

for t > 0. So, D(x) = supt>0

(
t− t

xV (t)
)

and Dg(x) = supt>0

(
t− t

xVg(t)
)

for x > 0. As
a consequence of the assumptions β(0+) = +∞, we have that D and Dg are well defined
and finite on (0,+∞).

Let u > 0. Since g is a bijection from (0,+∞) to itself, there exists a unique t > 0
such that 1

u = 1
g−1(t)

i.e t = g(u). Thus Dg can be written as

Dg(x) = sup
u>0

g(u)

(
1− V (u)

x

)
.

Since D = Did and by continuity of g, we get

g ◦D(x) = sup
{u>0:V (u)≤x}

g

(
u

[
1− V (u)

x

])
.

Let a = 1 − V (u)/x. Because V > 0, it is sufficient to consider a ∈ (0, 1). By concavity
of g and g(0) = 0, we have ag(u) = ag(u) + (1 − a)g(0) ≤ g(au). Thus we conclude
Dg(x) ≤ g ◦D(x) for any x > 0.

Now, we prove the lower bound on Dg. From the very definition, we have for any
x, u > 0,

Dg(x) > g(u)

(
1− V (u)

x

)
.

By the assumptions on β, the function V is a differentiable increasing bijection from
(0,+∞) to itself. Fix x > 0. For ρ > 1, we set u = V −1(ρ−1x). It yields

Dg(x) > (1− ρ−1) g(V −1(ρ−1x)).

12



Fix y > 0. The supremum defining D(y) = t0 − t0
y V (t0) exists and it is attained at

some point t0 > 0 which is characterized by 1 − 1
yV (t0) − t0

y V
′(t0) = 0. It implies that

y = V (t0) + t0V
′(t0) > V (t0) because V ′ > 0. Finally, we get t0 ≤ V −1(y). Since V > 0,

we deduce D(y) ≤ t0 ≤ V −1(y). Thus g(D(y)) ≤ g(V −1(y)) for any y > 0. Now set
y = ρ−1x and obtain the expected lower bound

Dg(x) > (1− ρ−1)(g ◦D)(ρ−1x).

The proof is completed.

3 Application to ultracontractivity of subordinated

semigroups

Recall that a symmetric semigroup (Tt)t>0 of contraction on L2 and L1 is ultracontractive
if for any t > 0,

||Ttf ||2 ≤ b(t)||f ||1 (19)

for some non-increasing function b : (0,+∞)→ (0,+∞) with b(0+) = +∞. We have also
mentioned in the preceding section that ultracontractivity implies super Poincaré (1) with
β(r) = b2(r/2).

By interpolation and duality, the property of ultracontractivity is equivalent to

||Ttf ||∞ ≤ a(t)||f ||1, t > 0, (20)

for some non-increasing function a : (0,+∞) → (0,+∞) with a(0+) = +∞. More pre-
cisely, from (19) we get a(t) ≤ b2(t/2) and from (20) we obtain b(t) ≤

√
a(t). In a general

framework, it also implies the existence of a heat kernel ht(x, y) uniformly bounded in x
and y by a(t) (see for instance [D]).

If bg(t) :=
∫ +∞

0 b(s)ηgt (s) ds < +∞ for any t > 0 then the semigroup (T gt ) is ultracon-
tractive because

||e−tg(A)f ||2 ≤
∫ +∞

0
ηgt (s)||Tsf ||2 ds ≤

(∫ +∞

0
b(s)ηgt (s) ds

)
||f ||1.

But unfortunately, to check this condition is rather hard because the densities ηgt are not
well known apart from the case of g(x) =

√
x (see [J] p.181). A way to overcome this

difficulty is by considering Nash-type inequalities. For that purpose, we recall a result due
to T.Coulhon. The author deduces ultracontractivity bounds from Nash-type inequality
under some integrability condition (see [C] and also [M1]). For applications we have in
mind, we restrict his result to our setting.

Theorem 3.1 Let (Tt)t>0 be a sub-markovian semigroup with (non-negative) infinites-
imal generator A. Assume that there exists a non-decreasing function Θ : (0,+∞) →
(0,+∞) satisfying the following Nash-type inequality

Θ(||f ||22) ≤ (Af, f), ||f ||1 ≤ 1,

13



If
∫∞ dx

Θ(x) < +∞ then (Tt)t>0 is ultracontractive and for any t > 0,

||Ttf ||∞ ≤ a(t)||f ||1, t > 0,

where a(t) is the inverse of the function s→
∫∞
s

dx
Θ(x) .

