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Symmetric Logarithmic Image Processing Model
Application to Laplacian Edge Detection

Laurent Navarro, Guy Courbebaisse

Abstract—This paper introduces a new model for logarithmic of the model. Image processing operations have been achieve

image processing, called Symmetric Logarithmic Image Pro- with the parameterized LIP model, like for example edge
cessing (SLIP), that provides an algebraic framework for the detection [6] or image fusion [7].

processing of transmitted light images and intensity images. The . - . .
SLIP model is inspired by the previously developed Logarithmic In the LIP model, the intensity of an image is modeled

Image processing (LIP) model and has been built to exhibit a Dy its gray tone function valued in the bounded &gt\/).
symmetric structure that allows to deal with negative values dur- The combination and amplification laws of these gray tone
ing logarithmic processing. Structured with a combination law  functions introduced by Jourlin and Pinoli [3] first defined
and an amplification law, the SLIP model defines a vector space a cone structure on thf, M) range. In order to define a

structure on a symmetric bounded set instead of the positive cone
structure that was characteristic of the LIP model. Furthermore, VECtOr space structure they further extended|thé/) range

in the continuation of the LIP model, the SLIP model is physically 10 (—oc, M). However, the LIP model's negative extension’s
consistent with transmitted light formation and human vision's problem is that the LIP operations are not physically juesdifi
brightness perception laws, but also allows to unify the two on the negative part. In addition, in many cases of image
physical entities. This article introduces mathematical notions processing, the operators deal with negative parts. (ditrac
and operations defining the SLIP model, then explains why . LI - . :

it is physically and psychophysically well justified, and finally medical imaging or color image processing based on color
the SLIP model specificity is illustrated with a real application Opponent process theory are specific examples of images

example. containing negative parts. The negative part is also a probl
Index Terms—Logarithmic image processing, Symmetric Log- N the case of image processing operations such as wavelet
arithmic Image Processing. transform or Laplacian edge detection. Some authors piexsen

models that can deal with the negative parts of images.
Patrascu and al. [8] elaborated an Homomorphic logarithmic
) ) o _image processing model defined on thel, 1) set. Florea and

~ Inthis paper, a new model for logarithmic image processing (g1 also extended the pseudo-logarithmic model on tisisba

is proposed. Logarithmic image processing has been widglyhe vertan and al.’s model [10], in order to obtain a vector
develop_ed in recent years. Its relevance is due t_o the a"al%ace structure ofi-1,1). Shvaytser and al. [11] proposed an
done with the non-linearities of human perception or thO$gner way to treat negative values, this model has been used
of transmitted light images for example. The homomorphif 1151 This model will not be detailed in this article besau

theory introduced by Oppenheim [1] is the starting pointjs not a mathematically symmetric model, as it is defined in
of logarithmic image processing models. The principle is o [0, M) range.

introduce a logarithmic homomorphic function allowing the The original Symmetric Logarithmic Image Processing

mapping of an image into a superior algebraic structure. 18 |py model proposed in this paper is defined in the contin-
1972 Stockham [2] proposed an image enhancement methiplion of the logarithmic image processing (LIP) model and

based on the homomorphic theory. extends the cone space structure of the LIP model to a vector
In 1988, in the first article introducing the LIP mOdelspace structure in introducing an odd isomorphism.

[3], _Jourlin and Pi_noli presentgd a new algebraic structure o present paper is organized as follows: the section 2
for 'Mage processing. Thg main idea of t_h|s model was iefly presents the LIP model and the existing symmetric
prow_de a framework aIIow_mg th? processing of .trapsmllttq garithmic image processing models. The section 3 inttedu
light images In a bounded {ntenglty range. The'prlr'10|pla)|s the proposed Symmetric Logarithmic Image Processing (SLIP
represent an image by the light filter through which it hasnbe‘rn’nodel that preserves thie- M, M) symmetric set for all op-
formed. Later, Brailean and Al. [4] showed that the LIP mOdeeIrations, and is still consistent with the human visual eyst

IS alslo consistent V\;']th th(_':' r;on Ilne?r (I_oganfthr:mc) h;mgﬁinally, the section 4 shows SLIP model advantages on a real
visual system. A mathematical generalization of the LIP elo a %Iication example, a Laplacian edge detection.

has also been proposed by Panetta and Al., the Parameterize
LIP model [5], which allows interesting adaptive adjustisen