We apply this result to the eventual ultracontractivity of the subordinated semigroup (T gt )
and give a sufficient condition on Dg of (11) to get ultracontractivity from a Nash-type
inequality satisfied by A.

Corollary 3.2 Under the assumptions and notations of Theorem 1.2, let’s assume that∫∞ dx
xDg(x) < +∞. Then (T gt ) is ultracontractive and for any t > 0,

||T gt f ||∞ ≤ ag(t)||f ||1

where ag is the inverse function of s→
∫∞
s

dx
xDg(x) .

Proof: Apply Theorems 1.2 and 3.1.

It is clear that (Tt)t>0 can be ultracontractive but not (T gt ) for some Bernstein func-
tions g. For instance, let A = ∆ be the usual Laplacian on Rn. In that case, Nash
inequality has the form (10) with D(x) = cx2/n. Let g(r) = log(1 + r). Then

∫∞ dx
xDg(x) >∫∞ dx

x ln(1+cx2/n)
= +∞. This is obtained from the inequality g◦D(x) > Dg(x) of Theorem

1.2 (ii). Now by a direct computation, we can show that (T gt ) is not ultracontractive for
small t > 0, see (23) below for details.

4 Examples of Settings

Here, we give examples of settings where our main results apply. The list is clearly not
exhaustive.

4.1 The Euclidean space

Let ∆ = −
∑n

i=1
∂2

∂x2i
be the usual Laplacian on Rn. The profile of the super Poincaré

inequality can be deduced from the optimal Nash inequality obtained in [C-L]. Let Nn be
the best constant in Nash inequality,

1

Nn
||f ||2+4/n

2 ≤ (∆f, f), ||f ||1 ≤ 1.

By Proposition 2.2, this is equivalent to the following super Poincaré inequality,

||f ||22 ≤ r(∆f, f) + Cn r
−n/2||f ||21, r > 0, (21)

with

Cn =
2(nNn)n/2

(n+ 2)1+n/2
. (22)

Thus (1) is satisfied with the super Poincaré profile βp(r) = Cn r
−n/2 and (3) with

D(x) = 1
Nn
x2/n. See [C-L] for a description of the constant Nn.

14



To simplify the presentation of our results, we shall assume that the Bernstein function
g is a bijection from (0,+∞) to itself. By applying (ii) of Theorem 1.2, we get for any
ρ > 1,

1

2
(1− ρ−1)||f ||22 g

(
2Nn

−1ρ−2/n||f ||4/n2

)
≤ (g(∆)f, f), ||f ||1 ≤ 1.

Examples of Bernstein functions.

i. Let g(x) = xα. We obtain for the fractional power of the Laplacian ∆α, 0 < α < 1,

1

2(Nnρ)α
(1− 1

ρ
) ||f ||2+4α/n

2 ≤ (∆αf, f), ||f ||1 ≤ 1.

By optimizing over ρ > 1, we deduce

Ln,α ||f ||2+4α/n
2 ≤ (∆αf, f), ||f ||1 ≤ 1

with Ln,α = 2α−1Nn
−α n(2α)2α/n

(2α+n)1+2α/n .

See [VSC] for such a result in the general setting of sub-markovian symmetric semi-
groups but with a different approach. Note that the constant Ln,α is explicit but
probably not optimal. Indeed, we get a better constant if we apply Theorem 1.1
with g(x) = xα:

||f ||22 ≤ r(∆αf, f) + Cn 2
n
2

( 1
α
−1)r−

n
2α ||f ||21, r > 0,

with Cn as above . By applying (i) of Proposition 2.2, we get

Kn,α ||f ||2+4α/n
2 ≤ (∆αf, f), ||f ||1 ≤ 1.

with

Kn,α =

(
n

n+ 2α

)
2α−1

(( n
2α

+ 1
)
Cn

)−2α
n
.

By the relationships connecting Nn and Cn, we have that Ln,α < Kn,α (equivalent

to the trivial inequality n 2
2
n < (n + 2)

2
n

+1). We postpone to Section 7 the study
of super Poincaré inequalities for a larger class of functions of the Laplacian using
Fourier analysis tools. But with this approach, the best constants are lost.

ii. Let g(x) = log(1 + x). The geometrically stable operator log(I + ∆) satisfies

1

2
(1− 1

ρ
)||f ||22 log

(
1 +Nn

−1ρ−1||f ||4/n2

)
≤ (log(I + ∆)f, f), ||f ||1 ≤ 1.

To estimate Dg with g(x) = log(1 + x) is not a pleasant task. So, we prefer to state
this explicit inequality for each parameter ρ > 1.

Note that, in general, the eventual ultracontractivity can be proved for e−tg(∆) directly
by the formula,

||e−tg(∆)||21→2 =
1

(2π)n

∫
Rn
e−2tg(|y|2) dy.

Applied to g(x) = log(1 + x), this leads us to

||e−t log(I+∆)||21→2 =
|Sn−1|
(2π)n

∫ ∞
0

(1 + r2)−2t rn−1 dr < +∞ iff t >
n

4
. (23)

Thus this semigroup is not ultracontractive for 0 < t ≤ n/4. But note that it satisfies
super Poincaré and Nash-type inequalities.
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4.2 The Riemannian setting

The following example is taken from [W2] Cor.2.5. Let M be a connected complete Rie-
mannian manifold with Ricci curvature bounded from below. Assume that the boundary
∂M is convex or empty. For V ∈ C1(M), we assume Z =

∫
M e−V (x) dx is finite and define

the probability measure µ by dµ(x) = Z−1e−V (x) dx where dx is the Riemannian volume
measure. Let A = ∆+∇V , A is (essentially) self-adjoint on L2(µ) (with Neumann bound-
ary condition whenever ∂M is nonempty). Set ρ(x) = ρ(x, o) the Riemannian distance
function to a fixed point o ∈ M . Consider V = −αρδ, α > 0 and δ > 1 then super
Poincaré (1) holds true with

β(r) = exp
[
c (1 + r−λ)

]
(24)

with λ = δ/[2(δ − 1)] and some constant c > 0. Moreover, super Poincaré (1) also holds
if V = − exp[αρ], α > 0 with λ = 1/2 in (24). Theorem 1.1 applies: for any Bernstein
function g, super Poincaré (9) holds true for g(A) with βg(r) given in Theorem 1.1. Nash-
type inequalities can be deduced for g(A) from super Poincaré by Theorem 1.2. Our
results generalize the particular case of the fractional powers g(x) = xα, 0 < α < 1 treated
in [W1].

4.3 The hypoelliptic setting

Here, we consider sub-laplacians on Lie groups of polynomial growth. LetG be a connected
Lie group of polynomial growth of index D and (X1, X2, ..., Xm) be a system of left-
invariant vector fields satisfying Hörmander’s condition with local dimension d. We assume
d ≤ D. The sub-laplacian L = −

∑m
i=1X

2
i generates a semigroup e−tL with kernel pt

satisfying for all n satsifying d ≤ n ≤ D,

sup
x,y∈G

pt(x, y) = ||e−tL||1→∞ ≤
c1

tn/2
.

(See [VSC]). Hence, super Poincaré inequality holds true

||f ||22 ≤ t(Lf, f) +
c0

tn/2
||f ||21, t > 0.

and our results applies to g(L) for any Bernstein function g with β(t) = c0t
−n/2. We

now discuss in this context the four examples of Bernstein function g introduced below
Theorem 1.1. We provide asymptotic behaviors of βg(r) when r tends to 0 and r tends to
+∞.

i. If g(x) = xα, 0 < α ≤ 1 then βg(r) = c0
rn/2α

, r > 0.

ii. If g(x) = ln(1 + x) then βg(r) = c0 (e1/r − 1)n/2, r > 0.

βg(r) ∼

{
c0 e

n/2r as r → 0+,

c0
1

rn/2
as r → +∞.

iii. If g(x) = [ln(1 + xα)]γ , 0 < α, γ ≤ 1 then βg(r) = c0

[
e(1/r)1/γ − 1

]n/2α
, r > 0.

βg(r) ∼

{
c0 e

n
2α

(1/r)1/γ as r → 0+,

c0
1

rn/2αγ
as r → +∞.
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iv. Let t > 0. If g(x) = 1− e−tx then βg(r) = c0
tn/2

[
ln(1 + 1

r−1)
]n/2

, r > 1.

βg(r) ∼

 c0
tn/2

[
ln( 1

r−1)
]n/2

as r → 1+,

c0
(rt)n/2

as r → +∞.

Note that this discussion with this family of Bernstein functions is always valid when A
satisfies super Poincaré inequality with β(t) = c0t

−n/2.

4.4 The Ornstein-Uhlenbeck operator

Let A = L = ∆ + x.∇ be the Ornstein-Uhlenbeck operator define on L2(Rn, γ) with the

gaussian measure γ(dx) = (2π)−n/2e−
|x|2
2 dx. It is well known that Gross’ inequality is

satisfied ∫
Rn
f2 log(|f |/||f ||2) dγ ≤ (Lf, f)

with (Lf, f) =
∫
Rn |∇f |

2 dγ.