I. INTRODUCTION

Il. CLASSICAL LIP MODEL AND EXISTING SYMMETRIC
L. Navarro is with the Centre Irémierie et Sai@ (CIS), LPMG-UMR CNRS LOGARITHMIC MODELS
5148, Ecole Nationale Sépeure des Mines de Saint-Etienne, 158 cours . . .
Fauriel, 42023 Saint-Etienne cedex 2, FRANCE, Email: na@emse.fr ~ A. Mathematical considerations

G. Courbebaisse is with the CREATIS, CNRS UMR 5220, InsernD@4] Al t s fieldK IVR or C. i
UCB Lyon 1, INSA Lyon, 7 Av. J. Capelle, 69621 VilleurbanneRANCE, Inear vector space over a fie » generallyrv or C, IS

Email: guy.courbebaisse@insa-lyon.fr. equipped with a vector additios and a scalar multiplication
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x of each element o by each element of on the left, The gray tone range is also extended frd M) to
these operations satisfying a number of classical praggerti (—oo, M). The set of gray tone functions valued in this range
A positive linear cones™* over K+, generallyR*™ or C*,is is related toR through the fundamental isomorphism [13]

equipped with a vector additiom and a scalar multiplication defined as:

x of each element of * by each element ok on the left. W(f) = —MIn <M — f> (6)
KT, R andC™* are constituted by the positive elements of M

the fields K, R and C respectively. A positive linear cone hagd _

the same properties and operation rules than a linear space, V) =M (1 — e%) 7

it is closed for addition and for positive scalar multiplice _ i _ _
operations. A neutral element exists for the addition, the HOWever, the set on which the vector space is defined is

addition is commutative and associative, and the positiatas aSymmetric. The LIP operations are bounded in the positive
multiplication also possesses a neutral element and feltoe P2t [0, M) and unbounded in the negative pdrtoco, O].

associative and distributive laws. Thus, despite it is mathematically consistent, the LIP rhode
distorts negative values informations in real applicatigsee
B. The LIP model section 4).

. 1) The Gray ton.e funcnqn:ln the LIP model, an image ~ o symmetric logarithmic models
is represented by its associated gray tone function, ddnote i ]
f, defined on the non-empty spatial domdnin R2. The 1) Homor_norphlc-Llp (HLIP) modeI:T_he Homomorphic-
gray tone functions are valued in the bounded real numddf’s main idea was purely mathematical. Patrascu and al.
interval [0, M), where M is strictly positive, called the gray [8] noticed than during the processing of an image, the
tone range. Elements ¢, A7) are called the gray tones. TheMathematical operations concerning the real functionshese

gray tone functionf is related to the gray level functiof as real numbers algebra, so results are spread on the whole real
follows: axis. The problems appear at the end of the processing, when
f=M-7f 1) it is necessary to truncate the results in order to reprebemnt
on a bounded range.
In this approach, the intensity scale is invertédis total  Thys, in the HLIP model, gray functions are valued in the
whiteness or transparency, and the absolute blacknesssymmetric se(—1,1).

or opacity. Indeed, the initial goal of the LIP model was The addition of two gray levelg and g is defined as:
the addition of two transmitted-light images. Physicatlye ftg

addition of two transmitted-light images follows the clas$ f<+>g= (8)
transmittance law, and total blackness can not be reached. o l"ff g _
The scale inversion is justified, @scorresponds to the total and the multiplication by a scalar is defined as:
transparency and is the neutral element for a mathematical 1+ =1 =)

ition in thi A< x> f= 9
addition in this case. f AT+ +1-f) ©)

2) The Structure of the LIP modelfhe initial aim of the ) ) »
LIP model was to define an additive operation closed in the N€ space of gray functions structured with the addition
bounded positive real number intensity rarige)!) [3] [13], < + > and the multiplication by a real spalaf X > defines
ie. the positive linear conf, M). a real vector space. T_he fundamental isomorphism b_etween

The addition of two gray tone functionsandg defined on the space of gray func_tlo_ns valued(irl, 1) and the classical
the spatial supporD and valued in the real number intervalVECtor space defined iRt is expressed as:

0, M) is defined as: 1 1+
[0, M) ‘o ¥(f)=5.In (1_9 (10)
fhg=T+g9-4; @ g .
and the multiplication by a positive real scabais defined as: oU(f) = e - (12)
N ef +ef
ANAFf=M—-M (1 — f) ) The HLIP model has no real physical or physiological
M justifications, but the results are bounded in the, 1) set.

In order to extend the positive linear cojie M) to a vector ~ 2) Symmetric Pseudo-LIP modeThe Pseudo-LIP model
space, Jourlin and Pinoli [3] defined the opposite of a gray has been introduced by Vertan and al. [10] in 2009. They

tone functionf: proposed the use of a logarithmic-like image processingeinod
f with gray tone valued in thé, 1) range.
Af = —Mm 4) The addition of two gray levelg andg is defined as:
and they extended the scalar multiplication to any real rennb fog= w (12)
Then the subtraction between two gray tone functigrsnd 1—fg
g can be introduced: and the multiplication by a positive real scalars defined as:
f—g A
= A = 13
fAg MM_g ®) @/ 1+(A=1)f (13)
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The fundamental isomorphism between the space of gray
valued in[0, 1) and the classical cone space valuedOino)

is defined as: p 6001
Y(f) = T—f (14) a00l

and
61 = L (15) 20

1+ f

The symmetric Pseudo-LIP model has been introduced by
Florea and al. [9] in order to achieve the extension to a vecto
space structure. The aim of this model is comparable to the
aim of the HLIP, as the results are bounded on thé, 1)
range. The fundamental isomorphism between the space of ~4007
gray valued in(—1,1) and the classical vector space valued

-2001

in (—oo, 00) is defined as: —600¢

"/’(f) — f| (16) -200 -100 0 100 200

L—1f
Fig. 1. Comparison diagram of LIP and SLIP models. The two fionst

and f have the same behavior for the positive values, but for thativegvalues the

- LIP model is not symmetric.

V() = 17
1+|f]

IIl. FUNDAMENTALS OF THE SYMMETRIC LOGARITHMIC

C. The fundamental isomorphism
IMAGE PROCESSINGMODEL

The SLIP model has been built in creating an odd isomor-
phism inspired from the LIP model isomorphism in order to

This section presents the concepts needed in subsequsbihin a model which has the same behavior for positive and
sections of this paper: signum and absolute value functionggative values. The SLIP fundamental isomorphism is défine
and their properties. These functions belong to mathealatigs:
distributions [14].

Distributions (generalized functions) are mathematidal o
jects that generalize the notion of function and measurémen
Distribution theory extends the concept of differentiatito and . 15
all locally integrable functions [14]. V7 (f) = Msga(f)- (1 e ) (22)

The absolute value function is defined as:

A. Definitions
w(h = -asa(m (M) e

_ which must be understood in the sense of distributions.
_ vif x>0 18 A comparison of the LIP and the SLIP models isomor-
zif x < phisms exhibits that the SLIP model is symmetric and well
The derivative of the absolute value function, defined f&dapted to negative values, whereas the LIP model, if egtend
non-negative real numbers as: beyond 0, presents a non logarithmic behavior for negative
dlel values (fig. 1).
x

e forxz #£0 (19)

is the signum function defined oR as:

sgn(z) =
D. The vectorial operations

In order to define a vector space structure, addition and

_1_ if <0 multiplication by a real scalar are introduced below.
sgn(z) = 0 !f z=0 1) The addition: The addition of two gray levelg and g
Lif z>0 is defined as:
B m 7 @ 2
B. The space of gray levels fAhg=Msen(f+g).|1—(1- i 1= M
In the SLIP model, an image is represented by its associated (23)

gray level function, denoted, defined on the non-empty with:
spatial domainD in R2. The gray level functions are valued in = sgn(f) oy = sgn(g) (24)
the bounded symmetric real number intergalM, M), where sgn(f+g)’ sgn(f +g)

M is strictly positive, called the gray levels range. Elements —, . ; : ; .
of (—M, M) are called the gray levelsM represents the This can be easily proved using the following property:
maximum light intensity and-M is the total light absorption. || =
These assumptions will be more detailed in subsection.llI-E sgn(z)

x

(25)
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2) The multiplication by a scalarThe multiplication by a
scalar) is defined as:

Al
AA f = M sgn(\f). [1— (1—'}\{)) ] (26)
The set of gray levels functions valued on the symmetri

range (-M,M), structured with addition and multiplicatiduy
a real scalar, defines a real vector space.

E. Physical and Physiological considerations Fig. 2. Original Lena image (left) and Lena image viewed throagight
In this subsection. it is shown that the SLIP model allows f tensity filter (right). The filter consists in 3 horizontaands of 25% light
. . ! . . absorption..

unify physical and psychophysical properties of the LIP glod

in using the model’'s symmetry.