It is also well known that we can deduce super Poincaré inequality. We recall the
arguments. For any f ∈ L1 ∩ L2 such that ||f ||1 = 1, we have by Jensen’s inequality:

||f ||22 log ||f ||2 ≤
∫
Rn
f2 log(|f |/||f ||2) dγ.

By renormalization, this inequality is also satisfied when ||f ||1 ≤ 1. This yields

||f ||22 log ||f ||2 ≤ (Lf, f).

Using the relation xy − ey−1 ≤ x log x for any y ∈ R, we deduce

||f ||22 ≤ t(Lf, f) +
t

2e
e

2
t ||f ||21, t > 0.

On the other hand, Poincaré inequality deduced from Gross inequality, trivially implies
||f ||22 ≤ (Lf, f) + ||f ||21. Together, the preceding inequalities leads to the following formu-
lation of super Poincaré inequality

||f ||22 ≤ t(Lf, f) + β(t)||f ||21, t > 0, (25)

with β(t) = t
2ee

2
t , 0 < t ≤ 1 and β(t) = 1, t > 1.

Our Theorems 1.1 and 1.2 apply in this case. For instance, we obtain by Theorem 1.1

i. For any 0 < α < 1,

||f ||22 ≤ t(Lαf, f) +
t
1
α

2e
e2 t−1/α ||f ||21, 0 < t < 1,

and

||f ||22 ≤ t(Lαf, f) + ||f ||21, t > 1.
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ii.

||f ||22 ≤ t(log(I + L)f, f) +
1

2e3

1(
e1/t − 1

)e2e1/t ||f ||21, 0 < t <
1

log 2

and

||f ||22 ≤ t(log(I + L)f, f) + ||f ||21, t >
1

log 2
.

we have βlog(t) ∼ 1
2e3

e2e1/t−1/t as t goes to 0.

Similar inequalities can be written for the cases (iii) and (iv) considered in Section 1. This
is left as exercices. Of course, the discussion is not limited to these cases just above.

5 Study of Ψ(A) with Ψ convex

It is useful to deduce super Poincaré or Nash inequality for Ψ(A) when A satisfies such
inequality and Ψ is convex. The reason is that the inverse function of a concave increasing
function is convex and increasing. For instance, Bernstein functions. Of course, Ψ(A) may
not generate a sub-markovian semigroup (e.g. with Ψ(∆) = ∆2 in Rn). But it doesn’t
harm too much as far as the generator Ψ(A) is concern. In what follows, we study the
following converse implication. Assume that g(A) satisfies super Poincaré or Nash-type
inequality then deduce a similar inequality for A.

Let (Eλ), λ > 0 be the spectral resolution associated to A and ψ : [0,∞)→ [0,∞) be
a measurable function. We define ψ(A) on its domain D(ψ(A)) ⊂ L2 as in the Section 1.
In particular, we have on their respective domains the following representations:

(Af, f) =

∫ +∞

0
λ d(Eλf, f), (Ttf, f) =

∫ +∞

0
e−λt d(Eλf, f), ||f ||22 =

∫ +∞

0
d(Eλf, f),

(See [Sc-S-V] Thm.11.4).

Proposition 5.1 Assume that A is a non-negative self-adjoint operator satisfying Nash-
type inequality (3). Then for any non-negative non-decreasing convex function Ψ with
Ψ(0) = 0, we have

||f ||22 (Ψ ◦D)(||f ||22) ≤ (Ψ(A)f, f), ||f ||1 ≤ 1. (26)

Note that such result can be generalized in the framework of Hilbert space H with
the norm ||f ||1 replaced by another control Φ(f), f in some subspace of H, satisfying
properties as defined in [W4].

Proof: Write equivalently Nash-type inequality (3) as follows. For any f ∈ D(A)∩L1

and ||f ||2 = 1,

D

(
1

||f ||21

)
≤ (Af, f)

Since Ψ is non-decreasing, we get

(Ψ ◦D)

(
1

||f ||21

)
≤ Ψ [(Af, f)] .
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Now, by functional calculus and Jensen inequality applied to the probability measure
d(Eλf, f) (i.e. ||f ||2 = 1), we get

Ψ [(Af, f)] = Ψ

(∫ +∞

0
λ d(Eλf, f)

)
≤
∫ +∞

0
Ψ(λ) d(Eλf, f) = (Ψ(A)f, f).

Thus

(Ψ ◦D)

(
1

||f ||21

)
≤ (Ψ(A)f, f), ||f ||2 = 1, f ∈ D(A) ∩ L1.

Under the assumptions on Ψ, there exists λ0 > 0 and k > 0 such that, for any λ > λ0: kλ ≤
Ψ(λ) which implies D(Ψ(A)) ⊂ D(A). Now, by reversing the process of normalization from
L2 to L1, it yields for any f ∈ D(Ψ(A)) ∩ L1,

||f ||22 (Ψ ◦D)

(
||f ||22
||f ||21

)
≤ (Ψ(A)f, f).

Since Ψ ◦D is non-increasing, we deduce (26) for ||f ||1 ≤ 1 and conclude the proof.

In the second part of this section, we deal with the case of super Poincaré inequalities
generalizing the arguments of [W1] used for Aα, α > 1.

Theorem 5.2 Let Ψ : (0,+∞)→ (0,+∞) be a non-decreasing convex function. Assume
that Ψ∗(x) := supy∈(0,+∞)(xy −Ψ(y)) is a bijection from (0,+∞) to (0,+∞) and that B

is a non-negative self-adjoint operator satisfying: for any f ∈ D(B) ∩ L1 and t > 0,

||f ||22 ≤ t(Bf, f) + γ(t)||f ||21 (27)

for some function γ : (0,+∞)→ (0,+∞). Then Ψ(B) satisfies for any f ∈ D(Ψ(B))∩L1

and t > 0,
||f ||22 ≤ t(Ψ(B)f, f) + γΨ(t)||f ||21 (28)

with γΨ(t) = inf0<ε<1
1
εγ
(
εt(Ψ∗)−1(1−ε

εt )
)
.

In particular, if Ψ(x) = x1/α with α ∈ (0, 1) then γΨ(t) ≤ 1
αγ(tα).

Proof: From the very definition of Ψ∗, we have Young’s inequality i.e. for any y, s > 0,
ys ≤ Ψ(y) + Ψ∗(s). Let y = (Bf, f) with f ∈ D(B), we obtain for any s > 0:

s(Bf, f) ≤ Ψ((Bf, f)) + Ψ∗(s).

Assume that ||f ||2 = 1. By spectral representation of B and by Jensen’s inequality with
Ψ as convex function, we have already seen that

0 ≤ Ψ((Bf, f)) ≤ (Ψ(B)f, f).

By (27), we have for any t, s > 0 with ||f ||2 = 1,

1 ≤ ts(Bf, f) + γ(ts)||f ||21.

Combining the above inequalities, it yields for f ∈ D(Ψ(B)):

1 ≤ t(Ψ(B)f, f) + tΨ∗(s) + γ(ts)||f ||21.
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Let ε ∈ (0, 1). Since Ψ∗ is a bijection, for any fixed t > 0, there exists s > 0 such that
ε = 1− tΨ∗(s) i.e. s = (Ψ∗)−1(1−ε

t ). Thus we obtain

ε ≤ t(Ψ(B)f, f) + γ
(
t(Ψ∗)−1

(
(1− ε)t−1

))
||f ||21.

Changing t by εt and dividing by ε, we get for any t > 0, ε ∈ (0, 1) and ||f ||2 = 1,

1 ≤ t(Ψ(B)f, f) +
1

ε
γ

(
εt(Ψ∗)−1

(
1− ε
εt

))
||f ||21.

We conclude (28) by changing f by f/||f ||2 and by taking the infimum over ε ∈ (0, 1).

We now prove the last statement. Let Ψ(x) = x1/α, we have Ψ∗(s) = cα s
1

1−α with

cα = (1− α)α
α

1−α . By a simple computation, it yields for any ε ∈ (0, 1),

γΨ(t) ≤ 1

ε
γ

[
kα ε

(
1− ε
ε

)1−α
tα

]

with kα = α−α(1− α)α−1. Choosing ε = α, we conclude γΨ(t) ≤ 1
αγ(tα).

The proof is completed.

For the case g(x) = xα, the function obtained in [W1] is given by γ̃Ψ(t) = 2γ( t
α

2 ).
Since γΨ is usually decreasing and γ(0+) = +∞, the result above is sharper up to a mul-
tiplicative constant. We notice that ||f ||21 plays no particular role in the proof. So, it can
be replaced by some functional Φ(f) and L2 by a general Hilbert space as in [W1].