In the classical LIP model, a scale inversion of the gray tong — M /4 (non-absorbtive bands have a valueOdf and it is
range[0, M) is performed, so white values are represented byyresented by the negative imafewhose values are in the
0 and the black ones by/. This fact is completely justified (—M/4,0] range. It is also important to note that thédound

for transmitted light images [15], as the valOecorresponds renresents both the abscence of absorption and the limit of
to the total transparency antl/ total darkness, which canjight detection of the eye, and this is where the connection
not be reached. In this case, images are considered as imaQ&geen reflection images and filters is done. The resulting

resulting from light passed through a filter. In the contekt gmage is the classical Lena image (fig. 2)viewed through
the human visual perception, the justification of Pinolil[i& e filter 7. This is directly performed with a SLIP addition:
this inversion stands on the bio-electrical intensity\ied by

the retinal stage of the eyes. In fact, Baylor et al. esthbtisn I'=IAF. (28)
1979 [17] [18] that the increase of the incident light intigns

produces a decrease of the bio-electrical intensity of flee e

The problem with this assumption concerning the LIP model V. EXPERIMENTAL RESULTS ONLAPLACIAN EDGE

is that the "glare limit” of the eye is reached for white DETECTION

values (h_igh intensities), so the I(_)garithmic. behavior loé t A. Laplacian operator

human visual system is located in the white values and it _ ) ] o

seems that the inversion in the context of human vision is notTHiS Section aims at confirming advantages of the SLIP
relevant. When using the LIP model, it is necessary to consid80del in dealing with negative parts during processing. The
two application cases: transmitted light images where &sck@Place operator is a good simple example, as the results
inversion is generally performed and reflected light imagé¥n from either side of zero with negative values. However,
where the LIP operations can be performed directly on ima§#Pre sophisticated operators such as Fourier transformyor a
gray levels. operator using subtraction operation could benefit the fact

In the SLIP model, in order to unify the two physicalthat results are bounded. Gray-level mathematical moggyol
entities, the positive parfo, M) of the interval (—M, M) could also take advantage of the SLIP model, as they widely

is dedicated to reflected light images and the negative pHR€ Subtraction.

(=M, 0] is dedicated to light intensity filters. So, the negative A LIP-Laplacian operator has been developed by Deng
part (— M, 0] of the SLIP model is equivalent to the positivea”d P!noll [19] in order to perform differentiation-basetbe
part [0, M) of the LIP model. Indeed, a light intensity filterdetection:
can be mathematically seen as a negative image. With the 1

SLIP model, a reflected light image can be processed directly lapaf = §&((f1‘£f3éf7éf9)

without any transformation, as it is defined on tfte M) A2A(foA oA fo A fs) A12A f5) (29)
range. On the other hand, in order to process a transmitted . L . .
light image / with the SLIP model, it is necessary to drag i ut this Laplacian-like operator has been built so thateher

along the isomorphism, by substracting the illuminatiaghti no nega_tive_part in the results. The Laplace operator_ used in
M to tranform it into its corresponding light intensity filtgr Fh',s section Is the_standgrd Laplaczopzratc()jr. or Laplalumr;l
(f becomes entirely negative): in image processing. It is a secon order ifferential dpera
’ defined as the divergence of the gradient.
f=f—-M (27) In the discrete image processing case, the Laplacian of an
This property is important, because images of differenewp!mage can be calculgted using a convolution of the copsnﬂere
. image by a Laplacian kernel. The standard Laplacian V-8
can be processed together with the SLIP framework. The regy . o
; S I ernel for Image Laplacian computation is:
of a reflected image passed through a light intensity filter ca
be calculated; for example an eye viewing a scene through a 1 1 1
slide, as shown in fig. 2. In this example, the filter consists k=1 -8 1 (30)

in 3 horizontal bands of 25% light absorption, i.e. a value 1 1 1
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Then the Laplacian filtering is performed using the convolare shown in fig. 4. The CLIP Laplacian segmentation doesn't
tion operation withl an image of sizel/ x N to be processed exhibit any effective detection in the image. Then, it appea
and k. the kernel of size x 3: clearly that there is an increase in level of detection farthea

o . model, due to the different thresholds automatically faund
OG,j) =10, j) *k (31)  With the Otsu method. The HLIP Laplacian segmentation fails
This expression is numerically equivalent to: to detect all edges, as the thresholded image doesn'’t edfiibit
3 3 reflections of Lena’s hat in the mirror. On the contrary, The
N , 1 _ Pseudo-LIP Laplacian segmentation exhibits a lot of noise.
0G.J) ZZHHL]C Liti=1DkkD (32 The SLIP Laplacian segmentation image is a compromise
between edges and noise detection and will be more usable
for binary mathematical morphology operations.