Now we make the connection between Bernstein functions and convex functions. As-
sume that g is a Bernstein function. Since g is non-decreasing and concave, Ψ = g−1 is
non-decreasing and convex. Hence, Theorem 5.2 allows us to prove a converse to Theorem
1.1 about super Poincaré inequalities. Thus applying Theorem 5.2 with B = g(A), we
get:

Corollary 5.3 Let g be a bijective Bernstein function and A be a non-negative self-adjoint
operator. Assume that Ψ = g−1 satisfies the conditions of Theorem 5.2 and that for any
f ∈ D(g(A)) ∩ L1 and any t > 0,

||f ||22 ≤ t(g(A)f, f) + γ(t)||f ||21. (29)

Then for any f ∈ D(A) and any t > 0,

||f ||22 ≤ t(Af, f) + γΨ(t)||f ||21 (30)

with γΨ given as in Theorem 5.2.

Corollary 5.3 is sharp in the particular case g(x) = xα, α ∈ (0, 1). Indeed, assume that A
satisfies super Poincaré inequality (1) for some β. By Theorem 1.1, g(A) satisfies super
Poincaré inequality (29) with γ = βg given by (9). Now take Ψ(x) = x1/α in Theorem
5.2, it gives back that A satisfies super Poincaré inequality with β̃(t) = γΨ(t) ≤ 1

αγ(tα) =
1
αβ(t). In this case, Corollary 5.3 is essentially an optimal converse of Theorem 1.1 up to
the multiplicative constant 1

α .
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6 Asymptotic behavior of g(A)

We briefly revisit the relation between the asymptotic behavior of g(A) and the asymptotic
behavior of A in terms of Poincaré inequality (equivalent to a bound on the bottom of the
spectrum). The proof uses arguments of Theorem 1.1. We obtain Poincaré inequality in
Lp for g(A) starting from the same inequality for A. The first result is certainly known
for Poincaré inequality in L2. See [C-G-R] for recent results on the subject on Lp.

Proposition 6.1 Assume that (Tt)t>0 is a symmetric Markov semigroup and has a spec-
tral gap on Lp(X,µ) in the following sense

||Ttf − µ(f)||p ≤ e−λtC(f), t > 0, (31)

for some λ ∈ [0,+∞) and some positively homogeneous functional C(f). Then for any
Bernstein function g with g(0) = 0, we have

||T gt f − µ(f)||p ≤ e−tg(λ)C(f), t > 0. (32)

For instance with C(f) = ||f−µ(f)||p, see [C-G-R]. For p = 2 and C(f) = ||f−µ(f)||2,
the interpretation of (32) in terms of spectrum is well known. Indeed, (31) is equivalent
to Poincaré inequality

||f − µ(f)||22 ≤
1

λ
(Af, f)L2 , f ∈ D(A).

Then similarly for g(A), we deduce:

||f − µ(f)||22 ≤
1

g(λ)
(g(A)f, f).

Similar results can be written in the Lp-setting for 1 < p < +∞.

Proof: Let f such that µ(f) = 0. Then µ(Tsf) = µ(T gs f) = 0, s > 0 because Ts and
T gs are symmetric Markov semigroups. Let g be a Bernstein function. We have for any
t > 0,

||T gt f − µ(f)||p = ||T gt f ||p = ||
∫ +∞

0
ηgt (s)Tsf ds||p

≤
∫ +∞

0
ηgt (s)||Tsf ||p ds ≤ C(f)

∫ +∞

0
ηgt (s)e−λs ds ≤ e−tg(λ)C(f).

This concludes the proof.

7 Functions of the Laplacian on Rn

Here, we give a direct proof of super Poincaré inequality for g(∆) with g a Bernstein
function and ∆ the usual Laplacian on Rn. In fact, g need not be a Bernstein function.
The constants are certainly not optimal. The proof follows the original idea used for the
Laplacian in the paper by J. Nash [N].
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We use the following definition of Fourier transform Ff(x) =
∫
Rn f(y)e−ixy dy. Let

∆ = −
∑n

i=1
∂2

∂2xi
. So, F(∆f)(x) = |x|2Ff(x). The function g(∆)f is defined by its

Fourier transform
F(g(∆)f)(x) = g(|x|2)Ff(x), x ∈ Rn.

The domain of g(∆) is defined by

D(g(∆)) = {f ∈ L2 :

∫
Rn
|g(|x|2)|2|Ff(x)|2 dx < +∞}.

We denote by ωn the volume of the unit ball of Rn and set cn = (2π)−n.

Theorem 7.1 Let g : [0,+∞) → [0,+∞) be a non-decreasing function such that g(0) =
0. We define the function g→ on [0,+∞) by g→(u) = sup{s > 0 : g(s) ≤ u} ∈ [0,+∞].
Then we have

i. For any t > 0 and any f ∈ D(g(∆)) ∩ L1(Rn),

||f ||22 ≤ t(g(∆)f, f) + β̃

(
1

g→(t−1)

)
||f ||21. (33)

with β̃(t) = cn ωnt
−n/2.

ii. For any f ∈ D(g(∆)) ∩ L1(Rn) with ||f ||1 ≤ 1,

||f ||22 D̃g(||f ||22) ≤ (g(∆)f, f),

with D̃g(x) = supt>0

(
t− t

xcn ωn [g→(t)]n/2
)

.