k=11=1

wherei =1.M —m+1landj=1.N—n+1
The calculus of the SLIP Laplacian filter is:

O(i,j) = ¢~ (W(I(i,5)) x k)) = 1(i,5)) Ak (33)

CLIP (classical linear image processing) and SLIP Laplai
cian resulting images are shown in fig. 3. The LIP model
fails in computing the standard Laplacian because the ivegat
values are not bounded. These negative values reached so |
values that the resulting image is distorted, and is whiterwh
normalized in the(0, 1) range. ’

Fig. 3. Lena image filtered with the CLIP (left) and SLIP (rigimodels

V-8 Laplacian filter. Images have been normalized in thel) set. Fig. 4. CLIP(top left), SLIP (top right), HLIP (bottom lefgnd Pseudo-LIP
(bottom right) Laplacians of Lena image thresholded with @eu method.

The maximum and minimum values of the Laplacian re-
sulting images of Lena computed with CLIP, LIP and SLIP

models are indicated in table I. In the digital caseis equal Threshold value|
8 . CLIP 0.4706
to 2° = 256. These results confirm that SLIP model operators SLIP 0.4118
are bounded in thé—M, M) range. HLIP 0.3725
Pseudo-LIP|| 0.4980
min max TABLE I
CLIP || -810 622 COMPARATIVE TABLE OF THRESHOLD VALUES OF THELAPLACIAN IMAGE
SLIP || -254.9748 254.6712 PROCESSED WITH THEOTSU METHOD FORCLIP, SLIP, HLIPAND
LIP -2.5831e+006| 254.6712 PSEUDO-LIP MODELS.

TABLE |
COMPARATIVE TABLE OF MAXIMUM AND MINIMUM VALUES OF THE
LAPLACIAN IMAGES COMPUTED WITHCLIP, LIP AND SLIP MODELS.

V. CONCLUSION

In this paper, the SLIP (Symmetric Logarithmic Image
) ] Processing) model for Logarithmic Image Processing has bee
B. Laplacian edge detection proposed, in the continuation of the LIP model. Based on
A comparison between the CLIP, SLIP, HLIP and Pseudan odd function, it provides an algebraic structure for the
LIP models exhibits that the differences in the fundamentpfocessing of transmitted light images and intensity insage
isomorphisms of each model lead to different laplacianitesu reunified on the same bounded rangeM, M). It is also
In this subsection, segmentation has been performed using physically justified and consistent with transmitted ligim-
classical Otsu method [20] in order to find the right thesholalges formation and human vision brightness perception. laws
to segment each laplacian image, as it is summarized in taMereover, the SLIP model, structured with combination and
II. The histograms of the three Laplacian images are binspdahmplification laws, defines a vector space structure on the
so the Otsu method is appropriate. Results of segmentatisgsimetric bounded range which is mathematically condisten
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Its advantages have been illustrated on a real applicatias G. Deng and J. Pinoli, “Differentiation-based edgeedtion using the
example, a Laplacian edge detection, where the SLIP model is logarithmic image processing modelpurnal of Mathematical Imaging

. . and Vision vol. 8, no. 2, pp. 161-180, 1998.
far better adapted. Indeed, resulting images are boundmjaon[20] N. Otsu, “A threshold selection method from gray-levéstbgrams,”

symmetric interval(—M, M) whereas the same operator, in ~ Automatica vol. 11, pp. 285-296, 1975.

the case of the classical LIP model, give resulting imagésen [21] G. Cog’rbebaisse, F. Trunde, and M. Jourlin, “Wavelab$form and lip
(—o0, M) set and distorts information. The SLIP model opens model,"Image Anal. Stereokol. 21, no. 2, pp. 121-125, 2002.
strong new perspectives, as it is equipped with a vectorespac

structure on the bounded ran@ie M, M), and also physically

and psychophysically justified. Our current researchesson

other image processing operations and in sophisticatdd, too

such as SLIP Fourier Transform, mathematical morphlogy and

wavelet transform [21]. Taking into account recent work in

logarithmic image processing, the extension of the PLIP to

the Parameterized SLIP could be easily implemented, inrorde

to define PSLIP operators dealing with negative values.
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