When g is unbounded and g(0) = 0, the function g→(t) is well defined and finite for
any t > 0. It is clear that g→ is non-decreasing. When g is an increasing bijection from

[0,+∞) to itself, we have g→ = g−1. The function β̃g(t) := β̃
(

1
g→(t−1)

)
in (33) is sim-

ilar to βg(t) in (9) when g is invertible. If we assume that g is bounded then g(∆) is a
bounded operator and β̃g(t) = +∞ when t ≤ 1/||g||∞. In that case, the inequality (33) is
meaningful only for t > 1/||g||∞. Note that this restriction already appears in Theorem
1.1 when g is bounded.

Proof: Let f ∈ D(g(∆)) ∩ L1 and t > 0. By Plancherel formula,

||f ||22 = cn

∫
Rn
|Ff |2(x) dx

= cn

∫
{x∈Rn:1≤ tg(|x|2)}

|Ff |2(x) dx+ cn

∫
{x∈Rn:1>tg(|x|2)}

|Ff |2(x) dx (34)

≤ cn t
∫
Rn
g(|x|2)|Ff |2(x) dx+ cn ||Ff ||2∞ V ({x ∈ Rn : g(|x|2) <

1

t
}).

where V (Ω) is the Lebesgue measure of the set Ω ⊂ Rn. Now, since g(r) ≤ u implies
r ≤ g→(u) and ||Ff ||∞ ≤ ||f ||1 , we deduce for any t > 0,

||f ||22 ≤ t (g(∆f, f) + cn ||f ||21 V
(
{x ∈ Rn : |x| ≤

√
g→(t−1)}

)
.

This concludes (i).

We prove the second part by applying Proposition 2.2 with β̃(t) = cn ωn
[
g→(t−1)

]n/2
.

This completes the proof.
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8 Appendix on Legendre transform

In the first part of this section, we are interested to discuss the properties of D directly
from the properties of β independently of the set F defined in Proposition 2.2. In the
second part of this section, reversing the role of β and D leads to a similar discussion.
The conditions introduced here are usually satisfied in the applications.

Lemma 8.1 Let β be a non-negative function defined on (0,+∞) and set

D(x) = sup
t>0

(
t− t

x
β(1/t)

)
∈ (−∞,+∞], x > 0.

i. If limt→0+ tβ(1/t) = 0 then D is non-negative. This condition is satisfied if β is
bounded above at infinity, in particular if β is non-increasing.

ii. If β(0+) = +∞ then D(x) is finite for any x > 0. Moreover, the function x→ xD(x)
is convex, non-decreasing on (0,+∞) and D is continuous.

Proof:

i. Assume that limt→0+ tβ(1/t) = 0 then D(x) > limt→0+(t − t
xβ(1/t)) = 0 for any

x > 0. Obviously, if β is bounded above at infinity (e.g. non-increasing) and non-
negative then limt→0+ tβ(1/t) = 0.

ii. Assume β(0+) = +∞. Fix x > 0 then there exists tx > 0 such that for any t > tx,
x < β(1/t). So, t − t

xβ(1/t) < 0 when t > tx. If 0 < t ≤ tx then t − t
xβ(1/t) ≤ tx

since β is non-negative. Therefore D(x) ≤ tx and D(x) is finite. Now, the function
x→ h∗(x) = xD(x) = supt>0 (tx− tβ(1/t)) is convex on (0,+∞). Consequently, h∗

and D are continuous.

The proof is completed.

Now, we study properties of β in terms of D defined as in Theorem 1.2. Natural
conditions on D comes from the previous lemma. The discussion is similar.

Lemma 8.2 Let D : (0,+∞)→ R be a fixed function and set

β(r) = sup
x>0

(x− rxD(x)) ∈ (−∞,+∞].

i. If limx→+∞D(x) = +∞ and D is non-negative then β(r) is finite for any r > 0,
convex, continuous and non-increasing.

ii. If limx→0 xD(x) = 0 then β is non-negative.

s

The proof is similar to Proposition 8.1. The reason of this fact is apparent below.

Let β and D as in Proposition 8.1. Note that h∗(x) := xD(x) = supt>0(tx−tβ(1/t)) is
the Lengendre transform (or complementary function) of h(t) = tβ(1/t) thus the afferent
theory applies. See for instance [R-R] p.6 for a discussion about Young functions and p.13
for the specific class of N-functions. Usually h is obtained from h∗ by the same formula
i.e. h(t) = supx>0(tx− h∗(x)), t > 0. In that case, we recover the definition of β in terms
of D in Lemma 8.2 by the formulas β(t) = th(1/t) and D(x) = h∗(x)/x. Here are some
examples of couples of N-functions. They appear as asymptotics of functions β or D of
our examples in Section 4. Let 1 < p, q < +∞, 1/p+ 1/q = 1.
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i. (h1(t), h∗1(x)) = (tp/p, xq/q).

ii. (h2(t), h∗2(x)) = (et − t− 1, (1 + x) ln(1 + x)− x).

iii. (h3(t), h∗3(x)) = ((1 + t) ln(1 + t)− t, ex − x− 1).

iv. h4(t) = et
p − 1, h∗4: no explicit form.

But one can prove that h∗4(x) ∼ x (lnx)1/p as x→ +∞ and h∗4(x) ∼ cq xq as x→ 0+ with

1/p+ 1/q = 1 and cq = (p− 1)
(

1
p

)q
.

Of course, in applications, functions like c1h(c2t), ci > 0 should be considered or
functions having asymptotics of this type. Indeed, in practice h is not exactly an N-
function but often close to such function. Fortunately, it doesn’t cause much trouble in
practice. This justifies the interest of both propositions just above. Now, we mentioned
some cases where the asymptotics of these functions really appear in our applications.
Recall the relations β(t) = th(1/t) and D(x) = h∗(x)/x.

i. For h1(t) = c0 t
p then we get β1(t) = c1

tν where ν = p− 1 > 0 and D(x) = c2 x
q with

1/p+ 1/q = 1 and q = 1 + 1
ν . Such cases correspond in Section 4.1 to the fractional

Laplacian ∆α on the Euclidean space and to Section 4.3 with Lα where L is a sum
of vector fields satisfying Hörmander’s condition and ν = n

2α . For all these cases:

D(x) = c3 x
2α
n .

ii. The function h2(t) = et − t − 1 leads to β2(t) ∼ te
1
t as t → 0+ and β2(t) ∼ 1

2t as
t → +∞. This situation is realized up to multiplicative constants by the Ornstein-
Uhlenbeck operator in Section 4.4 as far as the local behavior (i.e. t → 0+) is
concerned. In that case, D(x) ∼ lnx as x→ +∞.

iii. The function h3(t) = (1+t) ln(1+t)−t gives β3(t) ∼ ln(1/t) as t→ 0+. Using results
of Section 7 with n = 2, we set A = g(∆) > 0 with g(y) = ey/4π − 1, y > 0. This
provides an example of positive operator such that the super Poincaré inequality
(33) is satisfied with β(t) = ln(1 + 1

4π2t
), t > 0 and D(x) ∼ 4π2

x ex−1 as x → +∞.
We also have D(x) ∼ π2x as x→ 0+.

iv. For the function h4(t) = et
p − 1 with 1 < p < +∞, we deduce β4(t) ∼ te

1
tp =: β̃(t)

as t→ 0+ and e
(1− 1

p
) 1
tp ≤ β̃(t) ≤ e

1
tp when t ∈ (0, 1). Examples with such behavior

are given in the Riemannian setting of Section 4.2 with p = δ
2(δ−1) where 1 < δ < 2

in (24). In that case, D(x) ∼ (lnx)1/p as x → +∞. Note that it is a general fact
that the behavior of β(t) as t → 0+ determines the behavior of D(x) as x → +∞
and conversely.

It will be interesting to know if there exists an operator A satisfying super Poincaré
inequality with β(t) ∼ th3(1/t) ∼ ln(1/t) as t→ 0+ and (Af, f) a Dirichlet form.
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of semi-groups. Electronic Communications in Probability, 2010, Vol.15, 270–280.

[M1] Maheux P.: New Proofs of Davies-Simon’s Theorems about Ultracontractivity and Log-
arithmic Sobolev Inequalities related to Nash Type Inequalities. Available on ArXiv:math/0609124.

[N] Nash J.: Continuity of solutions of parabolic and elliptic equations. Amer.J. Math.
80, 1958,pp.931-954.

[R-R] Rao M. M. and Ren Z. D.: Theory of Orlicz spaces, Monographs and Textbooks in
Pure and Applied Mathematics, vol. 146, Marcel Dekker Inc., New York, 1991.

[Sc-S-V] Schilling R.L., Song R. and Vondraček Z.: Bernstein functions. Theory and ap-
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